数学杂志  2015, Vol. 35 Issue (5): 1166-1174   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
关全文
秦永松
$\phi$-混合样本下有限个分位数估计的联合渐近分布
关全文, 秦永松    
浙江师范大学数理与信息工程学院, 浙江 金华 321004
摘要:本文研究了$\phi$-混合样本下总体的有限个分位数核估计的渐近性质.利用分块技术证明了$\phi$-混合样本下总体的有限个分位数核估计的联合渐近分布为多元正态分布, 推广了文献[16]的相关结果.
关键词$\phi$-混合样本    分位数    核估计    联合分布    
JOINT ASYMPTOTIC DISTRIBUTION FOR A FINITE NUMBER OF QUANTILES UNDER Φ-MIXING SAMPLES
GUAN Quan-wen, QIN Yong-song    
College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
Abstract: This paper investigates the asymptotic behavior for the kernel-type estimates of a finite number of quantiles under $\phi$-mixing samples. By using the block-wise technique, We obtain that the joint distribution of the kernel-type estimates of a finite number of quantiles under $\phi$-mixing samples is asymptotically multivariate normal distributions, which improve the results of Cai and Roussa [16].
Key words: $\phi$-mixing samples     quantile     kernel-type estimate     joint distributions    
1 引言

定义1 称随机变量序列$\{{{\eta }_{i}};i\ge 1\}~$$\phi$-混合序列, 如果当$n\rightarrow\infty$时, 有

$\phi (n) = \mathop {\sup }\limits_{k \ge 1} \left\{ {\left| {\frac{{P(AB)}}{{P(A)}} - P(B)} \right|:A \in F_1^k, B \in F_{k + n}^\infty, P(A) > 0} \right\} \downarrow 0, $

其中${\cal{F}}^t_s$表示由$\{\eta_i, ~s\leq i\leq t\}$生成的$\sigma$ -域, 且称$\phi(n)$$\phi$ -混合系数.

1959年, Ibragimov[1]首次提出了$\phi$ -混合条件, 同时Cogburn[2]进行了相关研究, 发现$\phi$ -混合的概念可作为弱相关的衡量尺度应用于时间序列的研究中. Bradley[3]给出了一个较好的$\phi$ -混合条件以及其它常用混合条件的综述.由于$\phi$ -混合序列应用广泛, Utev[4], Chen[5], Herrndorf[6], Peligrad[7], Sen[8, 9], Shao[10]和Wang[11]等都对$\phi$ -混合随机变量序列的极限理论进行了深入研究.

1964年, Nadaraya[12]首先提出了分位数的核估计. Yamato[13], Parzen[14]和Ralescu[15]等对分位数核估计进行了深入研究, 但他们研究的都是独立情形.

本文研究$\phi$ -混合样本下总体的有限个分位数核估计的联合渐近分布, 主要结果在第二部分, 一些相关引理及其证明在第三部分, 主要结果的证明在第四部分.

2 主要结果

$X_1, X_2, \cdots, X_n$是一列$\phi$ -混合随机变量, 混合系数为$\phi$且该样本对应的总体的分布函数为$F$.分布函数$F(x)$$x\in{R}$的光滑核估计为$\hat{F}_n(x)=\frac{1}{n}\sum\limits_{j=1}^nK(\frac{x-X_j}{h_n}), $其中$K$为核函数, $h=h_n$为窗宽.

样本分位数$\xi_\gamma=F^{-1}(\gamma)=\inf\{x\in{R}:F(x)\geq{\gamma}\} (0<\gamma<1)$的光滑核估计为

$\hat{\xi}_{\gamma n}=\hat{F}_n^{-1}(\gamma)=\inf\{x\in{R}, \hat{F}_n(x)\geq{\gamma}\}.$

$p\leq n, q\leq n$为正整数序列, $k=[n/(p+q)]$ (此处[]表示取整).为了获得有限个分位数$\xi_{\gamma_i}(1\leq{i}\leq{k})$的核估计的联合渐近分布, 需要以下假设条件:

(A1) (i) $X_1, X_2, \cdots, X_n$是强平稳的随机变量序列, 该样本对应的总体的分布函数为$F$, 密度函数$f$有界.

(ii) $\{X_i, i\geq1\}$$\phi$ -混合的且$\sum\limits_{n=1}^{\infty}\phi^{1/2}(n)<\infty$.

(iii) 设$f_{1, j}$为随机变量$X_1, X_{j+1}$的联合分布函数, 则对任意$u, v\in R$都有

$|f_{1, j}(u, v)-f(u)f(v)|\leq C (j>1).$

(iv)  $F^{\prime\prime}(x)$是有界的且$f(\xi_\gamma)>0(0<\gamma<1)$.

(A2) 核函数$K$是有界的且$\int_RudK(u)=0, \int_Ru^2dK(u)<\infty.$

(A3) 窗宽序列$h=h_n ( n\geq1 )$满足$0<h\rightarrow0, nh\rightarrow\infty $$nh^4\rightarrow0$.

