数学杂志  2015, Vol. 34 Issue (6): 1400-1410   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李海英
郭志涛
α-Zygmund空间到Bloch-Orlicz空间和Zygmund-Orlicz空间的广义复合算子
李海英, 郭志涛     
河南师范大学数学与信息科学学院, 河南 新乡 453007
摘要:本文研究了从α-Zygmund空间到Bloch-Orlicz空间和Zygmund-Orlicz空间的广义复合算子.利用符号函数φ, 解析映射g和凸函数Ψ的函数论性质, 获得了广义复合算子的有界性和紧性的充要条件, 推广了Zygmund空间的相关结果.
关键词α-Zygmund空间    Bloch-Orlicz空间    Zygmund-Orlicz空间    有界性    紧性    
GENERALIZED COMPOSITION OPERATORS FROM α-ZYGMUND SPACES TO BLOCH-ORLICZ SPACES AND ZYGMUND-ORLICZ SPACES
LI Hai-ying, GUO Zhi-tao     
College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
Abstract: In this paper, generalized composition operators from α-Zygmund spaces to Bloch-Orlicz spaces and Zygmund-Orlicz spaces are investigated. Using the function theory properties of the symbol function φ, the analytic function g and the convex function Ψ, the necessary and sufficient conditions of the boundedness and compactness of generalized composition operators are obtained. Some corresponding results about Zygmund spaces are extended.
Key words: α-Zygmund spaces     Bloch-Orlicz spaces     Zygmund-Orlicz spaces     boundedness     compactness    
1 引言

$\mathbb{D}$是复平面$\mathbb{C}$上的单位圆盘, $H(\mathbb{D})$$\mathbb{D}$上的解析函数空间. Bloch空间$\mathcal{B}=\mathcal{B}(\mathbb{D})$定义为

$\mathcal{B}=\{f\in H(\mathbb{D}):\ \|f\|_{b}=\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})|f'(z)|<\infty\}.$

Zygmund空间$\mathcal{Z}=\mathcal{Z}(\mathbb{D})$定义为

$\mathcal{Z}=\{f\in H(\mathbb{D}):\ \|f\|_{z}=\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})|f''(z)|<\infty\}.$

$\alpha$-Bloch空间$\mathcal{B}^{\alpha}(\mathbb{D})$定义为

$\mathcal{B}^{\alpha}=\{f\in H(\mathbb{D}):\ \|f\|_{b^{\alpha}}=\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})^{\alpha}|f'(z)|<\infty, \ \alpha>0\}.$

$\alpha$-Zygmund空间$\mathcal{Z}^{\alpha}=\mathcal{Z}^{\alpha}(\mathbb{D})$定义为

$\mathcal{Z}^{\alpha}=\{f\in H(\mathbb{D}):\ \|f\|_{z^{\alpha}}=\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})^{\alpha}|f''(z)|<\infty\ \alpha>0\}.$

$\alpha=1$, 则$\mathcal{B}^{\alpha}$$\mathcal{Z}^{\alpha}$分别为$\mathcal{B}$$\mathcal{Z}$.

作为Bloch空间的推广, 近来, Ramos Fernándz在文献[1]中利用Young函数定义了Bloch-Orlicz空间.设$\varphi:[0, \infty)\rightarrow[0, \infty)$为一个严格递增的凸函数, 且$\varphi(0)=0$, $\lim\limits_{t\rightarrow\infty}\varphi(t)=\infty$.如果对于某个只依赖于$f\in H(\mathbb{D})$$\lambda>0$,

$\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi(\lambda|f'(z)|)<\infty, $

$f$属于Bloch-Orlicz空间, 记为$\mathcal{B}^{\varphi}=\mathcal{B}^{\varphi}(\mathbb{D})$.显然, $\mathcal{B}^{\varphi}$$F$-空间, 且若$\varphi(t)=t, t\geq0$, $\mathcal{B}^{\varphi}$即为Bloch空间$\mathcal{B}$, 由于$\varphi$是凸函数, 不难验证Minkowski泛函

$\|f\|_{b^{\varphi}}=\inf\bigg\{k>0:S_{\varphi}\bigg(\frac{f'}{k}\bigg)\leq1\bigg\}$

定义了$\mathcal{B}^{\varphi}$上的一个半范数, 即Luxemburg半范数, 其中

$S_{\varphi}(f)=\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi(|f(z)|).$

事实上, 可以证明$\mathcal{B}^{\varphi}$在范数$\|f\|_{\mathcal{B}^{\varphi}}=|f(0)|+\|f\|_{b^{\varphi}}$下是一个Banach空间且

$S_{\varphi}\bigg(\frac{f'}{\|f\|_{\mathcal{B}^{\varphi}}}\bigg)\leq1.$

利用上式可以证明Bloch-Orlicz空间$\mathcal{B}^{\varphi}$等距同构于$\mu$-Bloch空间, 其中

$\mu(z)=\frac{1}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}, z\in\mathbb{D}.$

因此, 对于任何$f\in\mathcal{B}^{\varphi}\backslash\{0\}$, 有

$\|f\|_{\mathcal{B}^{\varphi}}=|f(0)|+\sup\limits_{z\in\mathbb{D}}\mu(z)|f'(z)|.$

在文献[2]中, 作者定义了Zygmund-Orlicz空间.如果对于某个只依赖于$f\in H(\mathbb{D})$$\lambda>0$,

$\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi(\lambda|f''(z)|)<\infty, $

则称$f$属于Zygmund-Orlicz空间, 记为$\mathcal{Z}^{\varphi}=\mathcal{Z}^{\varphi}(\mathbb{D})$.类似于Bloch-Orlicz空间, 利用$\varphi$的凸性, 可以验证Minkowski泛函

