数学杂志  2015, Vol. 35 Issue (5): 1109-1114   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
AO Guo-yan
Jirimutu
ZHAO Ling-qi
SIGNED CLIQUE EDGE DOMINATION NUMBERS OF GRAPHS
AO Guo-yan1,2,3, Jirimutu2,3, ZHAO Ling-qi2    
1. School of Mathematical Sciences, Hulunbuir College, Hailaer 021008, China;
2. Institute of Discrete Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China;
3. College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China
Abstract: In this paper, we study signed clique edge domination number of graph. By using pigeonhole principle, we obtain the signed clique edge domination numbers of graphs KnPm and KnCm, which extend the known results.
Key words: graphs     signed clique edge domination number     signed clique edge dominating function    
图的符号团边控制数
敖国艳1,2,3, 吉日木图2,3, 赵凌琪2    
1. 呼伦贝尔学院数学科学学院, 内蒙古 海拉尔 021008;
2. 内蒙古民族大学离散数学研究所, 内蒙古 通辽 028043;
3. 内蒙古民族大学数学学院, 内蒙古 通辽 028043
摘要:本文研究了图的符号团边控制数的问题.利用鸽巢原理, 获得了图KnPmKnCm的符号团边控制数, 推广了已有的结果.
关键词    符号团边控制数    符号团边控制函数    
1 Introduction

In this paper, the graphs are undirected simple graphs and for other terminologies we follow [1]. Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. Every maximal complete subgraph $K$ of graph $G$ is called a clique of $G$, the order of a largest complete subgraph is called the clique number of $G$, denoted by $\omega(G)$. A clique $K$ is called non-trivial if $K\neq K_{1}$. Let $G_1$ and $G_2$ be any two disjoint graphs. Then $G_{1}\vee G_{2}$ denotes the join graphs of $G_{1}$ and $G_{2}$:

$ \begin{array}{*{20}{l}} {V({G_1} \vee {G_2}) = V({G_1})\bigcup V ({G_2}), }\\ {E({G_1} \vee {G_2}) = E({G_1})\bigcup E ({G_2})\bigcup {\left\{ {uv:u \in V({G_1}), v \in V({G_2})} \right\}} .} \end{array} $

Let $G=(V, E)$ be a graph. For a function $f:E\rightarrow \{+1, -1\}$ and a subset $S$ of $E(G)$, define $f(S)=\sum\limits_{e\in S}f(e)$. For convenience, for a given graph $G=(V, E)$, an edge $e\in E(G)$ is said to be a +1 edge of $G$ if $f(e)=+1$, analogously, an edge $e\in E(G)$ is said to be a -1 edge of $G$ if $f(e)=-1$. Write $E_{1}=\{e\in E(G)|f(e)=+1\}$, $E_{2}=\{e\in E(G)|f(e)=-1\}$.

Definition 1.1 [2]  Let $G=(V, E)$ be a simple graph. A function $f : E\rightarrow \{+1, -1\}$ is said to be a signed clique edge dominating function of $G$ if $\sum\limits_{e\in E(K)}f(e)\geq 1$ for every non-trivial clique $K$ in $G$. The signed clique edge domination number of $G$ is defined to be ${\gamma '_{scl}}(G)= \min\{\sum\limits_{e\in E(G)}$ $f(e): f$ is a signed clique edge dominating function of $G$$\}$. In particular, for empty graph $\overline{K_{n}}$, define ${\gamma '_{scl}}(\overline{K_{n}}) = 0$.

In recent years, domination number and its variations were studied extensively. The monographs [2] contain extensive reviews of topics. Signed edge domination was studied in [3, 4], signed clique edge domination was studied in [5], signed star domination in [6], signed cycle domination in [7], minus edge domination in [8], signed edge total domination in [9]. In this paper, we determine the signed clique edge domination numbers of graphs $K_{n}\vee P_{m}$ and $K_{n}\vee C_{m}$.

