数学杂志  2015, Vol. 35 Issue (5): 1187-1196   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
李书海
布仁满都拉
杨静宇
用Choi-Saigo-Srivastava算子定义的解析函数新子类
李书海1, 布仁满都拉1, 杨静宇1,2    
1. 赤峰学院数学与统计学院, 内蒙古 赤峰 024000;
2. 大连理工大学数学科学学院, 辽宁 大连 116024
摘要:本文研究了用Choi-Saigo-Srivastava算子定义的一类解析函数.利用分析的方法和算子理论得到类中函数的积分表达式, 偏差定理, 卷积性质和半径问题.所得结果推广一些作者的相关结果.
关键词Choi-Saigo-Srivatava算子    解析函数    卷积    
A NEW CLASS OF ANALYTIC FUNCTIONS DEFINED BY CHOI-SAIGO-SRIVASTAVA OPERATOR
LI Shu-hai1, Burenmandoula1, YANG Jing-yu1,2    
1. School of Mathematics and Statistics, Chifeng University, Chifeng 024000, China;
2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
Abstract: In the article, we study the a new class of analytic functions defined by ChoiSaigo-Srivastava operator. By using the analytical method and operator theory, We obtain the integral representations, distortion theorem, Hadamard product and radius of problem, which generalizes the related results of some authors.
Key words: Choi-Saigo-Srivastava operator     analytic functions     Hadamard product    
1 引言

$H_k (k=1, 2, \cdots)$表示在单位圆盘$U=\{z:|z|<1\}$内解析函数$f(z)=z+a_{k+1}z^{k+1}+\cdots$的全体构成的类; 以$P_k(\tau)(0\leq\tau<1)$表示$U$内解析并满足条件Re$p(z)>\tau$的所有正实部函数$p(z)=1+p_kz^k+\cdots$的全体; 用$S^*_k{(\tau)}$$K_k(\tau)$分别表示$H_k$中的$\tau$级星象函数类和$\tau$级凸象函数类.若存在$g(z)\in S^*_k{(\tau)}$, 使得$\frac{zf'(z)}{g(z)}\in P_k(\tau)$则称$f(z)$$\tau$级近于凸函数, 其全体记为$C_k(\tau)$.

$\bar{P}_k{(\beta)} (\beta>1)$表示$U$内解析并满足Re$p(z)<\beta$的所有函数$p(z)=1+p_kz^k+\cdots$的全体.若函数$f(z)\in H_k$满足条件$\frac{zf'(z)}{f(z)}\in \bar{P}_k(\beta)$, 则称$f(z)$属于类函数$M_k(\beta)$; 若函数$f(z)\in H_k$满足条件$\frac{(zf'(z))'}{f'(z)}\in \bar{P}_k(\beta)$, 则称$f(z)$属于函数类$N_k(\beta)$; 用$\bar{C}M_k(\beta)$$\bar{C}N_k(\beta)$分别定义$H_k$中两个子类:

$\begin{array}{l} \bar C{M_k}(\beta ) = \{ f \in {H_k}:\exists g \in {M_k}(\beta ), {\rm{Re}}\frac{{zf'(z)}}{{g(z)}} < \beta, z \in U\}, \\ \bar C{N_k}(\beta ) = \{ f \in {H_k}:\exists g \in {N_k}(\beta ), {\rm{Re}}\frac{{{{(zf'(z))}^\prime }}}{{g'(z)}} < \beta, z \in U\} . \end{array}$

显然$f(z)\in N_k(\beta)\Leftrightarrow zf'(z)\in M_k(\beta), f(z)\in \bar{C}N_k(\beta)\Leftrightarrow zf'(z) \in \bar{C}M_k(\beta).$

文[1-3]中讨论了函数类$\bar{K}_1(\beta)$$\bar{S}_1^*(\beta)$的性质.

$g(z) = z + \sum\limits_{n = 1}^\infty {{b_{k + n}}} {z^{k + n}} \in {H_k}, f(z) = z + \sum\limits_{n = 1}^\infty {{a_{k + n}}} {z^{k + n}} \in {H_k}, $

则用$(f*g)(z)$表示$f(z)$$g(z)$的Hadamard卷

$(f*g)(z) = z + \sum\limits_{n = 1}^\infty {{a_{k + n}}} {b_{k + n}}{z^{k + n}}.{\rm{ }}$

Carlson和Shaffer在文[4]中引进比$D^{\lambda}$更为广泛的线性算子$L(a, c)$.设

$\begin{array}{l} \phi (a, c;z) = \sum\limits_{n = 0}^\infty {\frac{{{{(a)}_n}}}{{{{(c)}_n}}}} {z^{n + 1}}, z \in U, c \ne 0, - 1, - 2, \cdots, \\ L(a, c)f(z) = \phi (a, c;z)*f(z), f(z) \in {H_k}, \end{array}$ (1.1)