$\|f\|_{z^{\varphi}}=\inf\bigg\{k>0:S_{\varphi}\bigg(\frac{f''}{k}\bigg)\leq1\bigg\}$

$\mathcal{Z}^{\varphi}$定义了一个半范数.此外还可证明$\mathcal{Z}^{\varphi}$在范数$\|f\|_{\mathcal{Z}^{\varphi}}=|f(0)|+|f'(0)|+\|f\|_{z^{\varphi}}$下是一个Banach空间且

$S_{\varphi}\bigg(\frac{f''}{\|f\|_{\mathcal{Z}^{\varphi}}}\bigg)\leq1.$

利用上式可以证明Zygmund-Orlicz空间$\mathcal{Z}^{\varphi}$等距同构于$\mu$-Zygmund空间, 其中

$\mu(z)=\frac{1}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}, z\in\mathbb{D}.$

因此, 对于任何$f\in\mathcal{Z}^{\varphi}\backslash\{0\}$, 有

$\|f\|_{\mathcal{Z}^{\varphi}}=|f(0)|+|f'(0)|+\sup\limits_{z\in\mathbb{D}}\mu(z)|f''(z)|.$

$\phi$$\mathbb{D}$的解析自映射, $g:\mathbb{D}\rightarrow\mathbb{C}$为一个解析映射,

$\big(C_{\phi}^{g}f\big)(z)=\int_{0}^{z}f'(\phi(\xi))g(\xi)d\xi, z\in\mathbb{D}, $

$C_{\phi}^{g}$为广义复合算子.当$g=\phi'$时,

$\big(C_{\phi}^{g}f\big)(z)=\int_{0}^{z}f'(\phi(\xi))\phi'(\xi)d\xi=f(\phi(z))-f(\phi(0)), $

由于$f(\phi(0))$为一个常数, 故$C_{\phi}^{g}$实质上就是复合算子$C_{\phi}$.因此, $C_{\phi}^{g}$可以看作复合算子的推广, 见文献[3-9].在文献[2]中, 作者研究了从Zygmund空间到Bloch-Orlicz空间和Zygmund-Orlicz空间的广义复合算子的有界性和紧性, 本文研究从$\alpha$-Zygmund空间到$\mathcal{B}^{\varphi}$$\mathcal{Z}^{\varphi}$的广义复合算子的有界性和紧性.由于当$\alpha=1$时, $\alpha$-Zygmund空间为Zygmund空间$\mathcal{Z}$, 故考虑当$\alpha\neq1$时, $C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$的有界性和紧性.文中的$C$是一个正常数, 在不同地方可以表示不同的值.

2 主要引理

在引理2.1中, 当$\alpha=1$时, 可参见文献[10], 其它的情况也可类似证明, 见文献[11].利用文献[12]中命题3.11的方法, 不难证明下列引理2.2.

引理2.1  对于任何$f\in\mathcal{Z}^{\alpha}$, $\alpha>0$, 我们有

(ⅰ)当$0<\alpha<1$时, $|f'(z)|\leq\frac{2}{1-\alpha}\|f\|_{\mathcal{Z}^{\alpha}}$;

(ⅱ)当$\alpha=1$时, $|f'(z)|\leq\log\big(\frac{e}{1-|z|^{2}}\big)\|f\|_{\mathcal{Z}}$;

(ⅲ)当$\alpha>1$时, $|f'(z)|\leq\frac{2}{\alpha-1}\frac{\|f\|_{\mathcal{Z}^{\alpha}}}{(1-|z|^{2})^{\alpha-1}}$.

引理2.2  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射.令$X=\mathcal{Z}^{\alpha}$, $Y=\mathcal{B}^{\varphi}$$\mathcal{Z}^{\varphi}$, 则$C_{\phi}^{g}:X\rightarrow Y$是紧算子当且仅当$C_{\phi}^{g}:X\rightarrow Y$是有界算子, 且对于$\mathcal{Z}^{\alpha}$中在$\mathbb{D}$的紧子集上一致收敛于零的任意有界序列$\{f_{n}\}_{n\in\mathbb{N}}$, 都有$\|C_{\phi}^{g}f_{n}\|_{Y}\rightarrow0, n\rightarrow\infty$.

引理2.3  设$0<\alpha<1$, $\{f_{n}\}_{n\in\mathbb{N}}$$\mathcal{Z}^{\alpha}$中的任意有界序列且在$\mathbb{D}$的紧子集上一致收敛于零, $n\rightarrow\infty$.则

$\lim\limits_{n\rightarrow\infty}\sup\limits_{z\in\mathbb{D}}|f'_{n}(z)|=0.$

 设$M=\sup\limits_{n}\|f_{n}\|_{\mathcal{Z}^{\alpha}}<\infty$.任取$\epsilon>0$, 存在$0<\eta<1$使得$(1-\eta)^{1-\alpha}<\epsilon$.若$\eta<|z|<1$, 则

$\begin{eqnarray*} \bigg|f'_{n}(z)-f'_{n}\bigg(\frac{\eta}{|z|}z\bigg)\bigg|&=&\bigg|\int^{1}_{\frac{\eta}{|z|}}z f''_{n}(z\eta)d\eta\bigg|= \bigg|\int^{1}_{\frac{\eta}{|z|}}(1-|z\eta|^{2})^{\alpha}\frac{f''_{n}(z\eta)z}{(1-|z\eta|^{2})^{\alpha}}d\eta\bigg|\\ &\leq&M\int^{1}_{\frac{\eta}{|z|}}\frac{|z|}{(1-|z\eta|^{2})^{\alpha}}d\eta=M\int^{|z|}_{\eta}\frac{d\xi}{(1+\xi)^{\alpha}(1-\xi)^{\alpha}}\\ &\leq&M\int^{|z|}_{\eta}(1-\xi)^{-\alpha}d\xi\leq\frac{M}{1-\alpha}(1-\eta)^{1-\alpha}\leq\frac{M}{1-\alpha}\epsilon. \end{eqnarray*} $

