数学杂志  2016, Vol. 36 Issue (1): 6-16   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WEI Han-yu
TONG Yan-chun
XU Ran
THE DARBOUX TRANSFORMATION OF THE DERIVATIVE MANAKOV EQUATION AND ITS EXPLICIT SOLUTION
WEI Han-yu1,2, TONG Yan-chun1, XU Ran3     
1. College of Mathematics and Statistics,Zhoukou Normal University,Zhoukou 466001,China;
2. Department of Mathematics,Shanghai University,Shanghai 200444,China;
3. No. 11 Middle School of Zhengzhou,Zhengzhou 450000,China
Abstract: In this paper,we present a new Darboux transformation for the derivative Manakov equation. By applying the Darboux transformation,we obtain new soliton solutions of the derivative Manakov soliton equation. Finally,the figures of the soliton solution are obtained by choosing the suitable parameters.
Key words: spectral problem     Darboux transformation     Darboux matrix     explicit solution    
导数Manakov方程的Darboux变换及其精确解
魏含玉1,2, 童艳春1, 徐冉3     
1. 周口师范学院数学与统计学院,河南 周口 466001;
2. 上海大学数学系,上海 200444;
3. 郑州市第十一中学,河南 郑州 450000
摘要:本文给出了导数Manakov方程新的Darboux变换.利用此Darboux变换得到了导数Manakov方程的精确解.最后,通过选择适当的参数,作出了孤子解的图形.
关键词谱问题    达布变换    达布阵    精确解    
1 Introduction

The soliton equation is one of the most prominent subjects in the field of nonlinear science,like nonlinear optics,the theory of deep water waves,and plasma physics. It was well known that there were many ways to obtain explicit solutions of soliton equations,such as the inverse scattering transformation (IST) [1, 2],the Hirota technique [3, 4],the Darboux transformation (DT) [5, 6],and so on [7-11]. Some interesting explicit solutions were found,the most important ones among which are pure-soliton solutions,finite-band solutions and polar expansion solutions. Among the various approaches,DT was known to be powerful in finding solutions of soliton equations from a trivial seed [12-18].

In this paper,we consider the derivative Manakov soliton equation [19]

$\begin{equation*} \left\{ \begin{array}{l} \displaystyle{ u_{1t}=\frac{1}{3}u_{1xx}+\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})u_{1}]_{x},}\\ \displaystyle{ u_{2t}=\frac{1}{3}u_{2xx}+\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})u_{2}]_{x},}\\ \displaystyle{ v_{1t}=-\frac{1}{3}v_{1xx}-\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})v_{1}]_{x},}\\ \displaystyle{ v_{2t}=-\frac{1}{3}v_{2xx}-\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})v_{2}]_{x}.} \end{array}\right. \end{equation*}$

The paper is arranged as follows: we start from a coupled equation which is related to a 3$\times$3 spectral problem and give a basic DT [12-18]. In Section 3,we get from $u_{1}=u_{2}=v_{1}=v_{2}=0$ the soliton solutions of the couple soliton equations,then we obtain the explicit solutions of the coupled equation. Finally,the figures of the soliton solution are obtained by choosing the suitable parameters.

2 Darboux Transformation

In this section,we shall construct a DT of the derivative Manakov

$\begin{equation} \left\{ \begin{array}{l} \displaystyle{ u_{1t}=\frac{1}{3}u_{1xx}+\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})u_{1}]_{x},}\\ \displaystyle{ u_{2t}=\frac{1}{3}u_{2xx}+\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})u_{2}]_{x},}\\ \displaystyle{ v_{1t}=-\frac{1}{3}v_{1xx}-\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})v_{1}]_{x},}\\ \displaystyle{ v_{2t}=-\frac{1}{3}v_{2xx}-\frac{2}{3}[(u_{1}v_{1}+u_{2}v_{2})v_{2}]_{x}.} \end{array}\right. \end{equation}$ (2.1)

This equation has a Lax pair,the spectral problem

$\begin{eqnarray} &&\phi_{x}=U\phi,\ \ \phi =\left(\begin{array}{ccc} \phi_{1}\\ \phi_{2}\\ \phi_{3} \end{array}\right),\\ &&U=\left(\begin {array}{ccc} 2\lambda & v_{1}& v_{2}\\ \lambda u_{1} & -\lambda & 0\\ \lambda u_{2}& 0 & -\lambda \end {array}\right),\nonumber\end{eqnarray}$ (2.2)

and the auxiliary problem

$\begin{eqnarray} \phi_{t}=V\phi,V=\left(\begin {array}{ccc} V_{11}&V_{12}&V_{13}\\ V_{21}&V_{22}&V_{23}\\ V_{31}&V_{32}&V_{33} \end{array}\right) \end{eqnarray}$ (2.3)

with

$\begin{eqnarray*} \begin {array}{l} \displaystyle{ V_{11}=-2\lambda^2+\frac{1}{3}(u_{1}v_{1}+u_{2}v_{2})\lambda,} \displaystyle{ V_{12}=-v_{1}\lambda-\frac{1}{3}v_{1x}+\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})v_{1},}\\ \displaystyle{ V_{13}=-v_{2}\lambda-\frac{1}{3}v_{2x}+\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})v_{2},} \displaystyle{ V_{21}=-u_{1}\lambda^2+[\frac{1}{3}u_{1x}+\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})u_{1}]\lambda,}\\ \displaystyle{ V_{22}=\lambda^2-\frac{1}{3}u_{1}v_{1}\lambda}, \displaystyle{ V_{23}=-\frac{1}{3}u_{1}v_{2}\lambda,} \displaystyle{ V_{31}=-u_{2}\lambda^2+[\frac{1}{3}u_{2x}+\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})u_{2}]\lambda,}\\ \displaystyle{ V_{32}=-\frac{1}{3}u_{2}v_{1}\lambda,} \displaystyle{ V_{33}=\lambda^2-\frac{1}{3}u_{2}v_{2}}\lambda, \end{array} \end{eqnarray*}$

where $u_{1},u_{2},v_{1}$ and $v_{2}$ are four potentials,and $\lambda$ is a spectral parameter.

In fact,a direct calculation shows that the zero-curvature equation $U_{t}-V_{x}+[U,V]=0$,implies the derivative Manakov equation (2.1).