其中$(\xi)_n=\frac{\Gamma(\xi+n)}{\Gamma(\xi)}$.由文[4]知$L(a, c)$$H_k$到自身$H_k$的连续映射, 还容易得到

$\varphi (2(\beta - 1), 1;z) = \frac{z}{{{{(1 - z)}^{2(\beta - 1)}}}}.$ (1.2)

另外, 对$c>a>0, L(a, c)f(z)$有积分表达式

$L(a, c)f(z) = \int_0^1 {{u^{a - 1}}} f(uz)d\eta (a, c - a)(u), $ (1.3)

其中$\eta$$B$分布$d \eta(a, c-a)(u)=[u^{a-1}(1-u)^{c-a-1} / B(a, c-a)]du. $如果$a\neq0, -1, -2, \cdots$, 则$L(a, c)$存在连续逆映射$L(c, a)$, 从而$L(a, c)$$H_k$到自身$H_k$的双方单值映射, 显然

$ L(a, c)=L(a, b)L(b, c)=L(b, c)L(a, b), b, c\neq-1, -2, \cdots. $

$F(a, b;c;z)$为超几何分布函数:

$ F(a, b;c;z)=\sum\limits_{n=0}^{\infty}\frac{(a)_n(b)_n}{(c)_n}\frac{z^{n+1}}{k!}, z\in U;a, b, c\neq 0, -1, -2, \cdots, $

显然有

$\frac{z}{{{{(1 - z)}^{2(\beta - 1)}}}} = \varphi (2(\beta - 1), 1;z) = F(2(\beta - 1), 1;1;z).{\rm{ }}$ (1.4)

$f_\lambda(z)=\frac{z}{(1-z)^{\lambda+1}}(\lambda>-1).$

Choi等人在文献[5]中引进Choi-Saigo-Srivastava算子$L_{\lambda, \mu}:H_k\rightarrow H_k$,

${L_{\lambda, \mu }}f(z) = ({f_{\lambda, \mu }}*f)(z)(f(z) \in {H_k};\lambda > - 1;\mu > 0), {\rm{ }}$ (1.5)

其中函数$f_{\lambda, \mu}$满足条件

$({f_\lambda }*{f_{\lambda, \mu }})(z) = \frac{z}{{{{(1 - z)}^\mu }}}, (f(z) \in {H_k}, \lambda > - 1;\mu > 0).{\rm{ }}$ (1.6)

特别地, $L_{0, 2}=zf', L_{1, 2}f=f$.从(1.1) 式和(1.5) 式得到[6]

${L_{\lambda, \mu }}f(z) = L(\mu, \lambda + 1)f(z)(\lambda > - 1;\mu > 0), {\rm{ }}$ (1.7)

由(1.7) 式得到[6]

$f(z) = L(\lambda + 1, \mu ){L_{\lambda, \mu }}f(z)(\lambda > - 1;\mu > 0).{\rm{ }}$ (1.8)

文[6, 8]中分别用$L_{\lambda, \mu}$算子引进函数类:

定义A[6] 若函数$f(z)\in H_k$满足条件

${\hbox{Re}} \frac{L(2, 1)L(\mu, \lambda+1)f(z)}{L(\mu, \lambda+1)f(z)}>\tau (\tau<1, z\in U), $

则称$f(z)$属于$K(\lambda, \mu)(\tau)$中.

定义B[8] 若函数$f(z)\in H_k$满足条件

${\hbox{Re}} \{(1-\alpha)\frac{L(\lambda+1, 1)f(z)}{z}+\alpha \frac {L(2, 1)L(\lambda+1, 1)f(z)}{z}\}>\tau (0\leq \alpha, 0\leq\tau<1, z\in U), $

则称$f(z)$属于$V_{k, \lambda}(\alpha, \tau)$中.

定义C[8] 设函数$f(z)\in H_k$, 若存在函数$g(z)\in V_{k, \lambda}(\alpha, \tau)$, 使得

${\hbox{Re}} \frac{L(2, 1)L(\lambda+1, 1)f(z)}{L(\lambda+1, 1)g(z)}>\eta (0\leq \eta<1, z\in U), $

则称$f(z)$属于$Q_{k, \lambda}(\alpha, \tau, \eta)$中.