$\begin{eqnarray*}\sup\limits_{\eta<|z|<1}|f'_{n}(z)|\leq\frac{M}{1-\alpha}\epsilon+\sup\limits_{|z|=\eta}|f'_{n}(z)|. \end{eqnarray*}$

由于$\{f_{n}\}$$\mathbb{D}$的紧子集上一致收敛于零, 则由Cauchy估计, $\{f'_{n}\}$也在$\mathbb{D}$的紧子集上一致收敛于零, 有

$\begin{eqnarray*} \lim\limits_{n\rightarrow\infty}\sup\limits_{z\in\mathbb{D}}|f'_{n}(z)|\leq \lim\limits_{n\rightarrow\infty}\sup\limits_{z\in\mathbb{D}}\bigg(\frac{M}{1-\alpha}\epsilon+2\sup\limits_{|z|\leq\eta}|f'_{n}(z)|\bigg)=\frac{M}{1-\alpha}\epsilon. \end{eqnarray*} $

因此$\lim\limits_{n\rightarrow\infty}\sup\limits_{z\in\mathbb{D}}|f'_{n}(z)|=0$.

3 $C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$的有界性和紧性

本部分我们给出广义复合算子$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$的有界性和紧性的特征.

定理3.1  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $0<\alpha<1$.则下列命题等价:

(ⅰ) $C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是紧算子;

(ⅱ) $C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界算子;

(ⅲ)

$\begin{eqnarray} k_{1}=\sup\limits_{z\in\mathbb{D}}\frac{|g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}<\infty. \end{eqnarray}$ (3.1)

 (ⅰ)$\Rightarrow$(ⅱ)由于紧算子是有界算子, 显然成立.

(ⅱ)$\Rightarrow$(ⅲ)设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界算子, 则对于所有$f\in\mathcal{Z}^{\alpha}$, 都存在一个常数$C$使得$\|C_{\phi}^{g}f\|_{\mathcal{B}^{\varphi}}\leq C\|f\|_{Z^{\alpha}}$.取函数$f(z)=z\in \mathcal{Z}^{\alpha}$, 显然有$\|f\|_{\mathcal{Z}^{\alpha}}=1$, 则

$\begin{eqnarray*} S_{\varphi}\bigg(\frac{(C_{\phi}^{g}f)'(z)}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg) =S_{\varphi}\bigg(\frac{g(z)}{C}\bigg) =\sup\limits_{z\in \mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{|g(z)|}{C}\bigg)\leq1. \end{eqnarray*}$

(ⅲ)$\Rightarrow$(ⅰ)设$k_{1}<\infty$, 令$\{f_{n}\}_{n\in\mathbb{N}}$$\mathcal{Z}^{\alpha}$中的任意有界序列, 且在$\mathbb{D}$的紧子集上一致收敛于零, $n\rightarrow\infty$.由于$(C_{\phi}^{g}f_{n})(0)=0$, 故

$\begin{eqnarray*} \|C_{\phi}^{g}f_{n}\|_{\mathcal{B}^{\varphi}} =\sup\limits_{z\in\mathbb{D}}\frac{|(C_{\phi}^{g}f_{n})'(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})} =\sup\limits_{z\in\mathbb{D}}\frac{|f'_{n}(\phi(z))||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})} \leq k_{1}\sup\limits_{z\in\mathbb{D}}|f'_{n}(\phi(z))|. \end{eqnarray*}$

由引理2.3可知$\lim\limits_{n\rightarrow\infty}\sup\limits_{z\in\mathbb{D}}|f'_{n}(\phi(z))|=0$.因此, $\lim\limits_{n\rightarrow\infty}\|C_{\phi}^{g}f_{n}\|_{\mathcal{B}^{\varphi}}=0$, 由引理2.2可知$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是紧算子.

定理3.2  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $\alpha>1$.则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界算子当且仅当

$\begin{eqnarray} k_{2}=\sup\limits_{z\in\mathbb{D}}\frac{|g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}}<\infty. \end{eqnarray}$ (3.2)

 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界的.利用函数$f(z)=z\in \mathcal{Z}^{\alpha}$, 类似于定理3.1的证明, 则$k_{1}<\infty$.对于任何$b, z\in\mathbb{D}$, 令$h_{b}(z)=\frac{(1-|b|^{2})^{2}}{(1-\overline{b}z)^{\alpha}}$, 则

$\begin{eqnarray*} \sup\limits_{z\in\mathbb{D}}(1-|z|^{2})^{\alpha}|h''_{b}(z)| &\leq&\sup\limits_{z\in\mathbb{D}}(1+|z|)^{\alpha}(1-|z|)^{\alpha}\frac{\alpha(\alpha+1)(1+|b|)^{2}(1-|b|)^{2}|b|^{2}}{(1-|z|)^{\alpha}(1-|b|)^{2}}\\ &\leq&4\cdot2^{\alpha}\cdot\alpha(\alpha+1)<\infty, \end{eqnarray*}$

$h_{b}\in\mathcal{Z}^{\alpha}$.令$b=\phi(\omega), \omega\in\mathbb{D}$且使得$\frac{1}{2}<|\phi(\omega)|<1$, 直接计算可得

$\begin{eqnarray} h'_{\phi(\omega)}(\phi(\omega))=\frac{\alpha\overline{\phi(\omega)}}{(1-|\phi(\omega)|^{2})^{\alpha-1}}. \end{eqnarray} $ (3.3)

$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$的有界性知, 存在一个常数$C$, 使得$\|C_{\phi}^{g}h_{\phi(\omega)}\|_{\mathcal{B}^{\varphi}}\leq C$, 则由(3.3) 式,

