数学杂志  2015, Vol. 35 Issue (5): 1201-1208   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
金帅
一类有界对称域上的Hartogs型域的自同构群
金帅    
武汉大学数学与统计学院, 湖北 武汉 430072
摘要:本文研究了稍微广泛的一类Hartogs型域的自同构群.利用华域的自同构群, 获得了一类有界对称域上的Hartogs型域的自同构群的具体形式, 推广了有界对称域上的Hartogs型域的自同构群这一结果.
关键词全纯自同构群    对称域    Hartogs域    
AUTOMORPHISMS OF SOME HARTOGS-TYPE DOMAINS OVER BOUNDED SYMMETRIC DOMAINS
JIN Shuai    
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract: In this paper we study the problem of the general automorphism group of some Hartogs type domains over bounded symmetric domains. With the methods of Tu and Wang who completely describe the automorphism group of the Hua domains, we obtain the explicit form of the automorphism group of some Hartogs type domains over bounded symmetric domains and popularize the automorphism group of Hartogs type domains over bounded symmetric domains.
Key words: holomorphic automorphism groups     symmetric domains     Hartogs domain    
1 引言

$\mathbb{C}^{n}$中一个域$D$的自同构群是$D$上的双全纯映射的集合.自同构群在多复变函数论的研究中已成为一个非常有力的工具.在文[7]中, Thullen研究了所谓的Thullen域

$\mathbb{E}^{\mu}:=\{(z, \zeta)\in\mathbb{C}^{2}:|z|^{2}+|\zeta|^{2\mu}<1\}, $

其中$\mu>1$, 并得到${\rm Aut}(\mathbb{E}^{\mu})$是下列所有映射构成的集合:

$(z, \zeta)\longmapsto\left(e^{i\theta_{1}}\frac{z-a}{1-\overline{a}z}, e^{i\theta_{2}}\frac{(1-|a|^{2})^{1/2\mu}} {(1-\overline{a}z)^{1/\mu}}\zeta \right), $

其中$a\in\mathbb{C}$$|a|<1$, $\theta_{1}, \theta_{2}\in\mathbb{R}$.同样在文[2, 3]中, Bedford和Pinchuk证明了如下定理:如果$D\subset\mathbb{C}^{2}$是一个带有实解析边界的有界(拟凸)域且它的自同构群是非紧的, 那么$D$双全纯等价于$\mathbb{E}^{\mu}$ (其中$\mu$为整数).

有界对称域代表了全体非紧型的Hermitian对称空间.每一个对称有界域, 都有一个对应的一般范数$N_{\Omega}(z, z)$ (generic norm), 满足对任意的$z\in\Omega$都有$0<N_{\Omega}(z, z)\leq 1$并且$N_{\Omega}(z, z)=1$当且仅当$z=0$. $N_{\Omega}(z, z)$$\Omega$的Bergman核$K_{\Omega}(z, z)$有如下关系: $N_{\Omega}(z, z)=(V(\Omega)K_{\Omega}(z, z))^{-\frac{1}{\gamma}}$, 其中$\gamma$$\Omega$的亏格而$V(\Omega)$$\Omega$在Lebsgue测度下的体积.对一个不可分解的有界对称域$\Omega$, 定义Hartogs型域

$\begin{equation}\label{1} \widehat{\Omega}_{m}:=\{(z, \zeta)\in\Omega\times\mathbb{C}^{m}:\|\zeta\|^{2\mu}<N_{\Omega}(z, z)\}. \end{equation}$ (1.1)

如果$\Omega$是单位圆盘且$m=1$, 那么该Hartogs型域就变成了Thullen域.

$G$由具有下列形式的的映射$\Phi$生成

$\begin{equation}\label{2} \Phi(z, \zeta)=(\Phi_{1}(z, \zeta), \Phi_{2}(z, \zeta)), \;\; (z, \zeta)\in\widehat{\Omega}_{m}, \end{equation}$ (1.2)

其中$\Phi_{1}(z, \zeta)=\varphi(z)\in {\rm Aut}(\Omega)$

$\Phi_{2}(z, \zeta)=U(\zeta)\frac{N_{\Omega}(z_{0}, z_{0})^{1/2\mu}}{N_{\Omega}(z, z_{0})^{1/\mu}}, \; z_{0}=\varphi^{-1}(0), \; U\in \mathcal{U}(m), $

这里$\mathcal{U}(m)$是一个$m$阶酉矩阵.论文[10]证明了$G$${\rm Aut}(\widehat{\Omega}_{m})$的一个子群.文[1]给出了如下结果:

定理1.1 设$\widehat{\Omega}_{m}$是一典型域$\Omega$上的Hartogs型域.假设$\widehat{\Omega}_{m}$不是单位球, 那么$G$即为${\rm Aut}(\widehat{\Omega}_{m})$.

最近, 涂振汉和王磊[9]研究了华域之间的逆紧全纯映照的刚性问题, 并且得到了全部华域的自同构群, 作为其特例得到了全部不可分解的有界对称域$\Omega$上的Hartogs型域$\widehat{\Omega}_{m}$的自同构群.