文[6]中利用算子$L_{\lambda, \mu}$研究函数类$K(\lambda, \mu)(\tau)$的性质, 得到类中函数的包含关系、偏差定理, 给出了类中函数的系数不等式和Hadamard乘积性质;作者在文[7]中引进并讨论函数类

$Q_{1, \lambda}\Big(\alpha, (\lambda+\tau)/(\lambda+1), (\lambda+\eta)/(\lambda+1)\Big)$

的性质, 在文[8]中进一步推广文献[7]中函数类, 利用算子理论研究函数类的$Q_{k, \lambda}(\alpha, \tau, \eta)$性质, 得到类中函数的积分表达式, 偏差定理, 给出了类中函数的近于凸半径和卷积性质.

本文中利用算子$L_{\lambda, \mu}$引进如下函数类:

定义1 若函数$f(z)\in H_k$满足条件

${\rm{Re}}\{ (1 - \alpha )\frac{{{L_{\lambda, \mu }}f(z)}}{z} + \alpha ({L_{\lambda, \mu }}f(z))'\} < \beta (\alpha \ge 0, \beta > 1, z \in U), {\rm{ }}$ (1.9)

则称$f(z)$属于$\bar{V}_{k, \lambda, \mu}(\alpha, \beta)$中.

定义2 设函数$f(z)\in H_k$, 若存在函数$g(z)\in \bar{V}_{k, \lambda, \mu}(\alpha, \beta)$, 使得

${\rm{Re}}\frac{{z({L_{\lambda, \mu }}f(z))'}}{{{L_{\lambda, \mu }}g(z)}} < \rho (\rho > 1, z \in U), {\rm{ }}$ (1.10)

则称$f(z)$属于$\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$中.显然

$\begin{array}{l} {{\bar Q}_{k, 0, 2}}(\alpha, \beta, \rho ) = \{ f(z) \in {H_k}:\exists g(z) \in {{\bar V}_{k, 0, 2}}(\alpha, \beta ), {\rm{Re}}\frac{{zf'(z)}}{{g(z)}} < \rho, z \in U\}, \\ {{\bar Q}_{k, 1, 2}}(\alpha, \beta, \rho ) = \{ f(z) \in {H_k}:\exists g(z) \in {{\bar V}_{k, 1, 2}}(\alpha, \beta ), {\rm{Re}}\frac{{{{(zf'(z))}^\prime }}}{{g'(z)}} < \rho, z \in U\} . \end{array}$

本文研究函数类$\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$, 导出类中函数的积分表达式;借助算子理论建立该类中函数的偏差定理, 讨论类中函数的卷积性质和近于凸半径.

利用算子(1.7) 式, 可将(1.8) 是和(1.9) 式写成

${\rm{Re}}\{ (1 - \alpha )\frac{{L(\mu, \lambda + 1)f(z)}}{z} + \alpha \frac{{L(2, 1)L(\lambda + 1, 1)f(z)}}{z}\} < \beta, (\alpha \ge 0, \beta > 1, z \in U)$ (1.11)

${\rm{Re}}\frac{{L(2, 1)L(\mu, \lambda + 1)f(z)}}{{L(\mu, \lambda + 1)g(z)}} < \rho, z \in U.$ (1.12)
2 积分表达式

引理2.1 设$p(z)\in \bar{P}_{k}(\beta) (\beta>1)$, 则存在$X=\{ x:|x|=1\}$上连续的概率测度$\mu(x)$, 使得

$p(z) = \int_{|x| = 1} {\frac{{1 - (2\rho - 1)xz}}{{1 - xz}}} d\mu (x).{\rm{ }}$ (2.1)

 由$p(z)\in \bar{P}_k(\beta)$可知, Re$\Big(\frac{\beta-p(z)}{\beta-1}\Big)>0$, 利用正实部函数的Herglots表示公式[9]

$\frac{\beta-p(z)}{\beta-1}=\int_{|x|=1}\frac{1+xz}{1-xz}d \mu(x).$

由此推出(2.1) 式成立.

利用引理2.1, 结合算子$L_{\lambda, \mu}$的可逆性, 用文[8]中相同的方法不难证明:

定理2.1 设$\alpha>0, \beta>1$, 若$g(z)\in \bar{V}_{k, \lambda}(\alpha, \beta)$, 则存在$X=\{ x:|x|=1\}$上连续的概率密度$\eta(x)$, 使得

$g(z) = L(\lambda + 1, \mu )\{ \frac{1}{{\alpha {z^{\frac{1}{\alpha } - 1}}}}\int_0^z {{t^{\frac{1}{\alpha } - 1}}} [\int_{|x| = 1} {\frac{{1-(2\beta-1)tx}}{{1-tx}}} d\eta (x)]dt\} {\rm{ }}$ (2.2)

或存在$p(z)\in \bar{P}_k(\beta)$, 使得$g(z)=L(\lambda+1, \mu)\Big\{\frac{1}{\alpha z^{\frac{1}{\alpha}-1}}\int_0^z t^{\frac{1}{\alpha}-1}p(t)dt\Big\}.$对于固定的$\lambda, \alpha, \beta$, 函数类$\bar{V}_{k, \lambda, \mu}(\alpha, \beta)$$X$上左连续的概率测度连续点$\eta(x)$以上述关系构成一一对应.