$\begin{eqnarray*} 1&\geq& S_{\varphi}\bigg(\frac{(C_{\phi}^{g}h_{\phi(\omega)})'(z)}{C}\bigg)\geq \sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi\bigg(\frac{|(C_{\phi}^{g}h_{\phi(\omega)})'(\omega)|}{C}\bigg)\\ &=&\sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi \bigg(\frac{\alpha|\phi(\omega)||g(\omega)|}{C(1-|\phi(\omega)|^{2})^{\alpha-1}}\bigg). \end{eqnarray*}$

由此可得

$\begin{eqnarray} \sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}\frac{|g(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha-1}} \leq\sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}\frac{2|\phi(\omega)||g(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha-1}}<\infty. \end{eqnarray}$ (3.4)

利用$k_{1}<\infty$, 有

$\begin{eqnarray} \sup\limits_{|\phi(\omega)|\leq\frac{1}{2}}\frac{|g(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha-1}} \leq k_{1}\bigg(\frac{4}{3}\bigg)^{\alpha-1}<\infty. \end{eqnarray}$ (3.5)

由(3.4) 和(3.5) 式即可得到(3.2) 式.

反之, 假设$k_{2}<\infty$, 对于任何$f\in\mathcal{Z}^{\alpha}\backslash\{0\}$, 由引理2.1 (iii), 有

$\begin{eqnarray*} S_{\varphi}\bigg(\frac{(C_{\phi}^{g}f)'(z)}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg) &\leq&\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{k_{2}\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}|f'(\phi(z))|}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg)\\ &\leq&\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{\frac{2}{\alpha-1}k_{2}}{C}\varphi^{-1}\bigg(\frac{1}{1-|z|^{2}}\bigg)\bigg)\leq1, \end{eqnarray*}$

其中$C\geq\frac{2}{\alpha-1}k_{2}$.故存在一个常数$C$, 使得$\|C_{\phi}^{g}f\|_{\mathcal{B}^{\varphi}}\leq C\|f\|_{\mathcal{Z}^{\alpha}}$, 即$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界的.

定理3.3  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $\alpha>1$.则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是紧算子当且仅当$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界算子, 且

$\begin{eqnarray} \lim\limits_{|\phi(z)|\rightarrow1}\frac{|g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}}=0. \end{eqnarray}$ (3.6)

 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是紧算子, 则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界算子.令$\{z_{n}\}_{n\in\mathbb{N}}$$\mathbb{D}$中的序列且$|\phi(z_{n})|\rightarrow1$, $n\rightarrow\infty$.取函数$ h_{n}(z)=\frac{(1-|\phi(z_{n})|^{2})^{2}}{(1-\overline{\phi(z_{n})}z)^{\alpha}}, $由定理3.2的证明知$\sup\limits_{n\in\mathbb{N}}\|h_{n}\|_{\mathcal{Z}^{\alpha}}<\infty$.同时易见$\{h_{n}\}$$\mathbb{D}$的紧子集上一致收敛于零, 则由引理2.2, $\|C_{\phi}^{g}h_{n}\|_{\mathcal{B}^{\varphi}}\rightarrow0, n\rightarrow\infty$.则

$\begin{eqnarray*} 1\geq S_{\varphi}\bigg(\frac{(C_{\phi}^{g}h_{n})'(z_{n})}{\|C_{\phi}^{g}f_{n}\|_{\mathcal{B}^{\varphi}}}\bigg) \geq(1-|z_{n}|^{2})\varphi \bigg(\frac{\alpha|\phi(z_{n})||g(z_{n})|}{(1-|\phi(z_{n})|^{2})^{\alpha-1}\|C_{\phi}^{g}h_{n}\|_{\mathcal{B}^{\varphi}}}\bigg), \end{eqnarray*}$

由此可得

$\begin{eqnarray*} \frac{|\phi(z_{n})||g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha-1}}\leq\frac{1}{\alpha}\|C_{\phi}^{g}h_{n}\|_{\mathcal{B}^{\varphi}}. \end{eqnarray*}$

$\begin{eqnarray*} \lim\limits_{|\phi(z_{n})|\rightarrow1}\frac{|g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha-1}}= \lim\limits_{n\rightarrow\infty}\frac{|\phi(z_{n})||g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha-1}}=0. \end{eqnarray*}$

反之, 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是有界算子且(3.6) 式成立, 则仿照定理3.1, 可得$k_{1}<\infty$, 且对于任意的$\epsilon>0$, 存在$\delta\in(0, 1)$, 使得只要$\delta<|\phi(z)|<1$, 就有

$\begin{eqnarray} \frac{|g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}}<\frac{\alpha-1}{2}\epsilon. \end{eqnarray} $ (3.7)

$\{f_{n}\}_{n\in\mathbb{N}}$$\mathcal{Z}^{\alpha}$中的任意有界序列且在$\mathbb{D}$的紧子集上一致收敛于零, 令$K=\{z\in\mathbb{D}:|\phi(z)|\leq\delta\}$, 又$(C_{\phi}^{g}f_{n})(0)=0$, 则由$k_{1}<\infty$及(3.7) 式可得

$\begin{eqnarray*} \|C_{\phi}^{g}f_{n}\|_{\mathcal{B}^{\varphi}} &\leq&\sup\limits_{z\in K}\frac{|g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}|f'_{n}(\phi(z))| +\sup\limits_{z\in \mathbb{D}\backslash K}\frac{\frac{2}{\alpha-1}|g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}}\\ &\leq&k_{1}\sup\limits_{|\omega|\leq\delta}|f'_{n}(\omega)|+\epsilon. \end{eqnarray*}$

由于$\{f_{n}\}$$\mathbb{D}$的紧子集上一致收敛于零, 则由Cauchy估计, $\{f'_{n}\}$也在$\mathbb{D}$的紧子集上一致收敛于零, 特别地, $\{\omega:|\omega|\leq\delta\}$$\mathbb{D}$的紧子集, 则有$\lim\limits_{n\rightarrow\infty}\sup\limits_{|\omega|\leq\delta}|f'_{n}(\omega)|=0$, 因此$\lim\limits_{n\rightarrow\infty}\|C_{\phi}^{g}f_{n}\|_{\mathcal{B}^{\varphi}}=0. $由引理2.2可得$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{B}^{\varphi}$是紧算子.