作为不可分解的有界对称域上的Hartogs型域的一种自然推广, 我们考虑一类稍微广泛的Hartogs型域.设$\Omega: =\Omega_{1}\times\Omega_{2}$ (其中$\Omega_{1}$$\Omega_{2}$都是不可分解的有界对称域), 定义

$\begin{equation}\label{3} \widetilde{\Omega}_{m}:=\{(z, \eta, \zeta)\in \Omega_{1}\times\Omega_{2} \times\mathbb{C}^{m}\subset\mathbb{C}^{d_{1}}\times\mathbb{C}^{d_{2}}\times\mathbb{C}^{m}:\;\; \|\zeta\|^{2\mu}<N_{\Omega}(z, z; \eta, \eta)\}, \end{equation}$ (1.3)

其中$N_{\Omega}(z, z;\eta, \eta):=N_{\Omega_1}(z, z)N_{\Omega_2}(\eta, \eta)$.

设集合$\widetilde{G}$由下列形式的映射生成

$\begin{equation}\label{4} \Phi(z, \eta, \zeta)=(\Phi_{1}(z, \eta, \zeta), \Phi_{2}(z, \eta, \zeta), \Phi_{3}(z, \eta, \zeta)), \;\;(z, \eta, \zeta)\in\widetilde{\Omega}_{m}, \end{equation}$ (1.4)

其中$\Phi_{1}(z, \eta, \zeta)=\phi(z)\in {\rm Aut}(\Omega_{1}), \Phi_{2}(z, \eta, \zeta)=\psi(z)\in {\rm Aut}(\Omega_{2})$

$\Phi_{3}(z, \eta, \zeta)=U(\zeta)\frac{N_{\Omega}(z_{0}, z_{0};\eta_{0}, \eta_{0})^{1/2\mu}}{N_{\Omega}(z, z_{0};\eta, \eta_{0})^{1/\mu}}, \;\;z_{0}=\phi_{1}^{-1}(0), \;\; \eta_{0}=\psi_{2}^{-1}(0), \;\; U\in \mathcal{U}(m), $

这里$\mathcal{U}(m)$是一个$m$阶酉矩阵.

应用涂振汉和王磊[9]的推理, 本文给出了如下结果:

定理1.2 假定$\widetilde{\Omega}_{m}$不是单位球, 那么集合$\widetilde{G}$即为${\rm Aut}(\widetilde{\Omega}_{m})$.

定理1.2的证明类似于定理1.1.我们的证明主要分为两步:首先需要证明${\rm Aut}(\widetilde{\Omega}_{m})$的每个元素保持零截面$\Omega\times\{0\}$, 此处用到了$\widetilde{\Omega}_{m}$中只有边界部分$b_{0}\widetilde{\Omega}_{m}$是强拟凸的(其中$b_{0}\widetilde{\Omega}_{m}$是强拟凸的证明来源于文献[9]的推理), $\widetilde{\Omega}_{m}$是齐性域当且仅当$\widetilde{\Omega}_{m}$是单位球; 其次使用Cartan定理来得到在原点的迷向自同构必为线性形式.这就完成了定理1.2的证明.相关的研究也可见文献[4, 6, 8].

2 预备知识

按照华罗庚[5]的定义列出四类典型域$\Omega$和相应的一般范数$N_{\Omega}(z, w)$如下:

(ⅰ)类型$I_{p, q}(1\leq p\leq q):$$V$是由$p\times q$复矩阵构成的空间,

$\Omega=\{z\in V: \; I-z\overline{z}^{t}>0\}, \; N_{\Omega}(z, w)=\det(I-z\overline{w}^{t}), $

这里记号$z>0$表示方阵$z$是正定的, 且$I$表示单位矩阵.

(ⅱ)类型$II_{n}:$$V$是由反对称$n\times n$复矩阵构成的空间,

$\Omega=\{z\in V:\; I+z\overline{z}>0\}, \; N_{\Omega}(z, w)^{2}=\det(I+z\overline{w}^{t}).$

(ⅲ)类型$III_{n}:$$V$是由对称$n\times n$复矩阵构成的空间,

$\Omega=\{{z\in V:\; I-z\overline{z}>0}\}, \; N_{\Omega}(z, w)=\det(I-z\overline{w}^{t}).$

(ⅳ)类型$IV_{n}:$

$\begin{eqnarray*} &&\Omega=\{z=(z_{1}, \cdots, z_{n})\in \mathbb{C}^{n}:\; 1-2Q(z, \overline{z})+|Q(z, z)|^{2}>0, \; Q(z, z)<1\}, \\ &&N_{\Omega}(z, w)=1-2Q(z, \overline{w})+Q(z, z)Q(\overline{w}, \overline{w}), \end{eqnarray*}$

其中$Q(z, w)=\sum\limits_{j=1}^{n}z_{j}w_{j}.$另外, 不可分解的有界对称域还包含两个例外域.在本文中, $\Omega_{i} (i=1, 2)$总表示不可分解的有界对称域中的一种且用$N_{i}(z, w)$来表示$N_{\Omega_{i}}(z, w)$.

下面的命题2.1的证明中的关键部分是自同构群下的下列一般范数的变换公式(见文[10]).设$\Omega$为一个不可分解的有界对称域, $\gamma$$\Omega$的亏格且$J\phi(z)$$\phi$的Jacabian行列式.对$\phi\in {\rm Aut}(\Omega)$$z, t\in \Omega, $总成立$N(\phi(z), \phi(t))^{\gamma}=J\phi(z)N(z, t)^{\gamma}\overline{J\phi(t)}, $并且如果$z_{0}=\phi^{-1}(0), $则有$\frac{N(\phi(z), \phi(z))}{N(z, z)}=\frac{N(z_{0}, z_{0})}{|N(z, z_{0})|^{2}}.$

命题2.1$\widetilde{G}$${\rm Aut}(\widetilde{\Omega}_{m})$的子群.