定理2.2 函数$f(z)\in \bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$当且仅当存在$X=\{x:|x|=1\}$上左连续的概率测度$\eta(x)$, $\mu(x)$, 使得

$\begin{array}{l} f(z) = L(\lambda + 1, \mu )L(1, 2)\{ [\frac{1}{{\alpha {z^{\frac{1}{\alpha }-1}}}}\int_0^z {{t^{\frac{1}{\alpha }-1}}} (\int_{|x| = 1} {\frac{{1-(2\beta - 1)tx}}{{1 - tx}}} d\eta (x))dt]\\ [\int_{|x| = 1} {\frac{{1-(2\rho-1)xt}}{{1-xt}}} d\eta (x)]\} . \end{array}$ (2.3)

$\lambda=0, \mu=1$时,

$\begin{array}{l} f(z) = L(1, 2)\{ [\frac{1}{{\alpha {z^{\frac{1}{\alpha }-1}}}}\int_0^z {{t^{\frac{1}{\alpha }-1}}} (\int_{|x| = 1} {\frac{{1-(2\beta - 1)tx}}{{1 - tx}}} d\eta (x))dt]\\ [\int_{|x| = 1} {\frac{{1-(2\rho-1)tx}}{{1-tx}}} d\mu (x)]\} . \end{array}$ (2.4)

对于固定的$\lambda, \alpha, \mu, \rho$, 函数类$\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$$X$上左连续的概率测度点$\Big\{\Big (\eta(x), \mu(x)\Big)\Big\}$以上述关系式(2.3) 构成一一对应.

 设$f(z)\in\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$, 则存在$g(z)\in \bar{V}_{k, \lambda, \mu}(\alpha, \beta)$, 使得

${\hbox{Re}} \frac{L(2, 1)L(\mu, \lambda+1)f(z)}{L(\mu, \lambda+1)g(z)}<\rho, z\in U.$

由定理1, 可得

$g(z) = L(\lambda + 1, \mu )\{ \frac{1}{{\alpha {z^{\frac{1}{\alpha } - 1}}}}\int_0^z {{t^{\frac{1}{\alpha } - 1}}} [\int_{|x| = 1} {\frac{{1-(2\beta-1)tx}}{{1-tx}}} d\eta (x)]dt\}, {\rm{ }}$ (2.5)

其中$\eta(x)$$X$上左连续的概率测度.

由引理2.1得

$\frac{{L(2, 1)L(\mu, \lambda + 1)f(z)}}{{L(\mu, \lambda + 1)g(z)}} = \int_{|x| = 1} {\frac{{1 - (2\rho - 1)xz}}{{1 - xz}}} d\mu (x), $ (2.6)

其中$\mu(x)$$X$上左连续的概率测度.

由(2.5), (2.6) 两式推出

$\begin{array}{l} L(2, 1)L(\mu, \lambda + 1)f(z) = \{ [\frac{1}{{\alpha {z^{\frac{1}{\alpha }-1}}}}\int_0^z {{t^{\frac{1}{\alpha }-1}}} (\int_{|x| = 1} {\frac{{1-(2\beta - 1)tx}}{{1 - tx}}} d\eta (x))dt]\\ [\int_{|x| = 1} {\frac{{1-(2\rho-1)zx}}{{1-zx}}} d\mu (x)]\} . \end{array}$

利用$L(\mu, \lambda+1)$算子的可逆性, 从上式即得(2.3) 式, 反之亦然;当$\lambda=0$时, (2.3) 式变为(2.4) 式.对于固定的$\lambda, \mu, \alpha, \beta, \rho$, 因$\big\{\big(\eta(x), \mu(x)\big)\big\}$$\bar{P}_k\times\bar{P}_k$之间构成一一对应, 而$\bar{P}_k\times\bar{P}_k$与函数类$\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$之间也是一一对应, 这表明定理的后一个结论为真.