4 $C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$的有界性和紧性

本部分我们给出广义复合算子$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$的有界性和紧性的特征.

定理4.1  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $0<\alpha<1$.则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子当且仅当

$k_{3}=\sup\limits_{z\in\mathbb{D}}\frac{|g'(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}<\infty,$ (4.1)
$k_{4}=\sup\limits_{z\in\mathbb{D}}\frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}}<\infty.$ (4.2)

 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子, 即对于所有$f\in\mathcal{Z}^{\alpha}$, 都存在一个常数$C$使得$\|C_{\phi}^{g}f\|_{\mathcal{Z}^{\varphi}}\leq C\|f\|_{Z^{\alpha}}$.取函数$f(z)=z\in \mathcal{Z}^{\alpha}$, 则

$\begin{eqnarray*} S_{\varphi}\bigg(\frac{(C_{\phi}^{g}f)''(z)}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg) =S_{\varphi}\bigg(\frac{g'(z)}{C}\bigg) =\sup\limits_{z\in \mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{|g'(z)|}{C}\bigg)\leq1, \end{eqnarray*}$

则(4.1) 式成立.取函数$f(z)=z^{2}\in \mathcal{Z}^{\alpha}$, 显然有$\|f\|_{\mathcal{Z}^{\alpha}}=2$, 则

$\begin{eqnarray*} S_{\varphi}\bigg(\frac{(C_{\phi}^{g}f)''(z)}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg) &=&\sup\limits_{z\in \mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{|\phi(z)g'(z)+\phi'(z)g(z)|}{C}\bigg)\leq1. \end{eqnarray*}$

由此可得

$\begin{eqnarray*} \frac{|\phi'(z)||g(z)|-|\phi(z)||g'(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}<\infty, \end{eqnarray*}$

利用$\phi(z)$的有界性和$k_{3}<\infty$, 即可得到

$\begin{eqnarray} k_{5}=\frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}<\infty. \end{eqnarray}$ (4.3)

对于任何$z\in\mathbb{D}$及非零的$b\in\mathbb{D}$, 令

$\begin{eqnarray*} p_{b}(z)=\frac{(1-|b|^{2})^{2}}{\overline{b}(1-\overline{b}z)^{\alpha}}-\alpha\int_{0}^{z}\frac{1-|b|^{2}}{(1-\overline{b}\lambda)^{\alpha}}d\lambda, \end{eqnarray*}$

$\begin{eqnarray*} \sup\limits_{z\in\mathbb{D}}(1-|z|^{2})^{\alpha}|p''_{b}(z)| &\leq&\sup\limits_{z\in\mathbb{D}}(1+|z|)^{\alpha}(1-|z|)^{\alpha}\frac{\alpha(\alpha+1)(1+|b|)^{2}(1-|b|)^{2}|b|}{(1-|z|)^{\alpha}(1-|b|)^{2}}\\ &&+\sup\limits_{z\in\mathbb{D}}(1+|z|)^{\alpha}(1-|z|)^{\alpha}\frac{\alpha^{2}(1+|b|)(1-|b|)|b|}{(1-|z|)^{\alpha}(1-|b|)}\\ &\leq&4\cdot2^{\alpha}\cdot\alpha(\alpha+1)+2\cdot2^{\alpha}\alpha^{2}<\infty, \end{eqnarray*}$

从而$p_{b}\in\mathcal{Z}^{\alpha}$.令$b=\phi(\omega)$, $\omega\in\mathbb{D}$$\frac{1}{2}<|\phi(\omega)|<1$, 则

$\begin{eqnarray} p'_{\phi(\omega)}(\phi(\omega))=0, p''_{\phi(\omega)}(\phi(\omega))=\frac{\alpha\overline{\phi(\omega)}}{(1-|\phi(\omega)|^{2})^{\alpha}}. \end{eqnarray}$ (4.4)

$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$的有界性知, 存在一个常数$C$, 使得$\|C_{\phi}^{g}p_{\phi(\omega)}\|_{\mathcal{Z}^{\varphi}}\leq C$, 则由(4.4) 式,

$\begin{eqnarray*} 1&\geq& S_{\varphi}\bigg(\frac{(C_{\phi}^{g}p_{\phi(\omega)})''(z)}{C}\bigg)\geq \sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi\bigg(\frac{|(C_{\phi}^{g}p_{\phi(\omega)})''(\omega)|}{C}\bigg)\\ &=&\sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi \bigg(\frac{\alpha|\phi(\omega)||\phi'(\omega)||g(\omega)|}{C(1-|\phi(\omega)|^{2})^{\alpha}}\bigg). \end{eqnarray*}$

由此可得

$\begin{eqnarray} \sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}\frac{|\phi'(\omega)||g(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha}} \leq\sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}\frac{2|\phi(\omega)||\phi'(\omega)||g(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha}}<\infty. \end{eqnarray}$ (4.5)

利用$k_{5}<\infty$, 有

$\begin{eqnarray} \sup\limits_{|\phi(\omega)|\leq\frac{1}{2}}\frac{|\phi'(\omega)||g(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha}} \leq k_{5}\bigg(\frac{4}{3}\bigg)^{\alpha}<\infty. \end{eqnarray}$ (4.6)

则由(4.5) 和(4.6), (4.2) 式成立.