(A4) $p, q$$k$满足

(i)$pk/n\to 1$; (ii) $ph\to \infty$; (iii) $q\to \infty$$k\to \infty$; (iv) $k\phi(q)\to 0$.

注1 假设条件和下文中的所有极限都是在$n\to \infty$的条件下取得的.

注2 由$pk/n\to 1$可推出$qk/n\to 0$$q/p\to 0$.由$0\leq n-k(p+q)\leq p+q$$q/p\to 0$可推出$0\leq n-k(p+q)\leq Cp$.下文将会用到这些结论, 不再特别说明.

定理2.1  设$\{X_n, n\geq1\}$$\phi$ -混合随机样本序列且满足条件(A1)--(A4), $ 0< \gamma_1<\gamma_2<\cdots<\gamma_k<1$.则当$n\to \infty$时, 有

$\sqrt{n}( f(\xi_{\gamma_1})(\hat{\xi}_{\gamma_1n}-\xi_{\gamma_1}), f(\xi_{\gamma_2})(\hat{\xi}_{\gamma_2n}-\xi_{\gamma_2}), \cdots, f(\xi_{\gamma_k})(\hat{\xi}_{\gamma_kn}-\xi_{\gamma_k}))^\prime \stackrel{d}{\longrightarrow} N_k(0, V), $

其中$V=(\sigma_{(st)}) (s, t=1, 2, \cdots, k)$,

${\sigma _{(ss)}}\; = \;{\gamma _s}(1 - {\gamma _s}) + \sum\limits_{j = 1}^{ + \infty } {\{ 2P(} {X_1} < {\xi _{{\gamma _s}}}, {X_{j + 1}} < {\xi _{{\gamma _s}}}) - 2\gamma _s^2\} (s = 1, 2, \cdots, k), \\{\sigma _{(st)}}\; = \;{\sigma _{(ts)}} = {\gamma _s}(1 - {\gamma _t}) + \sum\limits_{j = 1}^{ + \infty } {\{ P(} {X_1} < {\xi _{{\gamma _s}}}, {X_{j + 1}} < {\xi _{{\gamma _t}}})\\\quad \quad + P({X_1} < {\xi _{{\gamma _t}}}, {X_{j + 1}} < {\xi _{{\gamma _s}}}) - 2{\gamma _s}{\gamma _t}\} (1 \le s < t \le k).$
3 相关引理

为了证明主要结果, 需要以下引理.在以下引理中用$C$表示一个不依赖于$n$的充分大的数, 在不同情况下可以取不同值.

引理3.1 假设$\{\eta_j: j\geq 1\}$$\phi$ -混合序列, 混合系数为$\phi(n)$, ${\cal{F}}^t_s$表示由$\{\eta_i, s\leq i\leq t\}$ $(s\leq t)$序列生成的$\sigma$ -域.若$\{f_j(\cdot), j\geq 1\}$都为可测函数, $\{\xi_i(\cdot), i\geq 1\}$${\cal{F}}^{j_1}_{i_1}, \cdots, {\cal{F}}^{j_n}_{i_n}, \cdots$可测的, 分别满足$1\leq i_1<j_1<i_2\cdots<j_n<\cdots$, 则$\{f_j(\eta_j): j\geq 1\}$$\phi$ -混合序列, 且混合系数满足$\phi_1(n)\leq \phi(n)$, $\{\xi_j: j\geq 1\}$也是一个$\phi$ -混合序列, 其混合系数满足$\phi_2(n)\leq \phi(n)$.

 通过$\phi$ -混合随机变量序列的定义可直接证明.

引理3.2 [11] 假设$\{\eta_j: j\geq 1\}$$\phi$ -混合序列, 其混合系数为$\phi(n)$, ${\cal{F}}^t_s$表示由$\{\eta_i, s\leq i\leq t\}$ $(s\leq t)$序列生成的$\sigma$ -域.如果$\xi_1 \in {\cal{F}}^k_1$, $\xi_2 \in {\cal{F}}^{\infty}_{k+n}$$k\geq 1$, $E|\xi_1|^{p_1}<\infty$, $E|\xi_2|^{p_2}<\infty$, 其中$p_1$$q_1$满足$p_1>1, q_1>1, 1/p_1+1/q_1=1$.则

$|E(\xi_1\xi_2)-(E\xi_1)(E\xi_2)|\leq 2\phi^{1/p_1}(n)(E|\xi_1|^{p_1})^{1/p_1}(E|\xi_2|^{q_1})^{1/q_1}.$

见文献Wang[11]的引理1.2.