We assume that there is a matrix $T$ satisfying

$\begin{equation} \bar{\phi}=T\phi, \end{equation}$ (2.4)

where $T$ is determined by

$\begin{equation}T_{x}+TU=\bar{U}T,T_{t}+TV=\bar{V}T. \end{equation}$ (2.5)

It is easy to see that the Lax pair (2.2) and (2.3) are transformed to

$\begin{equation} \bar{\phi}_x=\bar{U}\bar\phi,\hspace{0.5cm} \bar{\phi}_t=\bar{V}\bar\phi.\end{equation}$ (2.6)

Let

$\begin{equation} T=\left(\begin{array}{ccc}T_{11} & T_{12}& T_{13}\\ T_{21} & T_{22}& T_{23}\\T_{31} & T_{32}& T_{33} \end{array}\right), \end{equation}$ (2.7)

where $ T_{ij}=t_{ij}^{(1)}\lambda+t_{ij}^{(0)}, \ \ t_{ij}^{(k)}(i,j=1,2,3;k=0,1) $are functions of $x$ and $t$.

From (2.6),we can get

$\begin{equation} T=\left(\begin{array}{ccc} t_{11}^{(1)}\lambda+t_{11}^{(0)} & t_{12}^{(0)} & t_{13}^{(0)} \\ t_{21}^{(1)}\lambda & t_{22}^{(1)}\lambda+t_{22}^{(0)} & t_{23}^{(1)}\lambda \\ t_{31}^{(1)}\lambda & t_{32}^{(1)}\lambda & t_{33}^{(1)}\lambda+t_{33}^{(0)} \end{array}\right). \end{equation}$ (2.8)

Let

$\begin{equation} \begin{array}{l} \varphi(\lambda_{j})=(\varphi_{1}(\lambda_{j}),\varphi_{2}(\lambda_{j}),\varphi_{3}(\lambda_{j}))^T,\\ \psi(\lambda_{j})=(\psi_{1}(\lambda_{j}),\psi_{2}(\lambda_{j}),\psi_{3}(\lambda_{j}))^T,\\ \chi(\lambda_{j})=(\chi_{1}(\lambda_{j}),\chi_{2}(\lambda_{j}),\chi_{3}(\lambda_{j}))^T \end{array} \end{equation}$ (2.9)

be three basic solutions of (2.2),from (2.4),we know that there exist constant $\gamma_j^{(1)},\gamma_j^{(2)}$ satisfy

$\begin{equation} \left\{ \begin{array}{l} T_{11}\varphi_{1}+T_{12}\varphi_{2}+T_{13}\varphi_{3}+\gamma_{j}^{(1)}(T_{11}\psi_{1}+T_{12}\psi_{2}+T_{13}\psi_{3}) +\gamma_{j}^{(2)}(T_{11}\chi_{1}+T_{12}\chi_{2}+T_{13}\chi_{3})=0,\\ T_{21}\varphi_{1}+T_{22}\varphi_{2}+T_{23}\varphi_{3}+\gamma_{j}^{(1)}(T_{21}\psi_{1}+T_{22}\psi_{2}+T_{23}\psi_{3}) +\gamma_{j}^{(2)}(T_{21}\chi_{1}+T_{22}\chi_{2}+T_{23}\chi_{3})=0,\\ T_{31}\varphi_{1}+T_{32}\varphi_{2}+T_{33}\varphi_{3}+\gamma_{j}^{(1)}(T_{31}\psi_{1}+T_{32}\psi_{2}+T_{33}\psi_{3}) +\gamma_{j}^{(2)}(T_{31}\chi_{1}+T_{32}\chi_{2}+T_{33}\chi_{3})=0,\\ \end{array}\right.\end{equation}$ (2.10)

further,(2.10) can be written as a linear algebraic system

$\begin{eqnarray} \left\{ \begin{array}{l} T_{11}+\alpha_{j}^{(1)}T_{12}+\alpha_{j}^{(2)}T_{13}=0,\\ T_{21}+\alpha_{j}^{(1)}T_{22}+\alpha_{j}^{(2)}T_{23}=0,\\ T_{31}+\alpha_{j}^{(1)}T_{32}+\alpha_{j}^{(2)}T_{33}=0, \end{array} \right. \end{eqnarray}$ (2.11)

where

$\begin{equation} \left\{ \begin{array}{l} \displaystyle{ \alpha_{j}^{(1)}=\frac{\varphi_{2}(\lambda_{j})+\gamma_{j}^{(1)}\psi_{2}(\lambda_{j})+\gamma_{j}^{(2)}\chi_{2}(\lambda_{j})} {\varphi_{1}(\lambda_{j})+\gamma_{j}^{(1)}\psi_{1}(\lambda_{j})+\gamma_{j}^{(2)}\chi_{1}(\lambda_{j})},}\\ \displaystyle{ \alpha_{j}^{(2)}=\frac{\varphi_{3}(\lambda_{j})+\gamma_{j}^{(1)}\psi_{3}(\lambda_{j})+\gamma_{j}^{(2)}\chi_{3}(\lambda_{j})} {\varphi_{1}(\lambda_{j})+\gamma_{j}^{(1)}\psi_{1}(\lambda_{j})+\gamma_{j}^{(2)}\chi_{1}(\lambda_{j})},} \end{array}\right. \quad \quad j=1,2,3.\end{equation}$ (2.12)

Then we have

$\begin{equation} \det T(\lambda)=\mu(\lambda-\lambda_{1})(\lambda-\lambda_{2})(\lambda-\lambda_{3}). \end{equation}$ (2.13)

By using above fact,we can prove the following proposition:

Proposition 1 The matrix $\bar{U}$ determined by (2.6) has the same form as $U$,that is

$\begin{equation} \bar{U}=\left(\begin{array}{ccc} 2\lambda & \bar{v}_{1}&\bar{v} _{2}\\ \lambda\bar{u}_{1} & -\lambda & 0\\ \lambda\bar{u}_{2}& 0 & -\lambda \end {array}\right), \end{equation}$ (2.14)

where the transformations between $u_{1},u_{2},v_{1},v_{2}$ and $\bar{u}_{1},\bar{u}_{2},\bar{v}_{1},\bar{v}_{2}$ are given by