反之, 假设$k_{3}, k_{4}<\infty$, 对于任何$f\in\mathcal{Z}^{\alpha}\backslash\{0\}$, 由引理2.1(ⅰ), 有

$\begin{eqnarray*} &&S_{\varphi}\bigg(\frac{(C_{\phi}^{g}f)''(z)}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg)\\ &\leq&\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{k_{3}\varphi^{-1}(\frac{1}{1-|z|^{2}})|f'(\phi(z))| +k_{4}\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}|f''(\phi(z))|}{C\|f\|_{\mathcal{Z}^{\alpha}}}\bigg)\\ &\leq&\sup\limits_{z\in\mathbb{D}}(1-|z|^{2})\varphi\bigg(\frac{\frac{2}{1-\alpha}k_{3}+k_{4}}{C}\varphi^{-1}\bigg(\frac{1}{1-|z|^{2}}\bigg)\bigg)\leq1, \\ \end{eqnarray*}$

其中$C\geq\frac{2}{1-\alpha}k_{3}+k_{4}$, 并且利用了事实

$\begin{eqnarray*} \sup\limits_{z\in\mathbb{D}}(1-|\phi(z)|^{2})^{\alpha}|f''(\phi(z))|\leq\|f\|_{\mathcal{Z}^{\alpha}}. \end{eqnarray*}$

故存在一个常数$C$, 使得$\|C_{\phi}^{g}f\|_{\mathcal{Z}^{\varphi}}\leq C\|f\|_{\mathcal{Z}^{\alpha}}$, 即$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界的.

定理4.2  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $0<\alpha<1$.则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是紧算子当且仅当$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子, 且

$\begin{eqnarray} \lim\limits_{|\phi(z)|\rightarrow1}\frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}}<\infty. \end{eqnarray}$ (4.7)

 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是紧算子, 则显然$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界的.令$\{z_{n}\}_{n\in\mathbb{N}}$$\mathbb{D}$中的序列使$|\phi(z_{n})|\rightarrow1, $ $n\rightarrow\infty$.令

$\begin{eqnarray*} p_{n}(z)=\frac{(1-|\phi(z_{n})|^{2})^{2}}{\overline{\phi(z_{n})}(1-\overline{\phi(z_{n})}z)^{\alpha}}- \alpha\int_{0}^{z}\frac{1-|\phi(z_{n})|^{2}}{(1-\overline{\phi(z_{n})}\lambda)^{\alpha}}d\lambda, \end{eqnarray*}$

由定理4.1的证明知$\sup\limits_{n\in\mathbb{N}}\|p_{n}\|_{\mathcal{Z}^{\alpha}}<\infty$.同时易见$\{p_{n}\}$$\mathbb{D}$的紧子集上一致收敛于零, 由引理2.2, $\|C_{\phi}^{g}p_{n}\|_{\mathcal{Z}^{\varphi}}\rightarrow0, n\rightarrow\infty$.则

$\begin{eqnarray*} 1\geq S_{\varphi}\bigg(\frac{(C_{\phi}^{g}p_{n})''(z_{n})}{\|C_{\phi}^{g}p_{n}\|_{\mathcal{Z}^{\varphi}}}\bigg) \geq(1-|z_{n}|^{2})\varphi \bigg(\frac{\alpha|\phi(z_{n})||\phi'(z_{n})||g(z_{n})|}{(1-|\phi(z_{n})|^{2})^{\alpha}\|C_{\phi}^{g}p_{n}\|_{\mathcal{Z}^{\varphi}}}\bigg), \end{eqnarray*}$

由此可得

$\begin{eqnarray*} \frac{|\phi(z_{n})||\phi'(z_{n})||g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha}}\leq\frac{1}{\alpha}\|C_{\phi}^{g}p_{n}\|_{\mathcal{Z}^{\varphi}}. \end{eqnarray*}$

$\begin{eqnarray*} \lim\limits_{|\phi(z_{n})|\rightarrow1}\frac{|\phi'(z_{n})||g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha}}= \lim\limits_{n\rightarrow\infty}\frac{|\phi(z_{n})||\phi'(z_{n})||g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha}}=0. \end{eqnarray*}$

反之, 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$有界且(4.7) 式成立, 则由定理4.1, 可得$k_{3}, k_{5}<\infty$, 且对于任意的$\epsilon>0$, 存在$\delta\in(0, 1)$, 使得只要$\delta<|\phi(z)|<1$, 就有

$\begin{eqnarray} \frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}}<\epsilon. \end{eqnarray}$ (4.8)

$\{f_{n}\}_{n\in\mathbb{N}}$$\mathcal{Z}^{\alpha}$中的任意有界序列, $\sup\limits_{n\in\mathbb{N}}\|f_{n}\|_{\mathcal{Z}^{\alpha}}\leq L$, 且在$\mathbb{D}$的紧子集上一致收敛于零, 令$K=\{z\in\mathbb{D}:|\phi(z)|\leq\delta\}$, 又$(C_{\phi}^{g}f_{n})(0)=0$, 则由$k_{3}, k_{5}<\infty$及(4.8) 式可得

$\begin{eqnarray*} \|C_{\phi}^{g}f_{n}\|_{\mathcal{Z}^{\varphi}} &\leq&|f'_{n}(\phi(0))||g(0)| +\sup\limits_{z\in\mathbb{D}}\frac{|g'(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}|f'_{n}(\phi(z))| +\sup\limits_{z\in K}\frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}|f''_{n}(\phi(z))|\\ &&+\sup\limits_{z\in \mathbb{D}\backslash K}\frac{|\phi'(z)||g(z)|(1-|\phi(z)|^{2})^{\alpha}|f''_{n}(\phi(z))|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}}\\ &\leq&|f'_{n}(\phi(0))||g(0)| +k_{3}\sup\limits_{z\in\mathbb{D}}|f'_{n}(\phi(z))|+k_{5}\sup\limits_{|\omega|\leq\delta}|f''_{n}(\omega)|+L\epsilon. \end{eqnarray*}$