引理3.3[11] 假定$\{\eta_j: j\geq 1\}$$\phi$ -混合序列, 混合系数为$\phi(n)$, 且$\sum^{\infty}\limits_{n=1}\phi^{1/2}(n)<\infty$, $E\eta_j=0 (j\geq 1)$.假设$E|\eta_j|^{r_0}<\infty$ $(r_0\geq 2, j\geq 1)$.则对于任意$n\geq 1$$a\geq 0$, 有以下式子成立:

$E{(\sum\limits_{i = a + 1}^{a + n} {{\eta _i}} )^2} \le C\sum\limits_{i = a + 1}^{a + n} E \eta _i^2, $ (3.1)
$E|\sum\limits_{i = a + 1}^{a + n} {{\eta _i}} {|^{{r_0}}} \le C\{ {(\sum\limits_{i = a + 1}^{a + n} E \eta _i^2)^{{r_0}/2}} + \sum\limits_{i = a + 1}^{a + n} E |{\eta _i}{|^{{r_0}}}\} .$ (3.2)

 不等式(3.1) 来自于Wang[11]的定理2.1.

$\max\limits_{1\leq j\leq n}|\sum\limits^{a+j}_{i=a+1}\eta_i|^{r_0}\geq {|\sum\limits^{a+n}_{i=a+1}\eta_i|^{r_0}}, \max\limits_{1\leq i\leq n}|\eta_{a+i}|^{r_0}\leq{\sum\limits^{a+n}_{i=a+1}|\eta_i|^{r_0}}$, 不等式(3.1) 和Wang[11]的引理1.3知不等式(3.2) 成立.

引理3.4[17] 设$\{\eta_i, i\geq 1\}$$\phi$ -混合序列, ${\cal{F}}^t_s$表示由$\{\eta_i, s\leq i\leq t\}$ $(s\leq t)$生成的$\sigma$ -域.如果$\{\xi_i, 1\leq i\leq n\}$${\cal{F}}^{j_1}_{i_1}, \cdots, {\cal{F}}^{j_n}_{i_n}$可测的, 且分别满足$1\leq i_1<j_1<i_2\cdots<j_n, i_{l+1}-j_l\geq m$$|\xi_l|\leq 1$ $(l=1, \cdots, n)$.则

$|E(\prod\limits_{l = 1}^n {{\xi _l}} ) - \prod\limits_{l = 1}^n E ({\xi _l})| \le 8(n - 1)\phi (m).$ (3.3)

证 这结论在$\alpha$ -混合的情形下是成立的, 参见$\mathrm{Volkonkii}$和 Rozanov[17]的引理1.1, 易证此结论在$\phi$ -混合条件下也成立.

引理3.5 设$\{X_n, n\geq1\}$$\phi$ -混合随机样本序列且满足条件(A1)--(A4), $0<\gamma_1<\gamma_2<\cdots<\gamma_k<1$, $y_i\in R, x_{ni}=\xi_{\gamma_i}+\frac{\sigma(\xi_{\gamma_i})y_i}{f(\xi_{\gamma_i})\sqrt{n}} (i=1, 2, \cdots, k)$.则当$n\to \infty$时, 有

$\sqrt{n}(\hat{F_n}(x_{n1})-E\hat{F_n}(x_{n1}), \hat{F_n}(x_{n2})-E\hat{F_n}(x_{n2}), \cdots, \hat{F_n}(x_{nk})-E\hat{F_n}(x_{nk}) )^\prime\stackrel{d}{\longrightarrow} N_k(0, V), $

其中$V=(\sigma_{(st)}) (s, t=1, 2, \cdots, k)$,

${\sigma _{(ss)}}\; = \;{\gamma _s}(1 - {\gamma _s}) + \sum\limits_{j = 1}^{ + \infty } {\{ 2P(} {X_1} < {\xi _{{\gamma _s}}}, {X_{j + 1}} < {\xi _{{\gamma _s}}}) - 2\gamma _s^2\} (s = 1, 2), \\{\sigma _{(st)}}\; = \;{\sigma _{(ts)}} = {\gamma _s}(1 - {\gamma _t}) + \sum\limits_{j = 1}^{ + \infty } {\{ P(} {X_1} < {\xi _{{\gamma _s}}}, {X_{j + 1}} < {\xi _{{\gamma _t}}})\\{\rm{ }}\;\; + P({X_1} < {\xi _{{\gamma _t}}}, {X_{j + 1}} < {\xi _{{\gamma _s}}}) - 2{\gamma _s}{\gamma _t}\} (1 \le s < t \le 2).$

为了证明引理3.5, 只需证明当$k=2$时成立; 当$k>2$时同理可证.下证

$y_n\triangleq\sqrt{n}(\hat{F}_n(x_{n1})-E\hat{F}_n(x_{n1}), \hat{F}_n(x_{n2})-E\hat{F}_n(x_{n2}))^\prime \stackrel{d}{\longrightarrow} N_2(0, V), $ (3.4)