2 Main Result

Theorem 2.1   For any positive integer $n\geq3$ and $m\geq3$,

$ {\gamma '_{scl}}({K_n} \vee {P_m}) = \left\{ \begin{array}{l} 2(6 - n)\left\lfloor {\frac{m}{2}} \right\rfloor - (n + 1)m + \frac{{n(n - 1)}}{2} + 1, \;\;\;{\rm{when}}\;\;n{\rm{ = 3}}, {\rm{4}}, {\rm{5}}, \\ - (n + 1)m + 2n + 3 + \frac{{{{( - 1)}^{\left\lfloor {\frac{n}{2}} \right\rfloor + 1}} + 1}}{2}, \;\;\;\;\;\;\;\;\;{\rm{when}}\;\;n \ge {\rm{6}}. \end{array} \right. $

Proof   Let $f$ be a signed clique edge dominating function of graph $G=K_{n}\vee P_{m}$ such that ${\gamma '_{scl}}(G)=f(E)=\sum\limits_{e\in E}f(e)$. The vertices of $K_{n}$ are $v_{1}, v_{2}, \cdots v_{n}$ in this order, and the vertices of $P_{m}$ are $u_{1}, u_{2}, \cdots u_{m}$ in this order. Then $|E(G)|$=$\frac{n(n-1)}{2}+(n+1)m-1$. Let $A=\{v_{i}u_{j}|i=1, 2, \cdots n, j=1, 2, \cdots m\}\bigcup\{u_{i}u_{i+1}|i=1, 2, \cdots, m-1\}$.

We first prove lower bound.

Case 1   $n=3, 4, 5$, then

$ {\gamma '_{scl}}(G) \ge 2(6 - n)\left\lfloor {\frac{m}{2}} \right\rfloor - (n + 1)m + \frac{{n(n - 1)}}{2} + 1. $ (2.1)

Let $s$ (respectively $t$) be the number of +1 (respectively -1) edges of $G$, thus $\frac{n(n-1)}{2}+(n+1)m-1=s+t$, ${\gamma '_{scl}}(G)=s-t$.

Suppose that (2.1) does not hold. Then ${\gamma '_{scl}}(G)< 2(6-n)\lfloor \frac{m}{2}\rfloor-(n+1)m+\frac{n(n-1)}{2}+1$, Hence $t>(n+1)m-(6-n)\lfloor \frac{m}{2}\rfloor-1$. Let the number of -1 edges in $A$ be $r$.

Case 1.1   $m\equiv 0 \pmod 2$.

Suppose $3(n-2)\frac{m}{2} +(m-1)<r\leq (n+1)m-1$. By the pigeonhole principle, there exists a clique $K_{n+2}\in G $, that the number of -1 edges is at least $3n-4$, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq 0$. This is a contradiction.

If

$ (n + 1)m - (6 - n)\frac{m}{2} - \frac{{n(n - 1)}}{2} \le r \le 3(n - 2)\frac{m}{2} + (m - 1), $

then the number of -1 edges in $E(G)\setminus A $ is at least 1. By the pigeonhole principle, there exists a $K_{n+2}\in G $, such that $\sum_{e\in E(K_{n+2})}f(e)\leq0$. This is a contradiction.

Case 1.2   $m\equiv 1 \pmod 2$.

Suppose $n\lceil\frac{m}{2}\rceil+2(n-3)\lfloor\frac{m}{2}\rfloor +(m-1)<r\leq (n+1)m-1$. By the pigeonhole principle, there exists a clique $K_{n+2}\in G $, that the number of -1 edges is at least $3n-4$, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq0$. This is a contradiction.

If

$ (n + 1)m - (6 - n)\left\lfloor {\frac{m}{2}} \right\rfloor - \frac{{n(n - 1)}}{2} \le r \le 3(n - 2)\left\lfloor {\frac{m}{2}} \right\rfloor + n + (m - 1), $

then the number of -1 edges in $E(G)\setminus A $ is at least 1. By the pigeonhole principle, there exists a $K_{n+2}\in G $, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq 0$. This is a contradiction.

Hence ${\gamma '_{scl}}(G)\geq 2(6-n)\lfloor \frac{m}{2} \rfloor -(n+1)m+\frac{n(n-1)}{2}+1$.