由于$\{f_{n}\}$$\mathbb{D}$的紧子集上一致收敛于零, 则由引理2.3知$ \lim\limits_{n\rightarrow\infty}\sup\limits_{z\in\mathbb{D}}|f'_{n}(\phi(z))|=0. $再由Cauchy估计, $\{f'_{n}\}$, $\{f''_{n}\}$也在$\mathbb{D}$的紧子集上一致收敛于零.特别地, $\{\phi(0)\}$, $\{\omega:|\omega|\leq\delta\}$均为$\mathbb{D}$的紧子集, 则有$ \lim\limits_{n\rightarrow\infty}|f'_{n}(\phi(0))|=0, \lim\limits_{n\rightarrow\infty}\sup\limits_{|\omega|\leq\delta}|f''_{n}(\omega)|=0.$从而由引理2.2可得$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是紧算子.

定理4.3  设$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $\alpha>1$.则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子当且仅当

$k_{6}=\sup\limits_{z\in\mathbb{D}}\frac{|g'(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}}<\infty,$ (4.9)
$k_{7}=\sup\limits_{z\in\mathbb{D}}\frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}}<\infty.$ (4.10)

 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子, 利用定理4.1, 可证得$k_{3}<\infty$, 通过取函数$p_{b}(z)$, 进行相似的讨论, 即可证得(4.10) 式.下证(4.9) 式, 对于任何$z\in\mathbb{D}$, 及非零的$b\in\mathbb{D}$, 令

$\begin{eqnarray*} q_{b}(z)=\frac{(1-|b|^{2})^{2}}{\overline{b}(1-\overline{b}z)^{\alpha}}, \end{eqnarray*}$

则易证$q_{b}\in\mathcal{Z}^{\alpha}$.令$b=\phi(\omega), \omega\in\mathbb{D}$$\frac{1}{2}<|\phi(\omega)|<1$, 直接计算可得

$\begin{eqnarray} q'_{\phi(\omega)}(\phi(\omega))=\frac{\alpha}{(1-|\phi(\omega)|^{2})^{\alpha-1}}, q''_{\phi(\omega)}(\phi(\omega))=\frac{\alpha(\alpha+1)\overline{\phi(\omega)}}{(1-|\phi(\omega)|^{2})^{\alpha}}. \end{eqnarray}$ (4.11)

另外由$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$的有界性知, 存在一个常数$C$, 使得$\|C_{\phi}^{g}q_{\phi(\omega)}\|_{\mathcal{Z}^{\varphi}}\leq C$, 则由(4.11) 式,

$\begin{eqnarray*} 1&\geq& S_{\varphi}\bigg(\frac{(C_{\phi}^{g}q_{\phi(\omega)})''(z)}{C}\bigg)\geq \sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi\bigg(\frac{|(C_{\phi}^{g}q_{\phi(\omega)})''(\omega)|}{C}\bigg)\\ &=&\sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi \bigg(\frac{\big|\frac{\alpha}{(1-|\phi(\omega)|^{2})^{\alpha-1}}g'(\omega)+ \frac{\alpha(\alpha+1)\overline{\phi(\omega)}}{(1-|\phi(\omega)|^{2})^{\alpha}}\phi'(\omega)g(\omega)\big|}{C}\bigg)\\ &\geq&\sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}(1-|\omega|^{2})\varphi \bigg(\frac{\alpha|g'(\omega)|}{C(1-|\phi(\omega)|^{2})^{\alpha-1}}- \frac{\alpha(\alpha+1)|\phi(\omega)||\phi'(\omega)||g(\omega)|}{C(1-|\phi(\omega)|^{2})^{\alpha}}\bigg). \end{eqnarray*}$

利用$k_{7}<\infty$可得

$\begin{eqnarray} \sup\limits_{\frac{1}{2}<|\phi(\omega)|<1}\frac{|g'(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha-1}}\leq C+(\alpha+1)k_{7}<\infty. \end{eqnarray}$ (4.12)

利用$k_{3}<\infty$, 我们有

$\begin{eqnarray} \sup\limits_{|\phi(\omega)|\leq\frac{1}{2}}\frac{|g'(\omega)|}{\varphi^{-1}(\frac{1}{1-|\omega|^{2}})(1-|\phi(\omega)|^{2})^{\alpha-1}}\leq k_{3}\bigg(\frac{4}{3}\bigg)^{\alpha-1}. \end{eqnarray}$ (4.13)

由(4.12) 和(4.13) 式即可得到(4.9) 式.

反之, 假设$k_{6}, k_{7}<\infty$, 根据引理2.1(iii), 仿照定理4.1的方法, 不难证得$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子.