$\begin{equation} \begin{array}{l} \displaystyle{ \bar{u}_{1}=\frac{1}{t_{11}^{(1)}}(3t_{21}^{(1)}+u_{1}t_{22}^{(1)}+u_{2}t_{23}^{(1)}),}\\ \displaystyle{ \bar{u}_{2}=\frac{1}{t_{11}^{(1)}}(3t_{31}^{(1)}+u_{1}t_{32}^{(1)}+u_{2}t_{33}^{(1)}),}\\ \displaystyle{ \bar{v}_{1}=\frac{(v_{1}t_{11}^{(1)}-3t_{12}^{(0)})t_{33}^{(1)}-(v_{2}t_{11}^{(1)}-3t_{13}^{(0)})t_{32}^{(1)}}{t_{22}^{(1)}t_{33}^{(1)} -t_{23}^{(1)}t_{32}^{(1)}},}\\ \displaystyle{ \bar{v}_{2}=\frac{(v_{1}t_{11}^{(1)}-3t_{12}^{(0)})t_{23}^{(1)}-(v_{2}t_{11}^{(1)}-3t_{13}^{(0)})t_{22}^{(1)}}{t_{23}^{(1)}t_{32}^{(1)} -t_{22}^{(1)}t_{33}^{(1)}}.}\\ \end{array} \end{equation}$ (2.15)

Proof Let $T^{-1}=T^{\ast}/\det T$ and

$\begin{eqnarray} (T_{x}+TU) T^*= \left( \begin {array}{ccc} f_{11}(\lambda) &f_{12}(\lambda) &f_{13}(\lambda)\\ f_{21}(\lambda) &f_{22}(\lambda) &f_{23}(\lambda)\\ f_{31}(\lambda) &f_{32}(\lambda) &f_{33}(\lambda) \end {array}\right). \end{eqnarray}$ (2.16)

It is easy to see that $f_{sl}(\lambda)(s,l=1,2,3)$ are third-order or fourth-order polynomial in $\lambda$. From (2.2) and (2.11),we find that

$\begin{equation} \left. \begin{array}{l} \alpha_{jx}^{(1)}=u_{1}-v_{2}(\alpha_{j}^{(1)})^{2}-u_{2}\alpha_{j}^{(1)}\alpha_{j}^{(2)}+3\lambda_{j}\alpha_{j}^{(1)},\\ \alpha_{jx}^{(2)}=v_{1}-u_{2}(\alpha_{j}^{(2)})^{2}-v_{2}\alpha_{j}^{(1)}\alpha_{j}^{(2)}+3\lambda_{j}\alpha_{j}^{(2)},\\ T_{11}=-\alpha_{j}^{(1)}T_{12}-\alpha_{j}^{(2)}T_{13},\\ T_{21}=-\alpha_{j}^{(1)}T_{22}-\alpha_{j}^{(2)}T_{23},\\ T_{31}=-\alpha_{j}^{(1)}T_{32}-\alpha_{j}^{(2)}T_{33}, \end{array}\right. \quad \quad j=1,2,3.\end{equation}$ (2.17)

By using (2.13) and (2.17),we can prove that all $ \lambda_j ( 1\leq j \leq 3)$ are roots of $ f_{sl}( s,l=1,2,3).$ Again noting (2.11),then we can conclude that

$\begin{equation} \det T\mid f_{sl},\hspace{0.2cm} s,l=1,2,3, \end{equation}$ (2.18)

which together with (2.16) gives

$\begin{eqnarray} (T_{x}+T U) T^*=(\det T)P(\lambda) \end{eqnarray}$ (2.19)

with

$\begin{eqnarray*} P(\lambda)=\left( \begin{array}{ccc} p_{11}^{(1)}\lambda+ p_{11}^{(0)} & p_{12}^{(0)} & p_{13}^{(0)}\\ p_{21}^{(1)}\lambda+ p_{21}^{(0)} & p_{22}^{(1)}\lambda+ p_{22}^{(0)} & p_{23}^{(1)}\lambda+ p_{23}^{(0)}\\ p_{31}^{(1)}\lambda+ p_{31}^{(0)} & p_{32}^{(1)}\lambda+ p_{32}^{(0)} & p_{33}^{(1)}\lambda+ p_{33}^{(0)} \end {array}\right),\end{eqnarray*}$

where $p^{(l)}_{kj}(k,j=1,2,3;l=0,1.)$ are undetermined functions independent of $\lambda$. Now eq. (2.19) can be written in the form

$\begin{eqnarray} T_{x}+T U= P(\lambda)T. \end{eqnarray}$ (2.20)

By comparing the coefficients of $\lambda^{2}$ in (2.20),we obtain

$\begin{eqnarray} \left.\begin{array}{l} p_{11}^{(1)}=2,\quad p_{22}^{(1)}=p_{33}^{(1)}=-1,\quad p_{23}^{(1)}=p_{23}^{(1)}=0,\\ \displaystyle{p_{21}^{(1)}=\frac{1}{t_{11}^{(1)}}(3t_{21}^{(1)}+u_{1}t_{22}^{(1)}+u_{2}t_{23}^{(1)})=\bar{u}_{1},}\\ \displaystyle{p_{31}^{(1)}=\frac{1}{t_{11}^{(1)}}(3t_{31}^{(1)}+u_{1}t_{32}^{(1)}+u_{2}t_{33}^{(1)})=\bar{u}_{2}.} \end{array} \right.\end{eqnarray}$ (2.21)

On the other hand,equating the coefficients $\lambda^{1},\lambda^{0}$ in (2.21) leads to