3 偏差定理

引理3.1[10] 设$p(z)=1+p_kz^k+\cdots\in P_k(0)(z\in U, k\geq1)$, 则对$|z|=r<1$, 有

$\frac{{1 - {r^k}}}{{1 + {r^k}}} \le {\rm{Re}}p(z) \le |p(z)| \le \frac{{1 + {r^k}}}{{1 - {r^k}}}.$

若Re $p(z)<\beta(\beta>1)$, 置$q(z)=\frac{\beta-p(z)}{\beta-1}$, 则Re $q(z)>0$, 且$p(z)=\beta-(\beta-1)q(z)$, 于是由引理3.1推出

引理3.2 设$p(z)=1+p_kz^k+\cdots\in\bar{P}_k(\beta>1, z\in U, k\geq1)$, 则对$|z|=r<1$, 有

$\frac{{1 - (2\beta - 1){r^k}}}{{1 - {r^k}}} \le {\rm{Re}}p(z) \le |p(z)| \le \frac{{1 + (2\beta - 1){r^k}}}{{1 + {r^k}}}.{\rm{ }}$

定理3.1 设$\alpha>0, \beta>1, \rho>1, f(z)\in\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$, 则对$|z|=r<1$, 有

$\begin{array}{l} \frac{{1 - (2\rho - 1){r^k}}}{{\alpha (1 - {r^k})}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){{(rt)}^k}}}{{1 - {{(rt)}^k}}}dt \le |L(2, 1)L(\mu, \lambda + 1)f(z)|\\ \le \frac{{1 + (2\rho - 1){r^k}}}{{\alpha (1 + {r^k})}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 + (2\beta - 1){{(rt)}^k}}}{{1 + {{(rt)}^k}}}dt. \end{array}$ (3.1)

 设$f(z)\in \bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$, 则存在$g(z)\in\bar{V}_{k, \lambda, \mu}(\alpha, \beta)$, 使得

$ {\hbox{Re}} \frac{L(2, 1)L(\mu, \lambda+1)f(z)}{L(\mu, \lambda+1)g(z)}<\rho, z\in U.$

$ \frac{L(2, 1)L(\mu, \lambda+1)f(z)}{L(\mu, \lambda+1)g(z)}=q(z), z\in U, $

则Re$ q(z)<\rho$.

首先证明$|L(\mu, \lambda+1)g(z)|$的偏差性质, 因$g(z)\in \bar{V}_{k, \lambda, \mu}(\alpha, \beta)$存在Re $p(z)<\beta$.由引理3.2, 有

$\begin{array}{l} |L(\mu, \lambda + 1)g(z)|\; \ge \;{\rm{Re}}(L(\mu, \lambda + 1)g(z)) = {\rm{Re}}\{ \frac{1}{{\alpha {z^{\frac{1}{\alpha } - 1}}}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){{(rt)}^k}}}{{1 - {{(rt)}^k}}}dt\} \\ > \frac{1}{\alpha }\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){t^k}}}{{1 - {t^k}}}dt, \end{array}$ (3.2)
$\begin{array}{l} |L(\mu, \lambda + 1)g(z)|\; = \;|\{ \frac{1}{{\alpha {z^{\frac{1}{\alpha } - 1}}}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} p(t)dt\} | \le \frac{1}{\alpha }\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} |p(zt)|dt\\ \le \frac{1}{\alpha }\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 + (2\beta - 1){{(rt)}^k}}}{{1 + {{(rt)}^k}}}dt. \end{array}$ (3.3)

因为

$L(2, 1)L(\mu, \lambda+1)f(z)=q(z)L(\mu, \lambda+1)g(z), z\in U, $

$|L(2, 1)L(\mu, \lambda + 1)f(z)| = |q(z)L(\lambda + 1, 1)g(z)|, z \in U, $ (3.4)

由(3.2), (3.3) 式和引理3.2以及引理2.1, 得到

$\begin{array}{l} \frac{{1 - (2\rho - 1){r^k}}}{{\alpha (1 - {r^k})}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){{(rt)}^k}}}{{1 - {{(rt)}^k}}}dt \le |q(z) \cdot L(\mu, \lambda + 1)g(z)|\\ \le \frac{{1 + (2\rho - 1){r^k}}}{{\alpha (1 + {r^k})}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 + (2\beta - 1){{(rt)}^k}}}{{1 + {{(rt)}^k}}}dt, \end{array}$

再利用(3.4) 式即得(3.1) 式.证毕

对函数

$f(z) = L(\lambda + 1, \mu )L(1, 2)\{ \frac{{1 - (2\rho - 1){z^k}}}{{\alpha (1 - {z^k}){z^{\frac{1}{\alpha } - 1}}}}\int_0^z {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){t^k}}}{{1 - {t^k}}}dt\} {\rm{ }}$ (3.5)

分别取$z=re^{i\frac{\pi}{k}}, z=r$时不等式(3.1) 式的等号成立.