 从(1.4) 式中容易证明$\widetilde{G}$的每个元素是$\widetilde{\Omega}_{m}$的自同构.为了证明$\widetilde{G}$是一个群, 将证$\widetilde{\Phi}\circ\Phi\in\widetilde{G}$, 这里$\Phi$是由(1.4) 式定义且$\widetilde{\Phi}$具有下列形式

$\begin{eqnarray*} &&\widetilde{\Phi}(z, \eta, \zeta)=(\widetilde{\phi}(z), \widetilde{\psi}(\eta), \widetilde{U}(\zeta)\frac{N(\widetilde{z}_{0}, \widetilde{z}_{0};\widetilde{\eta}_{0}, \widetilde{\eta}_{0})^{1/2\mu}}{N(z, \widetilde{z}_{0};\eta, \widetilde{\eta}_{0})^{1/\mu}}), \\ &&\widetilde{\phi}\in {\rm Aut}(\Omega_{1}), \widetilde{\psi}\in {\rm Aut}(\Omega_{2}), \; \widetilde{z}_{0}=\widetilde{\phi}^{-1}(0), \; \widetilde{\eta}_{0}= \widetilde{\psi}^{-1}(0), \; \widetilde{U}\in \mathcal{U}(m), \end{eqnarray*}$

继而断言存在$z_{1}:=(\widetilde{\phi}\circ\phi)^{-1}(0), \; \eta_{1}:=(\widetilde{\psi}\circ\psi)^{-1}(0)$$U_{1}\in \mathcal{U}(m)$满足

$\begin{equation}\label{11} \widetilde{\Phi}\circ\Phi(z, \eta, \zeta)=(\widetilde{\phi}\circ\phi(z), \widetilde{\psi}\circ\psi(\eta), U_{1} (\zeta)\frac{N(z_{1}, z_{1};\eta_{1}, \eta_{1})^{1/2\mu}}{N(z, z_{1};\eta, \eta_{1})^{1/\mu}}). \end{equation}$ (2.1)

注意到

$\widetilde{\Phi}(\Phi(z, \eta, \zeta))=(\widetilde{\phi}(\phi(z)), \widetilde{\psi}(\psi(\eta)), \widetilde{U}(U(\zeta)) \frac{N(z_{0}, z_{0};\eta_{0}, \eta_{0})^{1/2\mu}}{N(z, z_{0};\eta, \eta_{0})^{1/\mu}}\frac{N(\widetilde{z}_{0}, \widetilde{z}_{0};\widetilde{\eta}_{0}, \widetilde{\eta}_{0})^{1/2\mu}}{N(\phi(z), \widetilde{z_{0}};\psi(\eta), \widetilde{\eta_{0}})^{1/\mu}}), $

由(2.1) 式有

$\begin{eqnarray*} &&N(\phi(z_{1}), \phi(z_{1});\psi(\eta_{1}), \psi(\eta_{1}))=N(z_{1}, z_{1};\eta_{1}, \eta_{1})|J\phi(z_{1})J\psi(\eta_{1})|^{2/\gamma}, \\ &&N(\phi(z), \phi(z_{1});\psi(\eta), \psi(\eta_{1}))=N(z, z_{1};\eta, \eta_{1})(J\phi(z) \overline{J\phi(z_{1})})^{1/\gamma}(J\psi(\eta)\overline{J\psi(\eta_{1})})^{1/\gamma}, \end{eqnarray*}$

并且由于$N(z, 0;\eta, 0)=N(0, w;0, v)=1$对任意的$z, w, \eta, v\in\widetilde{\Omega}_{m}$成立, 有

$\begin{eqnarray*} N(z_{0}, z_{0};\eta_{0}, \eta_{0})&=&N(\phi(z_{0}), \phi(z_{0});\psi(\eta_{0}), \psi(\eta_{0}))|J\phi(z_{0})J\psi(\eta_{0})|^{-2/\gamma}\\ &=&|J\phi(z_{0})J\psi(\eta_{0})|^{-2/\gamma}, \\ N(z, z_{0};\eta, \eta_{0})&=&N(\phi(z), \phi(z_{0});\psi(\eta), \psi(\eta_{0}))(J\phi(z)\overline{J\phi(z_{0})})^{-1/\gamma} (J\psi(\eta)\overline{J\psi(\eta_{0})})^{-1/\gamma}\\ &=&(J\phi(z)\overline{J\phi(z_{0})})^{-1/\gamma}(J\psi(\eta)\overline{J\psi(\eta_{0})})^{-1/\gamma}. \end{eqnarray*}$

由于$\phi(z_{1})=\widetilde{z_{0}}, \psi(\eta_{1})=\widetilde{\eta_{0}}$, 综合上述等式, 得到