$\begin{eqnarray} \left.\begin{array}{l} p_{11}^{(0)}=p_{21}^{(0)}=p_{22}^{(0)}=p_{23}^{(0)}=p_{31}^{(0)}=p_{32}^{(0)}=p_{33}^{(0)}=0,\\ p_{21}^{(1)}t_{11}^{(0)}=t_{21x}^{(1)}+u_{1}t_{22}^{(0)}, p_{21}^{(1)}t_{12}^{(0)}=t_{22x}^{(1)}+v_{1}t_{21}^{(1)},\\ p_{21}^{(1)}t_{13}^{(0)}=t_{23x}^{(1)}+v_{2}t_{21}^{(1)}, p_{31}^{(1)}t_{11}^{(0)}=t_{31x}^{(1)}+u_{2}t_{33}^{(0)},\\ p_{31}^{(1)}t_{12}^{(0)}=t_{32x}^{(1)}+v_{1}t_{31}^{(1)}, p_{31}^{(1)}t_{13}^{(0)}=t_{33x}^{(1)}+v_{2}t_{31}^{(1)},\\ p_{12}^{(0)}t_{22}^{(0)}=t_{12x}^{(0)}+v_{1}t_{11}^{(0)}, p_{13}^{(0)}t_{33}^{(0)}=t_{13x}^{(0)}+v_{2}t_{11}^{(0)},\\ \displaystyle{ p_{12}^{(0)}=\frac{(v_{1}t_{11}^{(1)}-3t_{12}^{(0)})t_{33}^{(1)}-(v_{2}t_{11}^{(1)}-3t_{13}^{(0)})t_{32}^{(1)}} {t_{22}^{(1)}t_{33}^{(1)}-t_{23}^{(1)}t_{32}^{(1)}}=\bar{v}_{1},}\\ \displaystyle{ p_{13}^{(0)}=\frac{(v_{1}t_{11}^{(1)}-3t_{12}^{(0)})t_{23}^{(1)}-(v_{2}t_{11}^{(1)}-3t_{13}^{(0)})t_{22}^{(1)}} {t_{23}^{(1)}t_{32}^{(1)}-t_{22}^{(1)}t_{33}^{(1)}}=\bar{v}_{2}.} \end{array} \right.\end{eqnarray}$ (2.22)

From (2.5) and (2.20),we see that $\bar{U}=P(\lambda)$. The proof is completed.

Proposition 2 Under DT (2.4),the matrix $\bar{V}$ in (2.5) has the same form as V,that is

$\begin{equation} \bar{V}=\left(\begin {array}{ccc} \bar{V}_{11}& \bar{V}_{12}& \bar{V}_{13}\\ \bar{V}_{21}& \bar{V}_{22}& \bar{V}_{23}\\ \bar{V}_{31}& \bar{V}_{32}& \bar{V}_{33} \end{array}\right) \end{equation}$ (2.23)

in which

$\begin{eqnarray*} \begin {array}{l} \bar{V}_{11}=\displaystyle{-2\lambda^2+\frac{1}{3}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\lambda,}\\ \bar{V}_{12}=\displaystyle{-\bar{v}_{1}\lambda-\frac{1}{3}\bar{v}_{1x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{v}_{1},}\\ \bar{V}_{13}=\displaystyle{-\bar{v}_{2}\lambda-\frac{1}{3}\bar{v}_{2x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{v}_{2},}\\ \bar{V}_{21}=\displaystyle{-\bar{u}_{1}\lambda^2+[\frac{1}{3}\bar{u}_{1x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{u}_{1}]\lambda,}\\ \bar{V}_{22}=\displaystyle{\lambda^2-\frac{1}{3}\bar{u}_{1}\bar{v}_{1}\lambda,} \bar{V}_{23}=\displaystyle{-\frac{1}{3}\bar{u}_{1}\bar{v}_{2}\lambda,}\\ \bar{V}_{31}=\displaystyle{-\bar{u}_{2}\lambda^2+[\frac{1}{3}\bar{u}_{2x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{u}_{2}]\lambda,}\\ \bar{V}_{32}=\displaystyle{-\frac{1}{3}\bar{u}_{2}\bar{v}_{1}\lambda,} \bar{V}_{33}=\displaystyle{\lambda^2-\frac{1}{3}\bar{u}_{2}\bar{v}_{2}\lambda.} \end{array}\end{eqnarray*}$

The old potentials $u_{1},u_{2},v_{1}$ and $v_{2}$ are mapped into new ones $\bar{u}_{1},\bar{u}_{2},\bar{v}_{1}$ and $\bar{v}_{2}$ according to the same DT (2.4) and (2.15).

Proof In a way similar to Proposition 1,we denote $T^{-1}=T^{\ast}/\det T$ and

$\begin{eqnarray} (T_{t}+T V) T^*= \left( \begin {array}{ccc} g_{11}(\lambda) &g_{12}(\lambda) &g_{13}(\lambda)\\ g_{21}(\lambda) &g_{22}(\lambda) &g_{23}(\lambda)\\ g_{31}(\lambda) &g_{32}(\lambda) &g_{33}(\lambda)\\ \end {array}\right). \end{eqnarray}$ (2.24)

Direct calculation shows that $g_{sl}(\lambda)(s,l=1,2,3)$ are fourth-order or fifth-order polynomial in $\lambda$, respectively,with the help of (2.3) and (2.11),we find that

$\begin{equation} \left. \begin{array}{l} \displaystyle{ \alpha_{jt}^{(1)}=-u_{1}\lambda_{j}^{2}+[\frac{1}{3}u_{1x}+\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})u_{1}]\lambda_{j}+3\lambda_{j}^{2}\alpha_{j}^{(1)} -\frac{1}{3}u_{1}v_{2}\lambda_{j}\alpha_{j}^{(2)}}\\\displaystyle{-\frac{1}{3}(2u_{1}v_{1}+u_{2}v_{2})\lambda_{j}\alpha_{j}^{(1)} +[v_{1}\lambda_{j}+\frac{1}{3}v_{1x}-\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})v_{1}](\alpha_{j}^{1})^{2}}\\\displaystyle{ +[v_{2}\lambda_{j}+\frac{1}{3}v_{2x}-\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})v_{2}]\alpha_{j}^{(1)}\alpha_{j}^{(2)},}\\ \displaystyle{ \alpha_{jt}^{(2)}=-u_{2}\lambda_{j}^{2}+[\frac{1}{3}u_{2x}+\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})u_{2}]\lambda_{j}+3\lambda_{j}^{2}\alpha_{j}^{(2)} -\frac{1}{3}u_{2}v_{1}\lambda_{j}\alpha_{j}^{(1)}}\\\displaystyle{ -\frac{1}{3}(u_{1}v_{1}+2u_{2}v_{2})\lambda_{j}\alpha_{j}^{(2)} +[v_{2}\lambda_{j}+\frac{1}{3}v_{2x}-\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})v_{2}](\alpha_{j}^{2})^{2}}\\\displaystyle{ +[v_{1}\lambda_{j}+\frac{1}{3}v_{1x}-\frac{2}{9}(u_{1}v_{1}+u_{2}v_{2})v_{1}]\alpha_{j}^{(1)}\alpha_{j}^{(2)},}\\ T_{11t}=-\alpha_{jt}^{(1)}T_{12}-\alpha_{j}^{(1)}T_{12t}-\alpha_{jt}^{(2)}T_{13}-\alpha_{j}^{(2)}T_{13t},\\ T_{21t}=-\alpha_{jt}^{(1)}T_{22}-\alpha_{j}^{(1)}T_{22t}-\alpha_{jt}^{(2)}T_{23}-\alpha_{j}^{(2)}T_{23t},\\ T_{31t}=-\alpha_{jt}^{(1)}T_{32}-\alpha_{j}^{(1)}T_{32t}-\alpha_{jt}^{(2)}T_{33}-\alpha_{j}^{(2)}T_{33t}. \end{array}\right. \quad j=1,2,3. \end{equation}$ (2.25)