4 卷积

引理4.1[11] 设$\varphi(z), g(z)$$U$内解析, 满足$\varphi(0)=h(0), \varphi'(0)\neq0, h'(0)\neq0$, 并且对每个适合$|\sigma|=|\tau|=1$的复数$\sigma, \tau$, 有

$\varphi(x)*\frac{1+\tau\sigma z}{1-\sigma z}h(z)\neq0(0<|z|<1).$

$F(z)$$U$内解析, 且Re $F(z)>0(0<|z|<1)$, 则

${\hbox{Re}} \Big\{\frac{\varphi*\big(F(z)h(z)\big)}{\varphi*h(z)}\Big\}>0 (0<|z|<1).$

定理4.1 设$\sigma, \tau$满足$|\sigma|=|\tau|=1$的复数,

$f(z)\in\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho), \phi(z)=z+\sum\limits_{n=k}^{\infty}\alpha_{k+1}z^{k+1}$

$U$内解析, 且$\varphi(z)*\frac{1+\tau\sigma z}{1-\sigma }z\neq0 (0<|z|<1), $$f*\phi(z)\in\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$.

 (i)先证明$g*\phi(z)\in \bar{V}_{k, \lambda, \mu}(\alpha, \beta)$.设

$F(z)=\beta-[(1-\alpha)\frac{L(\mu, \lambda+1)g(z)}{z}+\alpha \frac {L(2, 1)L(\lambda+1, 1)g(z)}{z}], h(z)=z, $

$F(z)$$U$内解析, 且Re$F(z)>0(z\in U), \varphi*h(z)=z.$

由于

$\begin{array}{l} \varphi *Fh(z) = \varphi (z)*[\beta z-((1-\alpha )L(\mu, \lambda + 1)g(z) + \alpha L(2, 1)L(\mu, \lambda + 1)g(z))]\\ = \beta z - [(1-\alpha )\varphi *L(\mu, \lambda + 1)g(z) + \alpha \varphi *L(2, 1)L(\mu, \lambda + 1)g(z)]\\ = \beta z - [(1-\alpha )L(\mu, \lambda + 1)(\varphi *g)(z) + \alpha L(2, 1)L(\mu, \lambda + 1)(\varphi *g)(z)]. \end{array}$ (4.1)

利用引理4.1, 得

$\begin{array}{l} {\rm{Re}}\{ \frac{{\varphi *(F(z)h(z))}}{{\varphi *h(z)}}\} = \beta - {\rm{Re}}\{ (1 - \alpha )\frac{{L(\mu, \lambda + 1)(\phi *g)(z)}}{z}\\ + \alpha \frac{{L(2, 1)L(\mu, \lambda + 1)(\varphi *g)(z)}}{z}\} > 0. \end{array}$ (4.2)

${\hbox{Re}} \Big\{(1-\alpha)\frac{L(\mu, \lambda+1)(\varphi*g)(z)}{z}+\alpha \frac{L(2, 1)L(\mu, \lambda+1)(\varphi*g)(z)}{z} \Big\}<\beta(z\in U), $

从而$g*\phi(z)\in \bar{V}_{k, \lambda, \mu}(\alpha, \beta)$.

(ii)下面要证明$f*\varphi(z)\in \bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$, 设$f(z)\in \bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$.

$p(z) = \rho - \frac{{L(2, 1)L(\mu, \lambda + 1)f(z)}}{{L(\mu, \lambda + 1)g(z)}}, h(z) = z, $

$p(z)$$U$内解析, 且Re$(p(z)>0)(z\in U), \varphi*h(z)=z$.由于

$\phi *L(\mu, \lambda + 1)g(z) \cdot p(z) = \rho \phi *L(\mu, \lambda + 1)g(z) - \phi *L(2, 1)L(\mu, \lambda + 1)f(z), $ (4.3)

注意到

$\begin{array}{l} \phi *L(\mu, \lambda + 1)g(z) = L(\mu, \lambda + 1)(\phi *g)(z), \\ \phi *L(2, 1)L(\mu, \lambda + 1)f(z) = L(2, 1)L(\mu, \lambda + 1)(\phi *f)(z). \end{array}$

由(4.3) 式得到

${\rm{Re}}p(z) = {\rm{Re}}\{ \frac{{L(2, 1)L(\mu, \lambda + 1)(\phi *f)(z)}}{{L(\mu, \lambda + 1)(\phi *g)(z)}}\} < \rho, $

其中由(i)可知$\phi *{\rm{ g(z)}} \in {\overline V _{k,\lambda ,\mu }}(\alpha ,\beta )$.故$f*\varphi(z)\in\bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$.

5 半径问题

从引理3.2得到函数类$\bar{P}_k(\beta)$$P_k(\tau)(0\leq\tau<1)$的包含关系.