Case 2   $n\geq 6$. Then

$ {\gamma '_{scl}}(G) \ge - (n + 1)m + 2n + 3 + \frac{{{{( - 1)}^{\left\lfloor {\frac{n}{2}} \right\rfloor + 1}} + 1}}{2}. $

Let $f$ be a signed clique edge dominating function of G such that ${\gamma '_{scl}}(G)=f(G)$, and $s$ the number of +1 edges of $G$. Then ${\gamma '_{scl}}(G)=2s-|E(G)|$. And $\sum\limits_{e\in E(K_{n+2})}f(e)\geq1$ for every non-trivial clique $K_{n+2}$ in $G$. Hence $s\geq s_{0}=|\{e\in E(K_{n+2})\mid f(e)=1\}|$.

Note that

$ |E(G)| = \frac{{n(n - 1)}}{2} + (n + 1)m - 1, |E({K_{n + 2}})| = \frac{{(n + 2)(n + 1)}}{2}. $

Since $f(K_{n+2})\geq1$, $s_{0}\geq \lfloor \frac{(n+2)(n+1)}{4}\rfloor+1$. Then $s\geq \lfloor \frac{(n+2)(n+1)}{4}\rfloor+1$. Hence

$ {\gamma '_{scl}}(G) = 2s - |E(G)| \ge - (n + 1)m + 2n + 3 + \frac{{{{( - 1)}^{\left\lfloor {\frac{n}{2}} \right\rfloor + 1}} + 1}}{2}. $

Next consider the upper bound.

We define the signed clique edge dominating function $f$ of graph $G$ as follows:

For $n=3$, let

$ f(e) = \left\{ {\begin{array}{*{20}{l}} { + 1,\;\;\;\;{\rm{when}}\;e \in {{\rm{K}}_{\rm{3}}}\bigcup {\{ {{v}_{i}}{{u}_{j}}{\rm{|}}{i}{\rm{ = 1}},{\rm{2}},{\rm{3}},j \equiv {\rm{0}}\;\;\;\left( {\,\bmod \,{\rm{2}}} \right)\} } ;}\\ { - 1,\;\;\;\;{\rm{otherwise}}.} \end{array}} \right. $

For $n=4$, let

$ f(e) = \left\{ {\begin{array}{*{20}{l}} { + 1,\;\;\;\;{\rm{when}}\;e \in {{\rm{K}}_4}\bigcup {\{ {{v}_{i}}{{u}_{j}}{\rm{|}}{i}{\rm{ = 3}},{\rm{4}},{j} \equiv {\rm{0}}\;\;\;\left( {\,\bmod \,{\rm{2}}} \right)\} } ;}\\ { - 1,\;\;\;\;{\rm{otherwise}}.} \end{array}} \right. $

For $n=5$, let

$ f(e) = \left\{ {\begin{array}{*{20}{l}} { + 1,\;\;\;\;{\rm{when}}\;e \in {{\rm{K}}_{\rm{5}}}\bigcup {\{ {{v}_{i}}{{u}_{j}}{\rm{|}}{i}{\rm{ = 5}},{j} \equiv {\rm{0}}\;\;\;\left( {\,\bmod \,{\rm{2}}} \right)\} } ;}\\ { - 1,\;\;\;\;{\rm{otherwise}}.} \end{array}} \right. $

For $n=3, 4, 5$, every non-trivial clique $K_{n+2}$ in $G$, we have

$ \begin{array}{l} \sum\limits_{e \in E({K_{n + 2}})} f (e) = \sum\limits_{e \in {E_1}\bigcap E ({K_{n + 2}})} f (e) - \sum\limits_{e \in {E_2}\bigcap E ({K_{n + 2}})} f (e)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{n(n - 1)}}{2} + (6 - n) - (3n - 5)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{n(n - 1)}}{2} - 4n + 11 \ge 1. \end{array} $