We can verify by (2.13) and (2.25) that $\lambda_j ( 1\leq j \leq 3)$ are also roots of $g_{sl} ( s,l=1,2,3)$. Therefore,we have

$\begin{equation} \det T\mid g_{sl},\hspace{0.2cm} s,l=1,2,3, \end{equation}$ (2.26)

and thus

$\begin{equation}(T_{t}+TV)T^*=(\det T)Q(\lambda)\end{equation}$ (2.27)

with

$\begin{eqnarray*} Q(\lambda)=\left( \begin{array}{ccc} Q_{11}&Q_{12}&Q_{13}\\ Q_{21}&Q_{22}&Q_{23}\\ Q_{31}&Q_{32}&Q_{33} \end {array}\right),\end{eqnarray*}$

where

$\begin{eqnarray*} &&Q_{11}=q_{11}^{(2)}\lambda^{2}+q_{11}^{(1)}\lambda+ q_{11}^{(0)}, Q_{12}=q_{12}^{(1)}\lambda+ q_{12}^{(0)}, Q_{13}=q_{13}^{(1)}\lambda+ q_{13}^{(0)},\\ &&Q_{21}=q_{21}^{(2)}\lambda^{2}+q_{21}^{(1)}\lambda+ q_{21}^{(0)}, Q_{22}=q_{22}^{(2)}\lambda^{2}+q_{22}^{(1)}\lambda+ q_{22}^{(0)}, Q_{23}=q_{23}^{(2)}\lambda^{2}+q_{23}^{(1)}\lambda+ q_{23}^{(0)},\\ &&Q_{31}=q_{31}^{(2)}\lambda^{2}+q_{31}^{(1)}\lambda+ q_{31}^{(0)}, Q_{32}=q_{32}^{(2)}\lambda^{2}+q_{32}^{(1)}\lambda+ q_{32}^{(0)}, Q_{33}=q_{33}^{(2)}\lambda^{2}+q_{33}^{(1)}\lambda+ q_{33}^{(0)}, \end{eqnarray*}$

that is

$\begin{eqnarray} T_{t}+T V= Q(\lambda)T. \end{eqnarray}$ (2.28)

Comparing the coefficients of $\lambda^{3}$ in (2.28),leads to

$\begin{eqnarray}\begin{array}{l} q_{11}^{(2)}=-2,\ \ q_{22}^{(2)}=q_{33}^{(2)}=0,\ \ q_{23}^{(2)}=q_{32}^{(2)}=0,\\ \displaystyle{ q_{21}^{(2)}=-\frac{1}{t_{11}^{(1)}}(3t_{21}^{(1)}+u_{1}t_{22}^{(1)}+u_{2}t_{23}^{(1)})=-\bar{u}_{1},}\\ \displaystyle{ q_{31}^{(2)}=-\frac{1}{t_{11}^{(1)}}(3t_{31}^{(1)}+u_{1}t_{32}^{(1)}+u_{2}t_{33}^{(1)})=-\bar{u}_{2}.}\\ \end {array}\end{eqnarray}$ (2.29)

On the other hand,equating the coefficients $\lambda^{2},\lambda^{1},\lambda^{0}$ in (2.27) and (2.11),we can obtain

$\begin{eqnarray}\begin{array}{l} \displaystyle{ q_{11}^{(1)}=\frac{1}{3}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2}),}\\ \displaystyle{ q_{12}^{(1)}=-\frac{(v_{1}t_{11}^{(1)}-3t_{12}^{(0)})t_{33}^{(1)}-(v_{2}t_{11}^{(1)}-3t_{13}^{(0)})t_{32}^{(1)}}{t_{22}^{(1)}t_{33}^{(1)} -t_{23}^{(1)}t_{32}^{(1)}}=-\bar{v}_{1},}\\ \displaystyle{ q_{13}^{(1)}=-\frac{(v_{1}t_{11}^{(1)}-3t_{12}^{(0)})t_{23}^{(1)}-(v_{2}t_{11}^{(1)}-3t_{13}^{(0)})t_{22}^{(1)}}{t_{23}^{(1)}t_{32}^{(1)} -t_{22}^{(1)}t_{33}^{(1)}}=-\bar{v}_{2},}\\ \displaystyle{ q_{21}^{(1)}=\frac{1}{3}\bar{u}_{1x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{u}_{1},} \displaystyle{ q_{22}^{(1)}=-\frac{1}{3}\bar{u}_{1}\bar{v}_{1},} \displaystyle{ q_{23}^{(1)}=-\frac{1}{3}\bar{u}_{1}\bar{v}_{2},}\\ \displaystyle{ q_{31}^{(1)}=\frac{1}{3}\bar{u}_{2x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{u}_{2},} \displaystyle{ q_{32}^{(1)}=-\frac{1}{3}\bar{u}_{2}\bar{v}_{1},} \displaystyle{ q_{33}^{(1)}=-\frac{1}{3}\bar{u}_{2}\bar{v}_{2},}\\ q_{11}^{(0)}=q_{21}^{(0)}=q_{22}^{(0)}=q_{23}^{(0)}=q_{31}^{(0)}=q_{32}^{(0)}=q_{33}^{(0)}=0,\\ \displaystyle{ q_{12}^{(0)}=-\frac{1}{3}\bar{v}_{1x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{v}_{1},} \displaystyle{ q_{13}^{(0)}=-\frac{1}{3}\bar{v}_{2x}+\frac{2}{9}(\bar{u}_{1}\bar{v}_{1}+\bar{u}_{2}\bar{v}_{2})\bar{v}_{2}.} \end {array}\end{eqnarray}$ (2.30)

Then the proof is completed.