引理5.1设 $\beta>1, z\in U, k \in N, p(z)=1+p_kz^k+\cdots\in\bar{P}_k(\beta)$, 则对$|z|=r<r_1$, 有

${\rm{Re}}p(z) \ge \frac{{1-(2\beta-1){r^k}}}{{1-{r^k}}} > 0(或p(z) \in {P_k}(0)),$ (5.1)

其中

${r_1} = \mathop {\inf }\limits_{k \ge 1} \{ \frac{1}{{\sqrt[k]{{2\beta - 1}}}}\} .$ (5.2)

$P_{\tau, k}=\Big\{p(z)=1+p_kz^k+\cdots:p(z)\text{在}U \text{内解析且}|p(z)-\frac{1}{2\tau}|\leq\frac{1}{2\tau} \Big\} (0\leq\tau<1).$

由文[12]给出$P_{\tau, k}$$P_k(\tau)$一种关系.

$q(z)=\frac{1}{p(z)}, p(z)\in P_{\tau, k}$, 则$q(z)\in P_k(\tau)$

$\begin{array}{l} \frac{{q'(z)}}{{q(z)}} = - \frac{{p'(z)}}{{p(z)}}, \\ |\frac{{p'(z)}}{{p(z)}}| \le \frac{{2k(1 - \tau )|z{|^{k - 1}}}}{{(1 - |z{|^k})(1 + (1 - 2\tau )|z{|^k})}}(z \in U). \end{array}$ (5.3)

引理5.2[12] 设$p(z)\in P_{\tau, k}(0\leq\tau<1)$, 则

$\Big| \frac{p'(z)}{p(z)}\Big|\leq\frac{2k(1-\tau)|z|^{k-1}}{(1-|z|^{k})(1+(1-2\tau)|z|^k)} (z\in U).$

利用(5.3) 式和引理5.2容易推出

引理5.3 设$q(z)\in P_k(\tau)(0\leq\tau<1)$, 则对$|z|=r<1$, 有

$|\frac{{zq'(z)}}{{q(z)}}| \le \frac{{2k(1 - \tau ){r^k}}}{{(1 - {r^k})(1 + (1 - 2\tau ){r^k})}}(z \in U).$ (5.4)

定理5.1 设$\alpha>0, \beta>1, \rho>1, k\geq2, f(z)\in \bar{Q}_{k, \lambda, \mu}(\alpha, \beta, \rho)$, 则函数$L(\mu, \lambda+1)f(z)$$|z|<R=\min\{ r_1, r_2\}$内是属于$\bar{C}M_k(\rho)$, $r_1$由(5.2) 式确定, $r_2$为方程

$(\rho - 1) - 2[m(\rho-1) + k(1-m)]{r^k} - (\rho - 1)(1 - 2m){r^{2k}} = 0$ (5.5)

的最小正跟, 其中

$m = \frac{1}{\alpha }\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){r^k}}}{{1 - {r^k}}}dt \in (0, 1).$ (5.6)

 设$f(z)\in\bar{Q}_{k, \lambda, \rho}(\alpha, \beta, \mu)$, 存在函数$g(z)\in\bar{V}_{k, \lambda, \mu}(\alpha, \beta)$.

下面只要证明$L(\mu, \lambda+1)g(z)$$|z|<R$内属于$M_k(\rho)$即可.令

$F(z) = \frac{{L(\mu, \lambda + 1)g(z)}}{z}, $ (5.7)

$F(z)$$U$内解析.若$g(z)\in\bar{V}_{k, \lambda, \mu}(\alpha, \beta)$, 则利用定理2.1和引理5.1, 存在$ p(z)\in\bar{P}_k(\beta)$, 使得

$\begin{array}{l} {\rm{Re}}F(z) = {\rm{ Re}}[\frac{{L(\mu, \lambda + 1)g(z)}}{z}] = {\rm{ Re}}\{ \frac{1}{{\alpha {z^{\frac{1}{\alpha }}}}}\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} p(t)dt\} \\ > m = \frac{1}{\alpha }\int_0^1 {{t^{\frac{1}{\alpha } - 1}}} \frac{{1 - (2\beta - 1){r^k}}}{{1 - {r^k}}}dt. \end{array}$ (5.8)

利用(5.7) 和(5.8) 式和引理5.3, 得到

$\begin{array}{l} {\rm{Re}}\{ \frac{{z{{(L(\lambda + 1, \mu )g(z))}^\prime }}}{{L(\lambda + 1, \mu )g(z)}}\} = 1 + {\rm{ Re}}\frac{{zF'(z)}}{{F(z)}} \le 1 + |\frac{{zF'(z)}}{{F(z)}}|\\ \le \frac{{(1 - {r^k})(1 + (1 - 2m){r^k}) + 2k(1 - m){r^k}}}{{(1 - {r^k})(1 + (1 - 2m){r^k})}}. \end{array}$