$\begin{eqnarray*} &&\frac{N(z_{0}, z_{0};\eta_{0}, \eta_{0})}{N(z, z_{0};\eta, \eta_{0})^{2}}\frac{N(\widetilde{z}_{0}, \widetilde{z}_{0}; \widetilde{\eta}_{0}, \widetilde{\eta}_{0})}{N(\phi(z), \phi(\widetilde{z}_{0});\psi(\eta), \psi(\widetilde{\eta}_{0}))^{2}}\\ &=&\frac{N(z_{0}, z_{0};\eta_{0}, \eta_{0})}{N(z, z_{0};\eta, \eta_{0})^{2}}\frac{N(\phi(z_{1}), \phi(z_{1});\psi(\eta_{1}), \psi(\eta_{1}))}{N(\phi(z), \phi(z_{1}); \psi(\eta), \psi(\eta_{1}))^{2}}\\ &=&\frac{\overline{J\phi(z_{0})J\psi(\eta_{0})}^{2/\gamma}}{|J\phi(z_{0})J\psi(\eta_{0})|^{2/\gamma}} \frac{|J\phi(z_{1})J\psi(\eta_{1})|^{2/\gamma}}{\overline{J\phi(z_{1})J\psi(\eta_{1})}^{2/\gamma}} \frac{N(z_{1}, z_{1};\eta_{1}, \eta_{1})}{N(z, z_{1};\eta, \eta_{1})^{2}}, \end{eqnarray*}$

$U_{1}\in\mathcal{U}(m)$使得

$U_{1}=(\frac{\overline{J\phi(z_{0})J\psi(\eta_{0})}^{2/\gamma}}{|J\phi(z_{0})J\psi(\eta_{0})|^{2/\gamma}} \frac{|J\phi(z_{1})J\psi(\eta_{1})|^{2/\gamma}}{\overline{J\phi(z_{1})J\psi(\eta_{1})}^{2/\gamma}})^{1/2\mu}\widetilde{U}\circ U.$

即为等式(2.1).命题2.1得证.

现在要研究$\widetilde{\Omega}_{m}$的边界$b\widetilde{\Omega}_{m}$的强拟凸性, 其边界$b\widetilde{\Omega}_{m}$可以进行如下分解:

$b\widetilde{\Omega}_{m}=b_{0}\widetilde{\Omega}_{m}\cup b(\Omega_1\times \Omega_2\times \{0\}), $

其中$b(\Omega_1\times \Omega_2\times \{0\})=(b\Omega_{1}\times\Omega_{2}\times\{0\})\cup(\Omega_{1} \times b\Omega_{2}\times\{0\})\cup(b\Omega_{1}\times b\Omega_{2}\times\{0\}), $$b_{0}\widetilde{\Omega}_{m}:=\{(z, \eta, \zeta)\in\Omega_{1}\times\Omega_{2}\times\mathbb{C}^{m} \subset\mathbb{C}^{d_{1}}\times\mathbb{C}^{d_{2}}\times\mathbb{C}^{m}:\rho:=\|\zeta\|^{2\mu}-N(z, z;\eta, \eta)=0\}$$b\widetilde{\Omega}_{m}$的光滑部分.注意到对任意$(z, \eta, \zeta)\in b_{0}\widetilde{\Omega}_{m}$$(z, \eta)\in \Omega_1\times \Omega_2$, 从而$N(z, z;\eta, \eta)>0$, 故$\zeta\neq 0$.

下列的命题2.2是显然的.

命题2.2 假设$D_{i}\subset\mathbb{C}^{n_{i}}$是有界域, 其Bergman核函数记为$K_{i}(i=1, 2)$, 则$D:=D_{1}\times D_{2}$的Bergman核函数$K$满足

$K((\xi_{1}, \xi_{2}), (z_{1}, z_{2}))=K_{1}(\xi_{1}, z_{1})K_{2}(\xi_{2}, z_{2}), (\xi_{1}, \xi_{2}), (z_{1}, z_{2})\in D_{1}\times D_{2}.$

现在给出如下的关键引理, 它是论文涂振汉、王磊文[9]中的一个引理的稍微推广.

命题2.3 设$\Omega_{i}\subset\mathbb{C}^{d_{i}} (i=1.2)$ (在Harish-Chandra嵌入下)是亏格为$\gamma^{i}$的不可分解的有界对称域, 则有如下结论成立:

1. $\widetilde{\Omega}_{m}$$b_{0}\widetilde{\Omega}_{m}$的每一个点都是强拟凸的;

2. $\widetilde{\Omega}_{m}$$b(\Omega\times\{0\})$的任意一点都不是强拟凸的, 这里$b(\Omega\times\{0\})=(b\Omega_{1}\times\Omega_{2}\times\{0\}) \cup(\Omega_{1}\times b\Omega_{2}\times\{0\})\cup(b\Omega_{1}\times b\Omega_{2}\times\{0\})$.

 本证明来源于文献[9]的推理.设${h_{i}(z)}_{i=1}^{\infty}, {g_{j}(\eta)}_{i=1}^{\infty}$分别是Hilbert空间$A^{2}(\Omega_{1}), $ $A^{2}(\Omega_{2})$的一组标准正交基, 其中$A^{2}(\Omega_{1}), A^{2}(\Omega_{2})$分别由所有平方可积的全纯函数构成.由命题2.2, 得到

$K(z, \overline{z};\eta, \overline{\eta})=K_1(z, \overline{z})K_2(\eta, \overline{\eta})=\sum h_{i}(z)\overline{h_{i}(z)} \sum g_{j}(\eta)\overline{g_{j}(\eta)}$

$\Omega$的任一紧致子集上一致收敛.设$\rho(z, \eta, \zeta):=\|\zeta\|^{2\mu}-\delta K_1(z, \overline{z})^{-\lambda_{1}}K_2(\eta, \overline{\eta})^{-\lambda_{2}}, $其中$\delta:=(V(\Omega_1))^{-\frac{1}{\gamma_1}} (V(\Omega_2))^{-\frac{1}{\gamma_2}} $$\lambda_{i}:=-\frac{1}{\gamma_{i}}, (i=1, 2)$均为正数.从而$\rho$$b_{0}\widetilde{\Omega}_{m}$上的一个实值定义函数.