According to Propositions 1 and 2, transformation (2.4) and (2.15) transform the Lax pairs (2.2) and (2.3) into another Lax pairs of the same type (2.6). Therefore both of the Lax pairs lead to the same eq. (2.1) Then we call the transformation $(u_{1},u_{2},v_{1},v_{2},)\longrightarrow (\bar u_{1},\bar u_{2},\bar v_{1},\bar v_{2},)$ a DT of eq. (2.1).We get the following assertion.

Theorem The solution $(u_{1},u_{2},v_{1},v_{2},)$ of the Derivative manakov equation are mapped into their new solutions $(\bar u_{1},\bar u_{2},\bar v_{1},\bar v_{2},)$ under the DT (2.4) and (2.15), where $t_{ij}^{k} (i,j=1,2,3,k=0,1.)$ are given by the linear algebraic system (2.11).

3 The Soliton Solutions

In this section,we apply the DT of the Derivative manakov equation and give its soliton solution.

Substituting $u_{1}=u_{2}=v_{1}=v_{2}=0$ into the Lax pairs (2.2) and (2.3),then get three basic solutions

$\begin{eqnarray}\begin{array}{ccc} \varphi(\lambda_{j}) =\left(\begin{array}{ccc} e^{2\lambda_{j}x-2\lambda_{j}^{2}t}\\ 0\\0 \end{array}\right),\ \psi(\lambda_{j})=\left(\begin{array}{cc} 0\\e^{-\lambda_{j}x+\lambda_{j}^{2}t}\\0 \end{array}\right),\ \chi(\lambda_{j})=\left(\begin{array}{cc} 0\\0\\e^{-\lambda_{j}x+\lambda_{j}^{2}t} \end{array}\right) \end{array} \end{eqnarray}$ (3.1)

with

$\begin{equation}\begin{array}{l} \alpha_{j}^{(1)}=\frac{\gamma_{j}^{(1)}e^{\lambda_{j}x-\lambda_{j^{2}}t}}{e^{2\lambda_{j}x-2\lambda_{j}^{2}t}} =e^{-3\lambda_{j}x+3\lambda_{j}^{2}t+\beta_{j}^{(1)}},\\ \alpha_{j}^{(2)}=\frac{\gamma_{j}^{(2)}e^{\lambda_{j}x-\lambda_{j^{2}}t}}{e^{2\lambda_{j}x-2\lambda_{j}^{2}t}} =e^{-3\lambda_{j}x+3\lambda_{j}^{2}t+\beta_{j}^{(2)}},\\ \end{array} \end{equation}$ (3.2)

where

$\begin{equation*} \gamma_{j}^{(1)}=e^{\beta_{j}^{(1)}},\gamma_{j}^{(2)}=e^{\beta_{j}^{(2)}},j=1,2,3.\end{equation*}$

By the linear algebraic system (2.11),using Cramer Rule to solve to get

$\begin{eqnarray}\begin{array}{l} \displaystyle{t_{12}^{(0)}=\frac{\Delta_{12}}{\Delta_{1}},\quad \quad \quad t_{13}^{(0)}=\frac{\Delta_{13}}{\Delta_{1}}, \quad \quad \quad t_{11}^{(1)}=\frac{\Delta_{11}}{\Delta_{1}},}\\ \displaystyle{t_{21}^{(1)}=\frac{\Delta_{21}}{\Delta_{2}},\quad \quad \quad t_{22}^{(1)}=\frac{\Delta_{22}}{\Delta_{2}}, \quad \quad \quad t_{23}^{(1)}=\frac{\Delta_{23}}{\Delta_{2}},}\\ \displaystyle{t_{31}^{(1)}=\frac{\Delta_{31}}{\Delta_{2}},\quad \quad \quad t_{32}^{(1)}=\frac{\Delta_{32}}{\Delta_{2}}, \quad \quad \quad t_{33}^{(1)}=\frac{\Delta_{33}}{\Delta_{2}},}\\ \end{array}\end{eqnarray}$ (3.3)