定理4.4$g\in H(\mathbb{D})$, $\phi$$\mathbb{D}$的解析自映射, $\alpha>1$.则$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是紧算子当且仅当$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界算子, 且

$\lim\limits_{|\phi(z)|\rightarrow1}\frac{|g'(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha-1}}<\infty,$ (4.14)
$\lim\limits_{|\phi(z)|\rightarrow1}\frac{|\phi'(z)||g(z)|}{\varphi^{-1}(\frac{1}{1-|z|^{2}})(1-|\phi(z)|^{2})^{\alpha}}<\infty.$ (4.15)

 假设$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是紧算子, 则显然$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是有界的.令$\{z_{n}\}_{n\in\mathbb{N}}$$\mathbb{D}$中的序列使$|\phi(z_{n})|\rightarrow1$ ($n\rightarrow\infty$).则利用定理4.2, 通过取函数$p_{n}(z)$, 可证得(4.15) 式成立.下证(4.14) 式, 令

$\begin{eqnarray*} q_{n}(z)=\frac{(1-|\phi(z_{n})|^{2})^{2}}{\overline{\phi(z_{n})}(1-\overline{\phi(z_{n})}z)^{\alpha}}, \end{eqnarray*}$

$\sup\limits_{n\in\mathbb{N}}\|q_{n}\|_{\mathcal{Z}^{\alpha}}<\infty$$\{q_{n}\}$$\mathbb{D}$的紧子集上一致收敛于零, 由引理2.2, $\|C_{\phi}^{g}q_{n}\|_{\mathcal{Z}^{\varphi}}\rightarrow0, n\rightarrow\infty$.则有

$\begin{eqnarray*} 1&\geq& S_{\varphi}\bigg(\frac{(C_{\phi}^{g}q_{n})''(z_{n})}{\|C_{\phi}^{g}q_{n}\|_{\mathcal{Z}^{\varphi}}}\bigg)\\ &\geq&(1-|z_{n}|^{2})\varphi \bigg(\frac{\big|\frac{\alpha g'(z_{n})}{(1-|\phi(z_{n})|^{2})^{\alpha-1}}+ \frac{\alpha(\alpha+1)\overline{\phi(z_{n})}\phi'(z_{n})g(z_{n})}{(1-|\phi(z_{n})|^{2})^{\alpha}}\big|}{\|C_{\phi}^{g}q_{n}\|_{\mathcal{Z}^{\varphi}}}\bigg)\\ &\geq&(1-|z_{n}|^{2})\varphi \bigg(\frac{\alpha|g'(z_{n})|}{\|C_{\phi}^{g}q_{n}\|_{\mathcal{Z}^{\varphi}}(1-|\phi(z_{n})|^{2})^{\alpha-1}}- \frac{\alpha(\alpha+1)|\phi(z_{n})||\phi'(z_{n})||g(z_{n})|}{\|C_{\phi}^{g}q_{n}\|_{\mathcal{Z}^{\varphi}}(1-|\phi(z_{n})|^{2})^{\alpha}}\bigg). \end{eqnarray*}$

由此可得

$\begin{eqnarray} \frac{|g'(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha-1}}\leq \frac{1}{\alpha}\|C_{\phi}^{g}q_{n}\|_{\mathcal{Z}^{\varphi}}+ \frac{(\alpha+1)|\phi(z_{n})||\phi'(z_{n})||g(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha}}, \end{eqnarray}$ (4.16)

利用(4.15), (4.16) 式即可得

$\begin{eqnarray*} \lim\limits_{|\phi(z_{n})|\rightarrow1}\frac{|g'(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha-1}}= \lim\limits_{n\rightarrow\infty}\frac{|g'(z_{n})|}{\varphi^{-1}(\frac{1}{1-|z_{n}|^{2}})(1-|\phi(z_{n})|^{2})^{\alpha-1}}=0. \end{eqnarray*}$

反之, 假设(4.14), (4.15) 式成立, 则利用引理2.1(iii), 仿照定理4.2和定理3.3的过程, 易证$C_{\phi}^{g}:\mathcal{Z}^{\alpha}\rightarrow\mathcal{Z}^{\varphi}$是紧算子.

参考文献
[1] Ramos Fernández J C. Composition operators on Bloch-Orlicz type spaces[J]. Appl. Math. Comput., 2010, 217(7): 3392–3402.
[2] Yang C, Chen F, Wu P. Generalized composition operators on Zygmund-Orlicz type spaces and Bloch-Orlicz type spaces[J]. J. Function Spaces, Volume 2014, Article ID 549370: 9 pages.
[3] Guo Z, Wu Z. Generalized composition operators from Area Nevanlinna spaces to Zygmund-type spaces[J]. Intern. J. Math. Anal., 2015, 9(4): 151–159.
[4] Li H, Liu P. Composition operators between generally weighted Bloch space and Qlogq space[J]. Banach J. Math. Anal., 2009, 3: 99–110. DOI:10.15352/bjma/1240336427
[5] Li H, Tian C, Zhang X. Integral-type operators from weighted Bergman spaces to weighted Bloch spaces on the unit ball[J]. J. Math., 2012, 32(6): 1100–1104.
[6] Li H, Ma T. Generalized composition operators from Bμ spaces to QK, ω(p, q) spaces[J]. Abstr. Appl.Anal., 2014. DOI:10.1155/2014/897389
[7] Li S, Stevi?c S. Generalized composition operators on Zygmund spaces and Bloch type spaces[J]. J.Mathematical Anal. Appl., 2008, 338(2): 1282–1295. DOI:10.1016/j.jmaa.2007.06.013
[8] Li S. Products of weighted composition operators and difierentiation operator on H[J]. J. Math., 2010, 30(2): 212–216.
[9] Stevi?c S, Sharma A.K. Generalized composition operators on weighted Hardy spaces[J]. Appl. Math.Comput., 2012, 218(17): 8347–8352. DOI:10.1016/j.amc.2012.01.061
[10] Ye S, Hu Q. Weighted composition operators on the Zygmund spaces[J]. Abstr. Appl. Anal., 2012. DOI:10.1155/2012/462482
[11] Esmaeili K, Lindstr?om M. Weighted composition operators between Zygmund type spaces and their essential norms[J]. Integr. Equ. Oper. Theory, 2013, 75: 473–490. DOI:10.1007/s00020-013-2038-4
[12] Cowen C C, MacCluer B D. Composition operators on spaces of analytic functions[M]. Boca Roton: CRC Press, 1995.