Hence ${\gamma '_{scl}}(G)\leq \sum\limits_{e\in E(G)}f(e)=2(6-n)\lfloor \frac{m}{2} \rfloor -(n+1)m+\frac{n(n-1)}{2}+1.$

For $n\geq6$, let the number of +1 edges in $K_{n}$ is $\lfloor \frac{(n+2)(n+1)}{4}\rfloor+1$. All other edges are assigned -1. For every non-trivial clique $K_{n+2}$ in $G$, we have

$ \begin{array}{*{20}{l}} {\sum\limits_{e \in E({K_{n + 2}})} f (e) = \sum\limits_{e \in {E_1}\bigcap E ({K_{n + 2}})} f (e) - \sum\limits_{e \in {E_2}\bigcap E ({K_{n + 2}})} f (e)}\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = 2\left\lfloor {\frac{{(n + 2)(n + 1)}}{4}} \right\rfloor + 2 - \frac{{(n + 2)(n + 1)}}{2}}\\ {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left\{ {\begin{array}{*{20}{l}} {1,\;\;\;{n} \equiv {\rm{0}},{\rm{1}}\;\;\;\left( {\,\bmod \,{\rm{4}}} \right);}\\ {2,\;\;\;{n} \equiv {\rm{2}},{\rm{3}}\;\;\;\left( {\,\bmod \,{\rm{4}}} \right).} \end{array}} \right.} \end{array} $

Hence

$ {\gamma '_{scl}}(G) \le \sum\limits_{e \in E(G)} f (e) = - (n + 1)m + 2n + 3 + \frac{{{{( - 1)}^{\left\lfloor {\frac{n}{2}} \right\rfloor + 1}} + 1}}{2}. $

Theorem 2.2   For any positive integer $n\geq3$ and $m\geq3$,

$ {\gamma '_{scl}}({K_n} \vee {C_m}) = \left\{ \begin{array}{l} 2(6 - n)\left[{\frac{m}{2}} \right] - (n + 1)m + \frac{{n(n - 1)}}{2}, \;\;\;\;\;{\rm{when}}\;{n}{\rm{ = 3}}, {\rm{4}}, {\rm{5}}\\ - (n + 1)m + 2n + 2 + \frac{{{{( - 1)}^{\left[{\frac{n}{2}} \right] + 1}} + 1}}{2}, \;\;\;\;\;\;\;{\rm{when}}\;{n} \ge {\rm{6}}. \end{array} \right. $

Proof   Let $f$ be a signed clique edge dominating function of graph $G=K_{n}\vee C_{m}$ such that ${\gamma '_{scl}}(G)=f(E)=\sum\limits_{e\in E}f(e)$. The vertices of $K_{n}$ are $v_{1}, v_{2}, \cdots v_{n}$ in this order, and the vertices of $C_{m}$ are $u_{1}, u_{2}, \cdots u_{m}$ in this order. Then $|E(G)|$=$\frac{n(n-1)}{2}+(n+1)m$. Write

$ A = \{ {v_i}{u_j}|i = 1, 2, \cdots n, j = 1, 2, \cdots m\} \bigcup {\{ {u_i}{u_{i + 1}}|i = 1, 2, \cdots, m - 1\} } \bigcup {\{ {u_1}{u_n}\} } . $

$n=3, 4, 5$, we first prove lower bound.

$ {\gamma '_{scl}}(G) \ge 2(6 - n)\left\lfloor {\frac{m}{2}} \right\rfloor - (n + 1)m + \frac{{n(n - 1)}}{2}. $ (2.2)

Let $s$ (respectively$t$) be the number of +1 (respectively -1) edges of $G$. Thus

$ \frac{{n(n - 1)}}{2} + (n + 1)m = s + t, {\gamma '_{scl}}(G) = s - t. $

Suppose that (2.2) does not hold. Then ${\gamma '_{scl}}(G)< 2(6-n)\lceil \frac{m}{2} \rceil -(n+1)m+\frac{n(n-1)}{2}$. Hence $t>(n+1)m-(6-n)\lceil \frac{m}{2} \rceil$. Let the number of -1 edges in $A$ be $r$.