固定$(z_{0}, \eta_{0}, \zeta_{0})\in b_{0}\widetilde{\Omega}_{m}$, 并且令$T=(u, v, w)\in T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0}\widetilde{\Omega}_{m})\subset\mathbb{C}^{d_{1}} \times\mathbb{C}^{d_{2}}\times\mathbb{C}^{m}.$为了简便, 用$(z, \eta, \zeta)$代替$(z_{0}, \eta_{0}, \zeta_{0})$.由定义可得

$\begin{equation}\label{22} \begin{split} &\|\zeta\|^{2\mu}-\delta K_{1}(z, \overline{z})^{-\lambda_{1}}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}}=0, \\ &\mu\|\zeta\|^{2(\mu-1)}(\overline{\zeta}\cdot w)+\delta\lambda_{1}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}}K_{1} (z, \overline{z})^{-(\lambda_{1}+1)}\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)\\ +&\delta\lambda_{2}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+1)}K_{1}(z, \overline{z})^{-\lambda_{1}}\sum\overline{g_{j} (\eta)}(g_{j}(\eta)^{\prime}\cdot v)=0, \end{split} \end{equation}$ (2.2)

其中$h_{i}(z)^{\prime}\cdot u=\sum\limits_{i=1}^{\infty}\frac{\partial h_{i}}{\partial z_{k}}(z)u_{k}, \;\; g_{j}(\eta)^{\prime} \cdot v=\sum\limits_{l=1}^{\infty}\frac{\partial g_{j}}{\partial \eta_{l}}(\eta)v_{l}.$

最后通过(2.2) 式, $\rho$$(z, \eta, \zeta)$的Levi形式计算如下:

$\begin{align*} L_{\rho}(T, T):=&\sum\limits_{i, j=1}^{d_{1}+d_{2}+m}\frac{\partial^{2}\rho}{\partial T{i}\partial \overline{T{j}}}\\ =&\mu\|\zeta\|^{2(\mu-1)}\|w\|^{2}+\mu(\mu-1)\|\zeta\|^{2(\mu-2)}|\overline{\zeta}\cdot w|^{2}\\ &+\delta\lambda_{1}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}}\big[-(\lambda_{1}+1)K_{1}(z, \overline{z})^{-(\lambda_{1}+2)} |\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}\\ &+K_{1}(z, \overline{z})^{-(\lambda_{1}+1)}\sum|(h_{i}(z)^{\prime}\cdot u)|^{2}\big]\\ &+\delta\lambda_{2}K_{1}(z, \overline{z})^{-\lambda_{1}}\big[-(\lambda_{2}+1)K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+2)} |\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}\\ &+K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+1)}\sum|(g_{l}(\eta)^{\prime}\cdot v)|^{2}\big]\\ &-\delta\lambda_{1}\lambda_{2}K_{1}(z, \overline{z})^{-(\lambda_{1}+1)}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+1)} 2{\rm Re}\big[(\sum h_{i}(z)\overline{(h_{i}(z)^{\prime}\cdot u)})\\ &(\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot v))\big]\\ =&\mu\|\zeta\|^{2(\mu-2)}(\|\zeta\|^{2}\|w\|^{2}-|\overline{\zeta}\cdot w|^{2})+\mu^{2}\|\zeta\|^{2(\mu-2)}|\overline{\zeta}\cdot w|^{2}\\ &-\delta\lambda_{1}^{2}K_{1}(z, \overline{z})^{-(\lambda_{1}+2)}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}}| \sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}\\ &-\delta\lambda_{2}^{2}K_{1}(z, \overline{z})^{-\lambda_{1}}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+2)}| \sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}\\ &-\delta\lambda_{1}\lambda_{2}K_{1}(z, \overline{z})^{-(\lambda_{1}+1)}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+1)} 2{\rm Re}\big[(\sum h_{i}(z)\overline{(h_{i}(z)^{\prime}\cdot u)})\\ &(\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot v))\big]\\ &+\delta\lambda_{1}K_{1}(z, \overline{z})^{-(\lambda_{1}+2)}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}}\big[K_{1}(z, \overline{z}) \sum|(h_{i}(z)^{\prime}\cdot u)|^{2}\\ &-|\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}\big]\\ &+\delta\lambda_{2}K_{1}(z, \overline{z})^{-\lambda_{1}}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+2)} \big[K_{2}(\eta, \overline{\eta})\sum|(g_{l}(\eta)^{\prime}\cdot v)|^{2}\\ &-|\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}\big]\\ =&\mu\|\zeta\|^{2(\mu-2)}(\|\zeta\|^{2}\|w\|^{2}\\ &-|\overline{\zeta}\cdot w|^{2})+\Big[\mu^{2}\|\zeta\|^{4(\mu-1)}|\overline{\zeta}\cdot w|^{2}\\ &-\delta^{2}\lambda_{1}^{2}K_{1}(z, \overline{z})^{-(2\lambda_{1}+2)}K_{2}(\eta, \overline{\eta})^{-2\lambda_{2}} |\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}\\ &-\delta^{2}\lambda_{2}^{2}K_{1}(z, \overline{z})^{-2\lambda_{1}}K_{2}(\eta, \overline{\eta})^{-(2\lambda_{2}+2)}| \sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}\\ &-\delta^{2}\lambda_{1}\lambda_{2}K_{1}(z, \overline{z})^{-(2\lambda_{1}+1)}K_{2}(\eta, \overline{\eta})^{-(2\lambda_{2}+1)} 2{\rm Re}\big[(\sum h_{i}(z)\overline{(h_{i}(z)^{\prime}\cdot u)})\\ &(\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot v))\big]\Big]\Big/\|\zeta\|^{2\mu}\\ &+\delta\lambda_{1}K_{1}(z, \overline{z})^{-(\lambda_{1}+2)}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}} \big[K_{1}(z, \overline{z})\sum|(h_{i}(z)^{\prime}\cdot u)|^{2}\\ &-|\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}\big]\\ &+\delta\lambda_{2}K_{1}(z, \overline{z})^{-\lambda_{1}}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+2)} \big[K_{2}(\eta, \overline{\eta})\sum|(g_{l}(\eta)^{\prime}\cdot v)|^{2}\\ &-|\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}\big]\\ =&\mu\|\zeta\|^{2(\mu-2)}(\|\zeta\|^{2}\|w\|^{2}\\ &-|\overline{\zeta}\cdot w|^{2})\\ &+\delta\lambda_{1}K_{1}(z, \overline{z})^{-(\lambda_{1}+2)}K_{2}(\eta, \overline{\eta})^{-\lambda_{2}} \big[K_{1}(z, \overline{z})\sum|(h_{i}(z)^{\prime}\cdot u)|^{2}\\ &-|\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}\big]\\ &+\delta\lambda_{2}K_{1}(z, \overline{z})^{-\lambda_{1}}K_{2}(\eta, \overline{\eta})^{-(\lambda_{2}+2)} \big[K_{2}(\eta, \overline{\eta})\sum|(g_{l}(\eta)^{\prime}\cdot v)|^{2}\\ &-|\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}\big]\\ \geq& 0. \end{align*}$