其中$V=(\sigma_{(st)}) (s, t=1, 2)$,

${\sigma _{(ss)}}\; = \;{\gamma _s}(1 - {\gamma _s}) + \sum\limits_{j = 1}^{ + \infty } {\{ 2P(} {X_1} < {\xi _{{\gamma _s}}}, {X_{j + 1}} < {\xi _{{\gamma _s}}}) - 2\gamma _s^2\} (s = 1, 2), \\{\sigma _{(st)}}\; = \;{\sigma _{(ts)}} = {\gamma _s}(1 - {\gamma _t}) + \sum\limits_{j = 1}^{ + \infty } {\{ P(} {X_1} < {\xi _{{\gamma _s}}}, {X_{j + 1}} < {\xi _{{\gamma _t}}})\\\quad \quad + P({X_1} < {\xi _{{\gamma _t}}}, {X_{j + 1}} < {\xi _{{\gamma _s}}}) - 2{\gamma _s}{\gamma _t}\} (1 \le s < t \le 2).$

为证式(3.4), 只需证$\forall a=(a_1, a_2)'\in R^{2}$都有

$a'y_n\stackrel{d}{\longrightarrow} N(0, a'Va).$ (3.5)

${S_n} \buildrel \Delta \over = {a^\prime }{y_n} = {a_1}\sqrt n ({\hat F_n}({x_{n1}}) - E{\hat F_n}({x_{n1}})) + {a_2}\sqrt n ({\hat F_n}({x_{n2}}) - E{\hat F_n}({x_{n2}})){\rm{ }}\\ = \frac{1}{{\sqrt n }}\sum\limits_{i = 1}^n \{ {a_1}[K(\frac{{{x_{n1}}-{X_i}}}{h})-EK(\frac{{{x_{n1}}-{X_i}}}{h})] + {a_2}[K(\frac{{{x_{n2}}-{X_i}}}{h})-EK(\frac{{{x_{n2}}-{X_i}}}{h})]\} \\ = \frac{1}{{\sqrt n }}\sum\limits_{i = 1}^n {({a_1}{Z_{i1}} + {a_2}{Z_{i2}})}, {\rm{ }}$

其中$Z_{i1}\triangleq K(\frac{x_{n1}-X_i}{h})-EK(\frac{x_{n1}-X_i}{h}), Z_{i2}\triangleq K(\frac{x_{n2}-X_i}{h})-EK(\frac{x_{n2}-X_i}{h})$.

再将$S_n$进行分块, 令

$S_n=S_n^\prime+S_n^{\prime\prime}+S_n^{\prime\prime\prime}, S_n^\prime =\sum\limits_{m=1}^k e_{nm}, S_n^{\prime\prime}=\sum\limits_{m=1}^k e_{nm}^\prime, S_n^{\prime\prime\prime}=e_{nm}^{\prime\prime}, \\ e_{nm}=\frac{1}{\sqrt{n}}\sum\limits_{i=r_m}^{r_m+p-1}(a_1Z_{i1}+a_2Z_{i2}), \\ e_{nm}^\prime=\frac{1}{\sqrt{n}}\sum\limits_{i=l_m}^{l_m+q-1}(a_1Z_{i1}+a_2Z_{i2}), e_{nm}^{\prime\prime}=\frac{1}{\sqrt{n}}\sum\limits_{i=k(p+q)+1}^{n}(a_1Z_{i1}+a_2Z_{i2}), $

其中$r_m=(m-1)(p+q)+1, l_m=(m-1)(p+q)+p+1 (m=1, 2, \cdots, k).$

要证式(3.5) 成立, 只需证

$S_n^\prime\stackrel{d}{\longrightarrow} N(0, a^\prime Va), )$ (3.6)
$S_n^{\prime\prime}=o_p(1), $ (3.7)

$S_n^{\prime\prime\prime}=o_p(1), $ (3.8)

同时成立.先证

${\rm{Var}}(S_n^\prime ) = \sum\limits_{m = 1}^k {{\rm{Var}}} ({e_{nm}}) + 2\sum\limits_{1 \le i < j \le k}^{} {{\rm{Cov}}({e_{ni}}, {e_{nj}})} \to {a^\prime }Va.$ (3.9)

由假设条件(A1)(i)知

$\sum\limits_{m=1}^k \mathrm{Var}(e_{nm})=\frac{kp}{n}\mathrm{Var}(a_1Z_{11}+a_2Z_{12})+2\frac{k}{n}\sum\limits_{j=1}^{p-1}(p-j)\mathrm{Cov}(a_1Z_{11}+a_2Z_{12}, a_1Z_{j+1, 1}+a_2Z_{j+1, 2}), $

$0<\gamma_1<\gamma_2<1$和假设条件(A1)(iv)知$\xi_{\gamma_1}<\xi_{\gamma_2}$.又因

$x_{ni}=\xi_{\gamma_i}+\frac{\sigma(\xi_{\gamma_i})y_i}{f(\xi_{\gamma_i})\sqrt{n}}\to \xi_{\gamma_i} (i=1, 2).$

故当$n$充分大时, 有$x_{n1}<x_{n2}$.由假设条件(A1)(i), (A2), (A3), (A4)(i)和文献$\mathrm{Cai}$和Roussas[18]中引理3.1知