$\frac{{(1 - {r^k})(1 + (1 - 2m){r^k}) + 2k(1 - m){r^k}}}{{(1 - {r^k})(1 + (1 - 2m){r^k})}} < \rho, $ (5.9)

${\rm{ Re}}\{ \frac{{z{{(L(\lambda + 1, \mu )g(z))}^\prime }}}{{L(\lambda + 1, \mu )g(z)}}\} < \rho, $

(5.8) 式等价于

$\frac{{(\rho - 1) - [m(\rho-1) + k(1-m)]{r^k} - (\rho - 1)(1 - 2m){r^{2k}}}}{{(1 - {r^k})(1 + (1 - 2m){r^k})}} > 0.$ (5.10)

$\varphi(r)=(\rho-1)-2[m(\rho-1)+k(1-m)]r^k-(\rho-1)(1-2m)r^{2k}$, 则$\varphi(r)$$[0, 1]$内连续, 且$\varphi(0)=\rho-1>0$, $\varphi(1)=-2k(1-m)<0$, 所以方程(5.5) 的最小正根$r_2$$(0, 1)$内, 取$R=\min\{r_1, r_2 \}$, 则函数$L(\mu, \lambda+1)g(z)$$M_k(\rho)$内属于, 由此推出$L(\mu, \lambda+1)f(z)$$|z|<R$内属于$\bar{C}M_k(\rho)$.

 在定理(2.1) 至定理(5.1) 中分别取$\lambda=0, \lambda=1$时, 就得到函数类$\bar{Q}_{k, 0, 2}(\alpha, \beta, \rho)$$\bar{Q}_{k, 1, 2}(\alpha, \beta, \rho)$中函数的相应的结果.

参考文献
[1] Uralegaddi B A, Ganigi M D, Sarangi S M. Univalent functions with positive oefficients[J]. Tamkang J. Math., 1994, 5(3): 225–230.
[2] Junichi Nishiwaki, Shigeyoshi Owa. Coefficient inequalities for certain analytic functions[J]. IJMMS, 2002, 29(5): 285–290.
[3] Owa S, Nishiwaki J. Coefficient estimates for certain classes of analytic functions[J]. J. Inequal. Pure Appl. Math., 2002, 3: 1–5.
[4] Carlson B C, Shaffer D B. Shaffers starlike and prestarlike hypergeometric functions[J]. SIAM J. Math. Anal., 1984, 15: 737–745. DOI:10.1137/0515057
[5] Choi J H, Saigo M, Srivastava H M. Some inclusion properties of a certain family of integral operators[J]. J. Math. Anal. Appl., 2002, 276: 432–445. DOI:10.1016/S0022-247X(02)00500-0
[6] Ling Yi, Liu Fengshan. The Choi-Saigo-Srivastava integral operator and a class of analytic func-tions[J]. Appl. Math. Comp., 2005, 165: 613–621. DOI:10.1016/j.amc.2004.04.031
[7] 李书海, 木林. 有关近于凸函数的一族解析函数[J]. 数学杂志, 2005, 25(4): 428–434.
[8] Li Shuhai, DaI Jinjun, Tang Huo. On a class of analytic functions defined by ruscheweyh deriva-tives[J]. J. Math. Research Exposition, 2009, 29(6): 1095–1101.
[9] Duren P L. Univalent functions[M]. Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo: Springer-Verlag, 1983.
[10] Macgregor T H. Functions whose derivative has a positive real part[J]. Trans. Amer. Math. Soc., 1962, 104: 532–537. DOI:10.1090/S0002-9947-1962-0140674-7
[11] Ruscheweyh St, Sheil-Small. Hadamard Products of schlicht functions and the polya-shoenbehy conjecture[J]. Comment. Math. Helv., 1973, 48: 119–135. DOI:10.1007/BF02566116
[12] Shaffer D B. Distortion theorem for special classes of analytic functions[J]. Proc. AMS, 1973, 39(2): 281–287. DOI:10.1090/S0002-9939-1973-0315113-6
[13] Liu Mingsheng, Zhu Yucan. The extension operator in Banach speces for locally biholomorphic mappings[J]. Acta Mathematica Scientia, 2008, 28.
[14] Rosihan M Ali, Naveen K, Jain V. R. Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane[J]. Applied Mathematics and Computation, 2012, 218(11): 6557–6565. DOI:10.1016/j.amc.2011.12.033