由Cauchy-Schwartz不等式, 对所有的$T=(u, v, w)\in T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0}\widetilde{\Omega}_{m})$等式成立当且仅当

$\begin{equation}\label{33} \begin{split} &\|\zeta\|^{2}\|w\|^{2}-|\overline{\zeta}\cdot w|^{2}=0, \\ &K_{1}(z, \overline{z})\sum|(h_{i}(z)^{\prime}\cdot u)|^{2}-|\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}=0, \\ &K_{2}(\eta, \overline{\eta})\sum|(g_{l}(\eta)^{\prime}\cdot v)|^{2}-|\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot u)|^{2}=0. \end{split} \end{equation}$ (2.3)

现在将证明$\rho$$(z_{0}, \eta_{0}, \zeta_{0})$的Levi形式$L_{\rho}(T, T)$对所有$T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0} \widetilde{\Omega}_{m})$都是正定的.

情形1 假设$u\neq 0$.因为$K_{1}(z, \overline{z})=\sum h_{i}(z)\overline{h_{i}(z)}$与Hilbert空间$A^{2}(\Omega_1)$中标准正交基${h_{i}(z)}_{i=1}^{\infty}$的选取无关且$\Omega_1$有界, 从而可以挑选$h_{1}(z)$是一个非零常数并且选取$h_{2}(z)$满足$h_{2}(z)^{\prime}\cdot u\neq 0$.这就说明了$(h_{1}(z), h_{2}(z))$$(h^{\prime}(z)\cdot u, h^{\prime}(z)\cdot u)$是线性无关的, 从而

$K_{1}(z, \overline{z})\sum|(h_{i}(z)^{\prime}\cdot u)|^{2}-|\sum\overline{h_{i}(z)}(h_{i}(z)^{\prime}\cdot u)|^{2}>0.$

这与(2.3) 式矛盾.因此$L_{\rho}(T, T)>0$对所有满足$u\neq 0$$T=(u, v, w)\in T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0}\widetilde{\Omega}_{m})$成立.

情形2 假设$v\neq 0$.与情形1类似, 因为$K_{2}(\eta, \overline{\eta})=\sum g_{j}(\eta)\overline{g_{j}(\eta)}$与Hilbert空间$A^{2}(\Omega_2)$中标准正交基${g_{j}(\eta)}_{j=1}^{\infty}$的选取无关且$\Omega_2$有界, 从而可以挑选$g_{1}(\eta)$是一个非零常数并且选取$g_{2}(\eta)$满足$g_{2}(\eta)^{\prime}\cdot v\neq 0$.这就说明了$(g_{1}(\eta), g_{2}(\eta))$$(g^{\prime}(\eta)\cdot v, g^{\prime}(\eta)\cdot v)$是线性无关的, 从而

$K_{2}(\eta, \overline{\eta})\sum|(g_{j}(\eta)^{\prime}\cdot v)|^{2}-|\sum\overline{g_{j}(\eta)}(g_{j}(\eta)^{\prime}\cdot v)|^{2}>0, $

这与(2.3) 式矛盾.因此$L_{\rho}(T, T)>0$对所有满足$v\neq 0$$T=(u, v, w)\in T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0}\widetilde{\Omega}_{m})$成立.