$\begin{array}{l} \frac{{kp}}{n}{\rm{Var}}({a_1}{Z_{11}} + {a_2}{Z_{12}}) = \frac{{kp}}{n}[a_1^2{\rm{Var}}({Z_{11}}) + 2{a_1}{a_2}{\rm{Cov}}({Z_{11}},{Z_{12}}) + a_2^2{\rm{Var}}({Z_{12}})]\\ \to a_1^2{\gamma _1}(1 - {\gamma _1}) + 2{a_1}{a_2}{\gamma _1}(1 - {\gamma _2}) + a_2^2{\gamma _2}(1 - {\gamma _2}). \end{array}$

由(A4)(i)(ii), 引理3.2和$\mathrm{Cai}$和Roussas[18]引理3.3中式(3.6) 和(3.7) 知

$\quad \quad 2\frac{{kp}}{n}\sum\limits_{j = 1}^{p - 1} {{\rm{Cov}}} ({a_1}{Z_{11}} + {a_2}{Z_{12}}, {a_1}{Z_{j + 1, 1}} + {a_2}{Z_{j + 1, 2}})\\\quad = \quad 2\frac{{kp}}{n}\sum\limits_{j = 1}^{p - 1} {\{ a_1^2{\rm{Cov}}(} {a_1}{Z_{11}}, {a_1}{Z_{j + 1, 1}}) + {a_1}{a_2}{\rm{Cov}}({a_1}{Z_{11}}, {a_1}{Z_{j + 1, 2}})\\\quad \quad + {a_1}{a_2}{\rm{Cov}}({a_1}{Z_{12}}, {a_1}{Z_{j + 1, 1}}) + a_2^2{\rm{Cov}}({a_1}{Z_{12}}, {a_1}{Z_{j + 1, 2}})\} \\ \to \quad 2{a_1}{a_2}\sum\limits_{i = 1}^\infty {[P({X_1}} < {\xi _{\gamma 1}}, {X_{j + 1}} < {\xi _{\gamma 1}})-\gamma _1^2] + 2{a_1}{a_2}\sum\limits_{i = 1}^\infty {[P({X_1}} < {\xi _{\gamma 1}}, {X_{j + 1}} < {\xi _{\gamma 2}})-\gamma 1\gamma 2]\\\quad \quad + 2a_1^2\sum\limits_{i = 1}^\infty {[P({X_1}} < {\xi _{\gamma 2}}, {X_{j + 1}} < {\xi _{\gamma 1}})-\gamma 1\gamma 2] + 2a_2^2\sum\limits_{i = 1}^\infty {[P({X_1}} < {\xi _{\gamma 2}}, {X_{j + 1}} < {\xi _{\gamma 2}})- \gamma _2^2$

$\frac{k}{n}\sum\limits_{j=1}^{p-1}j\mathrm{Cov}(a_1Z_{11}+a_2Z_{12}, a_1Z_{j+1, 1}+a_2Z_{j+1, 2})\longrightarrow 0$.故

$\sum\limits_{m = 1}^k {{\rm{Var}}} ({e_{nm}}) \to {a^\prime }Va, $ (3.10)

由假设条件(A1)(i), (A4)(i)和引理3.2知

$\quad \quad \sum\limits_{1 \le i < j \le k} | {\rm{Cov}}({e_{ni}}, {e_{nj}})| = \sum\limits_{l = 1}^{k- 1} | (k- i){\rm{Cov}}({e_{n1}}, {e_{n, l + 1}})| \le k\sum\limits_{l = 1}^{k - 1} | {\rm{Cov}}({e_{n1}}, {e_{n, l + 1}})|\\{\rm{ }}\quad \le \quad \frac{{kp}}{n}\sum\limits_{l = 1}^{k - 1} {\sum\limits_{s = l(p + q) - p}^{l(p + q) + p} | } {\rm{Cov}}({a_1}{Z_{11}} + {a_2}{Z_{12}}, {a_1}{Z_{s + 1, 1}} + {a_2}{Z_{s + 1, 2}})| \le \frac{{Ckp}}{n}\sum\limits_{s = q}^\infty {{\phi ^{1/2}}} (s) \to 0.$

由以上两式知(3.9) 式成立.

$i\neq j$时, 由假设条件(A1)(iii)知

$|{\rm{Cov}}({Z_{i1}}, {Z_{j2}})|\quad = \quad {h^2}|\int_{{R^2}} K (u)K(v)\{ {f_{1, j}}({x_{n1}} - hu, {x_{n2}} - hv)\\\quad \quad - f({x_{n1}} - hu)f({x_{n2}} - hv)\} dudv| \le C{h^2}.{\rm{ }}$

同理可证

$\sum\limits_{m = 1}^k {{\rm{Var}}} (e_{nm}^\prime )\;\; = \;\;\frac{{kq}}{n}{\rm{Var}}({a_1}{Z_{11}} + {a_2}{Z_{12}}) + \frac{{2k}}{n}\sum\limits_{1 \le i < j \le q} {{\rm{Cov}}({a_1}{Z_{i1}} + {a_2}{Z_{i2}}, {a_1}{Z_{j1}} + {a_2}{Z_{j2}})} \\ \le \;\;\frac{{Ckq}}{n} + \frac{{Ck{q^2}{h^2}}}{n} \to 0, $