where

$\begin{eqnarray*} &&\Delta_{1} =\displaystyle{K_{1}\lambda_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+K_{2}\lambda_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+K_{3}\lambda_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t},}\\ &&\Delta_{11}=-t_{11}^{(0)}[\displaystyle{K_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+K_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+K_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t}}],\\ &&\Delta_{12}=\displaystyle{-t_{11}^{(0)}[\gamma_{1}e^{-3\lambda_{1}x+3\lambda_{1}^{2}t}+\gamma_{2}e^{-3\lambda_{2}x +3\lambda_{2}^{2}t}+\gamma_{3}e^{-3\lambda_{3}x+3\lambda_{3}^{2}t}],}\\ &&\Delta_{13}=\displaystyle{-t_{11}^{(0)}[\sigma_{1}e^{-3\lambda_{1}x+3\lambda_{1}^{2}t}+\sigma_{2}e^{-3\lambda_{2}x +3\lambda_{2}^{2}t}+\sigma_{3}e^{-3\lambda_{3}x+3\lambda_{3}^{2}t}],}\\ &&\Delta_{2}=\lambda_{1}\lambda_{2}\lambda_{3}[\displaystyle{K_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+K_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+K_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t}}],\\ &&\Delta_{21}=-t_{22}^{(0)}e^{-3(\lambda_{1}+\lambda_{2}+\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2})t} [K_{1}\lambda_{2}\lambda_{3}e^{\beta_{1}^{(1)}}+K_{2}\lambda_{1}\lambda_{3}e^{\beta_{2}^{(1)}}+K_{3}\lambda_{1}\lambda_{2}e^{\beta_{3}^{(1)}}],\\ &&\Delta_{22}=-t_{22}^{(0)}[\displaystyle{\eta_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+\eta_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+\eta_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t}}],\\ &&\Delta_{23}=-t_{22}^{(0)}[\displaystyle{\xi_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+\xi_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+\xi_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t}}],\\ &&\Delta_{31}=-t_{33}^{(0)}e^{-3(\lambda_{1}+\lambda_{2}+\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2})t} [K_{1}\lambda_{2}\lambda_{3}e^{\beta_{1}^{(2)}}+K_{2}\lambda_{1}\lambda_{3}e^{\beta_{2}^{(2)}}+K_{3}\lambda_{1}\lambda_{2}e^{\beta_{3}^{(2)}}],\\ &&\Delta_{32}=-t_{33}^{(0)}[\displaystyle{\rho_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+\rho_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+\rho_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t}}],\\ &&\Delta_{33}=-t_{33}^{(0)}[\displaystyle{\tau_{1}e^{-3(\lambda_{2}+\lambda_{3})x+3(\lambda_{2}^{2}+\lambda_{3}^{2})t}+\tau_{2}e^{-3(\lambda_{1} +\lambda_{3})x+3(\lambda_{1}^{2}+\lambda_{3}^{2})t}+\tau_{3}e^{-3(\lambda_{1}+\lambda_{2})x+3(\lambda_{1}^{2}+\lambda_{2}^{2})t}}],\\ &&K_{1}=e^{\beta_{2}^{(1)}+\beta_{3}^{(2)}}-e^{\beta_{3}^{(1)}+\beta_{2}^{(2)}},\quad K_{2}=e^{\beta_{3}^{(1)}+\beta_{1}^{(2)}}-e^{\beta_{1}^{(1)}+\beta_{3}^{(2)}},\quad K_{3}=e^{\beta_{1}^{(1)}+\beta_{2}^{(2)}}-e^{\beta_{2}^{(1)}+\beta_{1}^{(2)}};\\ &&\gamma_{1}=(\lambda_{2}-\lambda_{3})e^{\beta_{1}^{(2)}},\quad \gamma_{2}=(\lambda_{3}-\lambda_{1})e^{\beta_{2}^{(2)}},\quad \gamma_{3}=(\lambda_{1}-\lambda_{2})e^{\beta_{3}^{(2)}};\\ &&\sigma_{1}=(\lambda_{3}-\lambda_{2})e^{\beta_{1}^{(1)}},\quad \sigma_{2}=(\lambda_{1}-\lambda_{3})e^{\beta_{2}^{(1)}},\quad \sigma_{3}=(\lambda_{2}-\lambda_{1})e^{\beta_{3}^{(1)}};\\ &&\eta_{1}=\lambda_{1}(\lambda_{3}e^{\beta_{2}^{(1)}+\beta_{3}^{(2)}}-\lambda_{2}e^{\beta_{3}^{(1)}+\beta_{2}^{(2)}}),\quad \eta_{2}=\lambda_{2}(\lambda_{1}e^{\beta_{3}^{(1)}+\beta_{1}^{(2)}}-\lambda_{3}e^{\beta_{1}^{(1)}+\beta_{3}^{(2)}}),\\ &&\eta_{3}=\lambda_{3}(\lambda_{2}e^{\beta_{1}^{(1)}+\beta_{2}^{(2)}}-\lambda_{1}e^{\beta_{2}^{(1)}+\beta_{1}^{(2)}});\quad \tau_{1}=\lambda_{1}(\lambda_{2}e^{\beta_{2}^{(1)}+\beta_{3}^{(2)}}-\lambda_{3}e^{\beta_{3}^{(1)}+\beta_{2}^{(2)}}),\\ &&\tau_{2}=\lambda_{2}(\lambda_{3}e^{\beta_{3}^{(1)}+\beta_{1}^{(2)}}-\lambda_{1}e^{\beta_{1}^{(1)}+\beta_{3}^{(2)}}),\quad \tau_{3}=\lambda_{3}(\lambda_{1}e^{\beta_{1}^{(1)}+\beta_{2}^{(2)}}-\lambda_{2}e^{\beta_{2}^{(1)}+\beta_{1}^{(2)}});\\ &&\xi_{1}=\lambda_{1}(\lambda_{2}-\lambda_{3})e^{\beta_{2}^{(1)}+\beta_{3}^{(1)}},\quad \xi_{2}=\lambda_{2}(\lambda_{3}-\lambda_{1})e^{\beta_{1}^{(1)}+\beta_{3}^{(1)}},\quad \xi_{3}=\lambda_{3}(\lambda_{1}-\lambda_{2})e^{\beta_{1}^{(1)}+\beta_{2}^{(1)}};\\ &&\rho_{1}=\lambda_{1}(\lambda_{3}-\lambda_{2})e^{\beta_{2}^{(2)}+\beta_{3}^{(2)}},\quad \rho_{2}=\lambda_{2}(\lambda_{1}-\lambda_{3})e^{\beta_{1}^{(2)}+\beta_{3}^{(2)}},\quad \rho_{3}=\lambda_{3}(\lambda_{2}-\lambda_{1})e^{\beta_{1}^{(2)}+\beta_{2}^{(2)}}. \end{eqnarray*}$
Figure 1 Soliton solution $\bar{u}_{1}[1]$ with $\lambda_{1}=0.01,\lambda_{2}=0.5,\lambda_{3}=-0.4, \beta_{1}^{(1)}=1, \beta_{2}^{(1)}=3, t=0 , \beta_{3}^{(1)}=-1, \beta_{1}^{(2)}=1,\beta_{2}^{(2)}=1,\beta_{3}^{(2)}=-1, t_{11}^{(0)}=1,t_{22}^{(0)}=-1,t_{33}^{(0)}=1.5 $

Figure 2 Soliton solution $\bar{u}_{2}[1]$ with $\lambda_{1}=0.01,\lambda_{2}=0.5,\lambda_{3}=-0.4, \beta_{1}^{(1)}=1,\beta_{2}^{(1)}=3, t=0 , \beta_{3}^{(1)}=-1,\beta_{1}^{(2)}=1,\beta_{2}^{(2)}=1,\beta_{3}^{(2)}=-1, t_{11}^{(0)}=1,t_{22}^{(0)}=-1,t_{33}^{(0)}=1.5$

Figure 3 Soliton solution $\bar{v}_{1}[1]$ with $\lambda_{1}=0.02,\lambda_{2}=0.3,\lambda_{3}=-0.00, \beta_{1}^{(1)}=1,\beta_{2}^{(1)}=0, t=0, \beta_{3}^{(1)}=0,\beta_{1}^{(2)}=1,\beta_{2}^{(2)}=1,\beta_{3}^{(2)}=1, t_{11}^{(0)}=1,t_{22}^{(0)}=1,t_{33}^{(0)}=1$