情形3 假设$u=0$$v=0$, 则由$T=(u, v, w)\neq 0$得到$w\neq 0$, 从而由(2.2) 式, 有$\overline{\zeta}\cdot w=0$.于是由$w\neq 0, \zeta\neq 0$

$\|\zeta\|^{2}\|w\|^{2}-|\overline{\zeta}\cdot w|^{2}=\|\zeta\|^{2}\|w\|^{2} >0, $

这与(2.3) 式矛盾, 故$L_{\rho}(T, T)>0$对所有满足$w\neq 0$$T=(0, 0, w)\in T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0}\widetilde{\Omega}_{m})$成立.

这样Levi形式$L_{\rho}(T, T)$$T_{(z_{0}, \eta_{0}, \zeta_{0})}^{1, 0}(b_{0}\widetilde{\Omega}_{m})$是正定的.这就是说$(b_{0}\widetilde{\Omega}_{m})$的每一个点都是强拟凸的.

对任意一个不可分解的有界对称域$\Omega_{i}\subset \mathbb{C}^{d_{i}}(i=1, 2)$, 有$G(\widetilde{\Omega}_{m})$$\Omega_{1}\times\Omega_{2}\times\{0\}(\subset\widetilde{\Omega}_{m})$上是可迁的.因为$\widetilde{\Omega}_{m}$不是单位球, 由Wong-Rosay定理[11]可知, $\widetilde{\Omega}_{m}$$b\{\Omega_{1}\times\Omega_{2}\times\{0\}\}$的每一点都不是强拟凸的.

3 主定理的证明

引理3.1 (见文[1]) $\Psi\in {\rm Aut}(\widetilde{\Omega}_{m})$$\Omega\times\{0\}$映为自身.

 设$\Psi\in {\rm Aut}(\widetilde{\Omega}_{m})$并在$\Omega_{1}\times\Omega_{2}\times\{0\}$中选取序列$\{(z_{j}, \eta_{j}, 0)\}$收敛到$b(\Omega_{1}\times\Omega_{2}\times\{0\})$.由(1.4) 及命题2.1可知, 可以选取$\Phi_{j}\in {\rm Aut}(\widetilde{\Omega}_{m})$满足$\Phi_{j}(0, 0, 0)=(z_{j}, \eta_{j}, 0)$.从而${\Psi(z_{j}, \eta_{j}, 0)}$可以被看为是一个自同构轨道$\{(\Psi\circ\Phi_{j})(0, 0, 0)\}$.假设${\Psi(z_{j}, \eta_{j}, 0)}$有一个子序列收敛到某个$P\in b_{0}\widetilde{\Omega}_{m}$.从命题2.3可知, $P$必须是一个强拟凸点.由Wong-Rosay定理可得$\widetilde{\Omega}_{m}$是齐性域, 从而$\widetilde{\Omega}_{m}$只能是单位球.这与$\widetilde{\Omega}_{m}$不是单位球矛盾.因此对每一个收敛到$b(\Omega_{1}\times\Omega_{2}\times\{0\})$的序列$\{(z_{j}, \eta_{j}, 0)\}$, 序列$\{\Psi(z_{j}, \eta_{j}, 0)\}$同样收敛到$b(\Omega_{1}\times\Omega_{2}\times\{0\})$的某点.

$\Psi=(\Psi_{1}, \Psi_{2}, \Psi_{3})\in {\rm Aut}(\widetilde{\Omega}_{m})$.由$f(z, \eta)=\Psi_{3}(z, \eta, 0)$定义一个全纯映照$f:\Omega_{1}\times\Omega_{2}\longrightarrow\mathbb{C}^{m}$.则$f(z, \eta)$$b(\Omega_{1}\times\Omega_{2})$退化, 因此也必然在$\Omega_{1}\times\Omega_{2}$退化, 从而$\Psi_{3}(z, \eta, 0)\equiv0$对所有的$z\in \Omega_{1}, \eta\in \Omega_{2}$成立.引理3.1得证.

引理3.2 如果$\Psi\in {\rm Aut}(\widetilde{\Omega}_{m})$满足$\Psi(0, 0, 0)=(0, 0, 0)$, 则$\Psi$具有如下形式: $\Psi(z, \eta, \zeta)=(I_{1}(z), I_{2}(\eta), U(\zeta)), $其中$I_{i}\in {\rm Aut}(\Omega_{i})$, $I_{i}(0)=0(i=1, 2)$$U\in \mathcal{U}_{m}$.特别$\Psi\in \widetilde{G}$.

 因为$\widetilde{\Omega}_{m}$是有界圆形域, 由Cartan唯一性定理可知$\Psi$是线性的.由引理3.1知, $\Psi(z, \eta, 0)=(I_{1}(z), I_{2}(\eta), 0)$$I_{i}\in {\rm Aut}(\Omega_{i})$$I_{i}(0)=0 (i=1, 2)$成立.选取$\Psi_{0}\in\widetilde{G}$使得$\Psi_{0}(z, \eta, 0)=(I_{1}(z), I_{2}(\eta), 0)$, 则我们有$(\Psi_{0}^{-1}\circ\Psi)(z, \eta, 0)=(z, \eta, 0)$, 从而$\Psi_{0}^{-1}\circ\Psi$是线性的, 即

$(\Psi_{0}^{-1}\circ\Psi)(z, \eta, \zeta)=\left(\begin{array}{ccc}I_{01}&0&A\\0&I_{02}&B\\0&0&C\\ \end{array}\right)\left(\begin{array}{ccc}z\\\eta\\\zeta\\ \end{array}\right), $