$\;\;\;\;\sum\limits_{1 \le i < j \le k} {|{\rm{Cov}}(e_{ni}^\prime, e_{nj}^\prime )|} = \sum\limits_{l = 1}^{k - 1} {(k - l)} |{\rm{Cov}}(e_{n1}^\prime, e_{n, i + 1}^\prime )| \le k\sum\limits_{i = 1}^{k - 1} | {\rm{Cov}}(e_{n1}^\prime, e_{n, i + 1}^\prime )|\\{\rm{ }}\;\; \le \;\;\frac{{kq}}{n}\sum\limits_{l = 1}^{k - 1} {\sum\limits_{s = l(p + q) - (q - 1)}^{l(p + q) + (q - 1)} | } {\rm{Cov}}({a_1}{Z_{11}} + {a_2}{Z_{12}}, {a_1}{Z_{s + 1, 1}} + {a_2}{Z_{s + 1, 2}})| \le \frac{{Ckq}}{n}\sum\limits_{s = p}^\infty {{\phi ^{1/2}}} (s) \to 0.{\rm{ }}$

由以上两式知

$E(S_n^{\prime\prime})^2\longrightarrow0, $ (3.11)

则式(3.7) 成立.

由引理3.3知

$E(S_n^{\prime\prime\prime})^2\leq \frac{C[n-k(p+q)]}{n}E(a_1Z_{11}+a_2Z_{12})^2 \longrightarrow0, $ (3.12)

则式(3.8) 成立.

由(A4)(iv)和引理3.4知

$|Ee^{it\sum\limits_{m=1}^{k}e_{nm}}-\prod\limits_{m=1}^k Ee^{ite_{nm}}|\leq {Ck\phi(q)}\longrightarrow0, $ (3.13)

$\{e_{nm}\}$是渐近独立的.设$\{E_{nm};m=1, 2, \cdots, k\}$是独立随机变量序列, 其中$E_{nm}$的分布函数和$e_{nm}$的分布函数相同$(m=1, 2, \cdots, k)$.为证式(3.6) 成立, 只需证下式成立

$\sum\limits_{m = 1}^k {{E_{nm}}} \mathop \to \limits^d N(0, {a^\prime }Va).$ (3.14)

又设$s_n^2=k\mathrm{Var}E_{n1}$$F_{nm}=E_{nm}/s_n$, $1\leq m\leq k$由式(3.9) 的证明过程知$s_n^2\rightarrow a^\prime Va$.故式(3.14) 等价于

$\sum\limits_{m = 1}^k {{F_{nm}}} \mathop \to \limits^d N(0, 1).$ (3.15)

由假设条件(A1)(i)和(A2) 知

$\quad E{({a_1}{Z_{i1}} + {a_2}{Z_{i2}})^2}\\ = \int_R [{a_1}(K(\frac{{{x_{n1}}-x}}{h})-EK(\frac{{{x_{n1}}-x}}{h})) + {a_2}(K(\frac{{{x_{n2}} - x}}{h}) - EK(\frac{{{x_{n2}} - x}}{h})){]^2}dF(x)\\ = h\int_R [{a_1}(K(u)-EK(u)) + {a_2}(K(\frac{{{x_{n2}}-{x_{n1}}}}{h} + u)-EK(\frac{{{x_{n2}} - {x_{n1}}}}{h} + u)){]^2}f({x_{n1}} - hu)du\\ \le Ch.$

同理可得

$E|a_1Z_{i1}+a_2Z_{i2}|^3\leq Ch. $

由引理3.3和以上两式知

$\quad \quad kE|{F_{n1}}{|^3} = ks_n^{ - 3}E|{e_{n1}}{|^3} = ks_n^{ - 3}{n^{ - 3/2}}E|\sum\limits_{i = {r_1}}^{{r_1} + p - 1} {{a_1}} {Z_{i1}} + {a_2}{Z_{i2}}{|^3}\\ \le \;\;Cks_n^{ - 3}{n^{ - 3/2}}\{ \sum\limits_{i = {r_1}}^{{r_1} + p - 1} E |{a_1}{Z_{i1}} + {a_2}{Z_{i2}}{|^3} + {[\sum\limits_{i = {r_1}}^{{r_1} + p-1} E {({a_1}{Z_{i1}} + {a_2}{Z_{i2}})^2}]^{3/2}}\} {\rm{ }}\\ \le \;\;Cks_n^{ - 3}{n^{ - 3/2}}\{ ph + {(ph)^{3/2}}\} \le Cks_n^{ - 3}{n^{ - 3/2}}{(ph)^{3/2}}\\ \le \;\;Cs_n^{ - 3}{(kp/n)^{3/2}}{k^{ - 1/2}}{h^{3/2}} \to 0, $

其中用到了$ph\rightarrow \infty$, $s_n^2\rightarrow a^\prime Va$, $kp/n\leq 1$$k\rightarrow \infty$.由$\mathrm{Lyapunov}$中心极限定理知式(3.15) 成立, 故式(3.6) 成立.