Figure 4 Soliton solution $\bar{v}_{2}[1]$ with $\lambda_{1}=0.5,\lambda_{2}=0.012,\lambda_{3}=-0.45, \beta_{1}^{(1)}=1,\beta_{2}^{(1)}=0, t=0, \beta_{3}^{(1)}=0,\beta_{1}^{(2)}=1,\beta_{2}^{(2)}=1,\beta_{3}^{(2)}=1, t_{11}^{(0)}=1,t_{22}^{(0)}=1,t_{33}^{(0)}=1$

Thus, we use Darboux transformation (2.15), from a trivial solution of eq. (2.1) to get a non-trivial solution of eq. (2.1)

$\begin{equation}\left\{ \begin{array}{l} \displaystyle{\bar{u}_{1}[1]=\frac{3t_{21}^{(1)}}{t_{11}^{(1)}}=\frac{3\Delta_{1}\Delta_{21}}{\Delta_{2}\Delta_{11}},}\\ \displaystyle{\bar{u}_{2}[1]=\frac{3t_{31}^{(1)}}{t_{11}^{(1)}}=\frac{3\Delta_{1}\Delta_{31}}{\Delta_{2}\Delta_{11}},}\\ \displaystyle{\bar{v}_{1}[1]=\frac{3(t_{13}^{(0)}t_{32}^{(1)}-t_{12}^{(0)}t_{33}^{(1)})}{t_{22}^{(1)}t_{33}^{(1)}-t_{23}^{(1)}t_{32}^{(1)}} =\frac{3\Delta_{2}(\Delta_{13}\Delta_{32}-\Delta_{12}\Delta_{33})}{\Delta_{1}(\Delta_{22}\Delta_{33}-\Delta_{23}\Delta_{32})},}\\ \displaystyle{\bar{v}_{2}[1]=\frac{3(t_{13}^{(0)}t_{22}^{(1)}-t_{12}^{(0)}t_{23}^{(1)})}{t_{23}^{(1)}t_{32}^{(1)}-t_{22}^{(1)}t_{33}^{(1)}} =\frac{3\Delta_{2}(\Delta_{12}\Delta_{23}-\Delta_{13}\Delta_{22})}{\Delta_{1}(\Delta_{22}\Delta_{33}-\Delta_{23}\Delta_{32})}.} \end{array} \right. \end{equation}$ (3.4)

When parameters is suitable chosen, we can obtain the plots of $\bar{u}_{1}[1],\bar{u}_{2}[1],\bar{v}_{1}[1],\bar{v}_{2}[1]$ (see Figs. 1, 2, 3, 4).

References
[1] Ablowitz M J, Segur H. Solitons and the inverse scattering transform[M]. Philadelphia: SIAM, 1981.
[2] Newell A C. Solitons in mathematics and physics[M]. Philadelphia: SIAM, 1985.
[3] Hu Xingbiao, Tam Honwah. Application of Hirota's bilinear formalism to a two-dimensional lattice by Leznov[J]. Phys. Lett. A, 2000, 276(1): 65–72.
[4] Hu Xingbiao, Ma Wenxiu. Application of Hirota's bilinear formalism to the Toeplitz lattice—some special soliton-like solutions[J]. Phys. Lett. A, 2002, 293(3): 161–165.
[5] Matveev V B, Salle M A. Darboux transformations and solitons[M]. Berlin: Springer, 1991.
[6] Rogers C, Schief W K. Bäcklund and Darboux transformations: geometry and modern applications in soliton theory[M]. Cambridge: Cambridge University Press, 2002.
[7] Wu Guocheng, Xia Tiecheng. A new method for constructing soliton solutions to differential-difference equation with symbolic computation[J]. Chaos,Solitons and Fractals, 2009, 39(5): 2245–2248. DOI:10.1016/j.chaos.2007.06.107
[8] Xia Tiecheng, Chen Dengyuan. Dromion and other exact solutions of (2+1)-dimensional dispersive long water equations[J]. Chaos,Solitons and Fractals, 2004, 22(3): 577–582. DOI:10.1016/j.chaos.2004.02.016
[9] Li Xiangzheng, Wang Mingliang. A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms[J]. Phys. Lett. A, 2007, 361(1): 115–118.
[10] Hu Zonghai, Wu Ranchao, Zhang Weiwei. Soliton solutions of the long-short wave resonance equations[J]. J. Math., 2011, 31(1): 35–42.
[11] Huang Jiong, Liu Haihong. New exact travelling wave solutions for Fisher equation and Burgers-Fisher equation[J]. J. Math., 2011, 31(4): 631–637.
[12] Geng Xianguo, Tam Honwah. Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations[J]. J. Phys. Soc. Japan, 1999, 68(5): 1508–1512. DOI:10.1143/JPSJ.68.1508
[13] Li Yishen,Zhang Jin E. Darboux transformations of classical Boussinesq system and its multi-soliton solutions[J]. Phys. Lett. A,2000,276(1): 65-72; 2001,284(6): 253-258.
[14] Zhou Zixiang. Nonlinear constraints and soliton solutions of 1+2-dimensional three-wave equation[J]. J. Math. Phys., 1998, 39(2): 986–997. DOI:10.1063/1.532365
[15] Fan Engui. Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation[J]. J. Phys. A: Math. General, 2000, 33(39): 6925–6933. DOI:10.1088/0305-4470/33/39/308
[16] Xia Tiecheng, Chen Xiaohong, Chen Dengyuan. Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations[J]. Chaos,Solitons and Fractals, 2005, 26(3): 889–896. DOI:10.1016/j.chaos.2005.01.030
[17] Xu Xixiang. A deformed reduced semi-discrete Kaup-Newell equation,the related integrable family and Darboux transformation[J]. Appl. Math. Comput., 2015, 251(15): 275–283.
[18] Xu Xixiang. Solving an integrable coupling system of Merola-Ragnisco-Tu lattice equation by Darboux transformation of Lax pair[J]. Commun. Nonl. Sci. Numer. Simul., 2015, 23(1): 192–201.
[19] Cao Jianli. Finite parameter solutions to the Manakov and the derivative Manakov equations[J]. Chinese Quarterly J. Math., 2007, 22(2): 236–244.