其中$I_{0i} (i=1, 2)$单位矩阵且$A, B, C$分别为$d_{1}\times m, d_{2}\times m$阶矩阵.由于$\Psi_{0}^{-1}\circ\Psi\in {\rm Aut}(\widetilde{\Omega}_{m})$, $C$$C^{-1}$${\zeta\in \mathcal{U}_{m}:\|\zeta\|<1}$为自身, 因此$C$是酉矩阵.下证$A, B=0$.由于线性映射把边界映为边界.由$\widetilde{\Omega}_{m}$的定义可得

$\begin{eqnarray*} &&\|C\zeta\|^{2\mu}=N_{1}(z+A\zeta, z+A\zeta)N_{2}(\eta+B\zeta, \eta+B\zeta), \\ &&\|\zeta\|^{2\mu}=N_{1}(z, z)N_{2}(\eta, \eta).\end{eqnarray*}$

由于$C$是酉矩阵, 有$N_{1}(z+A\zeta, z+A\zeta)N_{2}(\eta+B\zeta, \eta+B\zeta)=N_{1}(z, z)N_{2}(\eta, \eta).$$z=0, \eta=0$, 可得$N_{1}(0, 0)N_{2}(0, 0)=1$$N_{1}(A\zeta, A\zeta)N_{2}(B\zeta, B\zeta)=1.$考虑到$0\leq N_{1}(A\zeta, A\zeta)\leq 1, 0\leq N_{2}(B\zeta, B\zeta)\leq 1$, 得到如下结果:

$N_{1}(A\zeta, A\zeta)=1, N_{2}(B\zeta, B\zeta)=1, $

也就是说$A\zeta=0, B\zeta=0, \forall\zeta$.由此可得$A=0, B=0$且有

$\begin{eqnarray*} &&\Psi_{0}^{-1}\circ\Psi(z, \eta, \zeta)=\left(\begin{array}{ccc}I_{01}&0&0\\0&I_{02}&0\\0&0&C\\ \end{array}\right)\left(\begin{array}{ccc}z\\\eta\\\zeta\\ \end{array}\right), \\ &&\Psi(z, \eta, \zeta)=(I_{1}(z), I_{2}(\eta), C(\zeta)), \end{eqnarray*}$

这就证明了了引理3.2.

现在来证明定理1.2.设$\Psi\in {\rm Aut}(\widetilde{\Omega}_{m})$.由引理3.1, $\Psi(0, 0, 0)=(z_{0}, \eta_{0}, 0)$对某个$z_{0}\in\Omega_{1}, \eta_{0}\in\Omega_{2}$成立.选取$\Phi\in\widetilde{G}$使得$\Phi(z_{0}, \eta_{0}, 0)=(0, 0, 0)$.从而得到$(\Phi\circ\Psi)(0, 0, 0)=(0, 0, 0)$.由引理3.2得到$\Phi\circ\Psi\in \widetilde{G}$.再由命题2.1知$\widetilde{G}$是一个子群, 从而$\Psi\in \widetilde{G}$.这就证明了${\rm Aut}(\widetilde{\Omega}_{m})$$\widetilde{G}$生成.定理1.2得证.

参考文献
[1] Ahn H, Byun J, Park J-D. Automorphisms of the Hartogs type domains over classical symmetric domains[J]. Intern. J. Math., 2012, 23(9): 11.
[2] Bedford E, Pinchuk S I. Domains in C2 with noncompact groups of holomorphic automorphisms[J]. Matematicheskii Sbornik (N.S.), 1988, 135(2): 147–157.
[3] Bedford E, Pinchuk S I. Domains in C2 with noncompact automorphism groups[J]. Indiana Univer.Math. J., 1998, 47(1): 199–222.
[4] Feng Z M, Tu Z H. On canonical metrics on Cartan-Hartogs domains[J]. Math. Zeitschrift, 2014, 278: 301–320. DOI:10.1007/s00209-014-1316-4
[5] Hua L K. Harmornic analysis of functions of several complex variables in the classical domains[M]. Providence, RI: Trans. Math. Monographs Vol.6, American Math. Soc., 1979.
[6] Kim K T, Ninh V T, Yamamori A. The automorphism group of a certain unbounded non-hyperbolic domain[J]. J. Math. Anal. Appl., 2014, 409(2): 637–642. DOI:10.1016/j.jmaa.2013.07.007
[7] Thullen P. Zu den Abbildungen durch analytische Funktionen mehrerer komplexer Veranderlichen Die invarianz des Mittelounktes von Kreiskorpern[J]. Mathematische Annalen, 1931, 104(1): 244–259. DOI:10.1007/BF01457933
[8] Tu Z H, Wang L. Rigidity of proper holomorphic mappings between certain unbounded non hyperbolic domains[J]. J. Math. Anal. Appl., 2014, 419: 703–714. DOI:10.1016/j.jmaa.2014.04.073
[9] Tu Z H, Wang L. Rigidity of proper holomorphic mappings between equidimensional Hua domains[J]. Mathematische Annalen, DOI: 10.1007/s00208-014-1136-1, inpress. https: //link. springer. com/article/10. 1007/s00208-014-1136-1
[10] Wang A, Yin W, Zhang L, Roos G. The Kähler-Einstein metric for some Hartogs domains over symmetric domains[J]. Sci. China Math. Ser.A, 2006, 49(9): 1175–1210. DOI:10.1007/s11425-006-0230-6
[11] Wong B. Characterization of the unit ball in Cn by its automorphism group[J]. Inventiones Mathe maticae, 1977, 41(3): 253–257. DOI:10.1007/BF01403050