由式(3.6), (3.7), (3.8) 和Cramer-Wold定理知式(3.5) 成立.

4 主要结果的证明

为证明定理2.1, 只需证明当$k=2$时成立; 当$k>2$时同理可证.

$\sigma(\xi_{\gamma_i})=\sigma(ii) (i=1, 2)$, $x_{n1}=\xi_{\gamma_1}+\frac{\sigma(\xi_{\gamma_1})y_1}{f(\xi_{\gamma_1})\sqrt{n}}, x_{n2}=\xi_{\gamma_2}+\frac{\sigma(\xi_{\gamma_2})y_2}{f(\xi_{\gamma_2})\sqrt{n}}$.易知

$E\hat{F}_n(x_{nj})=\int_R K(\frac{x_{nj}-x}{h})dF(x)=\int_R F(x_{nj}-hu)dK(u) (j=1, 2).$

再将$F(x_{nj}-hu)$$\xi_{\gamma j}$$\mathrm{Taylor}$展开得

$F(x_{nj}-hu)=F(\xi_{\gamma_j})+f(\xi_{\gamma_j})\bigg[\frac{\sigma(\xi_{\gamma_j})y_j}{f(\xi_{\gamma_j})\sqrt{n}}-hu\bigg]+\frac{1}{2}f'(u^*)\bigg[\frac{\sigma(\xi_{\gamma_j})y_j}{f(\xi_{\gamma_j})\sqrt{n}}-hu\bigg]^2, $

其中$u^*$满足$|u^*-\xi_{\gamma_j}|\leq |\sigma(\xi_{\gamma_j})y_j/f(\xi_{\gamma_j})\sqrt{n}-hu|$.由以上两式及假设条件知

$E\hat{F}_n(x_{nj})=F(\xi_{\gamma_j})+\frac{\sigma(\xi_{\gamma_j})y_j}{\sqrt{n}}+O\bigg(\frac{y_j^2}{n}+h^2\bigg) (j=1, 2), $

易知

$\sqrt{n}[E\hat{F}_n(x_{nj})-\gamma_j]=\sigma(\xi_{\gamma_j})y_j+O\bigg(\frac{y_j^2}{\sqrt{n}}+\sqrt{nh^4}\bigg) (j=1, 2).$

又令$H_n(y_1, y_2)=P\big(\frac{\sqrt{n}f(\xi_{\gamma_1})(\hat{\xi}_{\gamma_1n}-\xi_{\gamma_1})}{\sigma(\xi_{\gamma_1})}\leq y_1, \frac{\sqrt{n}f(\xi_{\gamma_2})(\hat{\xi}_{\gamma_2n}-\xi_{\gamma_2})}{\sigma(\xi_{\gamma_2})}\leq y_2\big)$.故

${H_n}({y_1}, {y_2})\; = \;P({\hat \xi _{{\gamma _1}n}} \le {\xi _{{\gamma _1}}} + \frac{{\sigma ({\xi _{{\gamma _1}}}){y_1}}}{{f({\xi _{{\gamma _1}}})\sqrt n }}, {\hat \xi _{{\gamma _2}n}} \le {\xi _{{\gamma _2}}} + \frac{{\sigma ({\xi _{{\gamma _2}}}){y_2}}}{{f({\xi _{{\gamma _2}}})\sqrt n }}){\rm{ }}\\\quad \quad = \;P({\hat F_n}({x_{n1}}) \ge {\gamma _1}, {\hat F_n}({x_{n2}}) \ge {\gamma _2}){\rm{ }}\\\quad \quad = \;P( - \sqrt n ({\hat F_n}({x_{n1}}) - E{\hat F_n}({x_{n1}})) \le \sqrt n (E{\hat F_n}({x_{n1}}) - {\gamma _1}), \\\quad \quad - \sqrt n ({\hat F_n}({x_{n2}}) - E{\hat F_n}({x_{n2}})) \le \sqrt n (E{\hat F_n}({x_{n2}}) - {\gamma _2}))\\\quad = \;P( - \sqrt n ({\hat F_n}({x_{n1}}) - E{\hat F_n}({x_{n1}}))/\sigma ({\xi _{{\gamma _1}}}) \le {y_1} + O(\frac{{y_1^2}}{{\sqrt n }} + \sqrt {n{h^4}} ), {\rm{ }}\\\quad \quad - \sqrt n ({\hat F_n}({x_{n2}}) - E{\hat F_n}({x_{n2}}))/\sigma ({\xi _{{\gamma _2}}}) \le {y_2} + O(\frac{{y_2^2}}{{\sqrt n }} + \sqrt {n{h^4}} )).{\rm{ }}$

设二元正态分布$(X_1, X_2)^\prime\sim N(0, V)$, 故

$(Y_1, Y_2)^\prime\triangleq (X_1/\sigma(\xi_{\gamma_1}), X_2/\sigma(\xi_{\gamma_2}))^\prime\sim N(0, \hat{V}), $

其中$\hat{V}=(\hat{\sigma}_{(st)}) (s, t=1, 2)$, $\hat{\sigma}_{st}=\hat{\sigma}_{ts}=\sigma_{st}/\sqrt{\sigma_{ss}\sigma_{tt}} (1\leq s\leq t\leq2)$, $(Y_1, Y_2)^\prime$的分布函数为$F(y_1, y_2)=P(Y_1\leq y_1, Y_2\leq y_2)$.

由引理3.5知

$(-\sqrt{n}(\hat{F}_n(x_{n1})-E\hat{F}_n(x_{n1}))/\sigma(\xi_{\gamma_1}), -\sqrt{n}(\hat{F}_n(x_{n2})-E\hat{F}_n(x_{n2}))/\sigma(\xi_{\gamma_2}))^\prime\stackrel{d}{\longrightarrow} N(0, \hat{V}).$

而由假设条件(A3) 知$O(\frac{y_j^2}{\sqrt{n}}+\sqrt{nh^4})\longrightarrow 0 (j=1, 2)$.

综上可得$H_n(y_1, y_2)-F(y_1, y_2)\longrightarrow 0$, 故定理2.1成立.

参考文献
[1] Ibragimov I A. Some limit theorems for stochastic processes stationary in the strict sense[J]. Dokl. Akad. Nauk. SSSR, 1959, 125: 711–714.
[2] Cogburn R. Asymptotic properties of stationary sequences[J]. Univ. Calif. Publ. Statist., 1960, 3: 99–146.
[3] Bradley R C. Basic properties of strong mixing conditions: a survey and some open questions[J]. Probab. Surveys, 2005, 2(37): 107–144.
[4] Utev S A. On the central limit theorem for $\phi$-mixing arrays of random variables[J]. Theor. Probab. Appl., 1990, 35(1): 131–139.
[5] Chen D C. A uniform central limit theorem for nonuniform $\phi$-mixing random fields[J]. Ann. Probab., 1991, 19(2): 636–649. DOI:10.1214/aop/1176990445
[6] Herrndorf N. The invariance principle for $\phi$-mixing sequences[J]. Zeitschrift Für Wahrscheinlichkeit-stheorie and Verwandte Gebiete, 1983, 63(1): 97–108. DOI:10.1007/BF00534180
[7] Peligrad M. An invariance principle for $\phi$-mixing sequences[J]. Ann. Probab., 1985, 13(4): 1304–1313. DOI:10.1214/aop/1176992814
[8] Sen P K. Weak convergence of multidimensional empirical processes for stationary $\phi$-mixing pro-cesses[J]. Ann. Probab., 1974, 2(1): 147–154. DOI:10.1214/aop/1176996760
[9] Sen P K. A note on weak convergence of empirical processes for sequences of $\phi$-mixing random variables[J]. Ann. Math. Statist., 1971, 42(6): 2131–2133. DOI:10.1214/aoms/1177693079
[10] Shao Q M. Almost sure invariance principles for mixing sequences of random variables[J]. Stoch. Proc. Appl., 1993, 48(2): 319–334. DOI:10.1016/0304-4149(93)90051-5
[11] Wang X, Hu S, Yan S, Yang W. Moment inequality for $\phi$-mixng sequences and its applications[J]. Inequal. Appl., 2009, 1(1): 1–12.
[12] Nadaraya E A. Some new estimates for distribution function[J]. Theory Probab. Appl., 1964, 9(3): 497–500. DOI:10.1137/1109069
[13] Yamato H. Uniform convergence of an estimator of a distribution[J]. Bull. Math. Statist., 1973, 15(3): 69–78.
[14] Parzen E. Nonparametric statistical data modeling[J]. J. Amer. Statist. Assoc., 1979, 74(365): 105–121. DOI:10.1080/01621459.1979.10481621
[15] Ralescu S S. A remainder estimate for the normal approximation of perturbed sample quantiles[J]. Statist. Probab. Lett., 1992, 14(4): 293–298. DOI:10.1016/0167-7152(92)90060-I
[16] Cai Z, Roussas G G. Smooth estimate of quantiles under association[J]. Statist. Probab. Lett., 1997, 36(3): 275–287. DOI:10.1016/S0167-7152(97)00074-6
[17] Volkonskii V A, Rozanov Y A. Some limit theorems for random functions I[J]. Theor. Prob. Appl., 1959, 4(2): 178–197. DOI:10.1137/1104015
[18] Cai Z, Roussas G G. Berry-esseen bounds for smooth estimator of a distribution function under association[J]. J. Nonparametric Statistics, 1999, 11(1-3): 79–106. DOI:10.1080/10485259908832776