Case 1   $m\equiv0\pmod 2$.

Suppose $3(n-2)\frac{m}{2}+m<r\leq (n+1)m$. By the pigeonhole principle, there exists a clique $K_{n+2}\in G $, That the number of -1 edges is at least $3n-4$, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq 0$. This is a contradiction.

If

$ (n + 1)m - (6 - n)\frac{m}{2} - \frac{{n(n - 1)}}{2} + 1 \le r \le 3(n - 2)\frac{m}{2} + m. $

Then the number of -1 edges in $E(G)\setminus A $ is at least 1. By the pigeonhole principle, there exists a $K_{n+2}\in G $, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq 0$. This is a contradiction.

Case 2   $m\equiv1\pmod 2$.

Suppose $n\lfloor \frac{m}{2}\rfloor+2(n-3)\lceil \frac{m}{2}\rceil+m<r\leq (n+1)m$. By the pigeonhole principle, there exists a clique $K_{n+2}\in G $, that the number of -1 edges is at least $3n-4$, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq 0$. This is a contradiction.

If

$ (n + 1)m - (6 - n)\left\lceil {\frac{m}{2}} \right\rceil - \frac{{n(n - 1)}}{2} + 1 \le r \le n\left\lfloor {\frac{m}{2}} \right\rfloor + 2(n - 3)\left\lceil {\frac{m}{2}} \right\rceil + m, $

then the number of -1 edges in $E(G)\setminus A $ is at least 1. By the pigeonhole principle, there exists a $K_{n+2}\in G $, such that $\sum\limits_{e\in E(K_{n+2})}f(e)\leq 0$. This is a contradiction.

In summary,

$ {\gamma '_{scl}}(G) \ge 2(6 - n)\left\lceil {\frac{m}{2}} \right\rceil - (n + 1)m + \frac{{n(n - 1)}}{2}. $

Next we consider the upper bound. The upper bound is obtained by specifying a signed clique edge dominating function. We define the signed clique edge dominating function $f$ of $G$ as follows:

For $n=3$, let

$ f(e) = \left\{ \begin{array}{l} + 1,\;\;\;{\rm{when}}\;e \in {{\rm{K}}_{\rm{3}}}\bigcup {\{ {v_i}{u_j}{\rm{|}}i{\rm{ = 1}},{\rm{2}},{\rm{3}},j \equiv {\rm{1}}\;\;\left( {\,\bmod \,{\rm{2}}} \right)\} } ;\\ - 1,\;\;\;{\rm{otherwise}}. \end{array} \right. $

For $n=4$, let

$ f(e) = \left\{ \begin{array}{l} + 1, \;\;\;{\rm{when}}\;{e} \in {{\rm{K}}_{\rm{4}}}\bigcup {\{ {{v}_{i}}{{u}_{j}}{\rm{|}}{i}{\rm{ = 3}}, {\rm{4}}, {j} \equiv {\rm{1}}\;\;\left( {\bmod {\rm{2}}} \right)\} } ;\\ - 1, \;\;\;{\rm{otherwise}}. \end{array} \right. $

For $n=5$, let

$ f(e) = \left\{ \begin{array}{l} + 1, \;\;\;{\rm{when}}\;{e} \in {{\rm{K}}_5}\bigcup {\{ {{v}_{i}}{{u}_{j}}{\rm{|}}{i}{\rm{ = }}5, {j} \equiv {\rm{1}}\;\;\left( {\bmod {\rm{2}}} \right)\} } ;\\ - 1, \;\;\;{\rm{otherwise}}. \end{array} \right. $

For $n=3, 4, 5$, $m\equiv 1\pmod 2$, consider clique $K_{n+2}$ of include edge $u_{1}u_{m}$,

$ \begin{array}{l} \sum\limits_{e \in E({K_{n + 2}})} f (e) = \sum\limits_{e \in {E_1}} f (e) - \sum\limits_{e \in {E_2}} f (e)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{n(n - 1)}}{2} + 2(6 - n) - (4n - 11)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{n(n - 1)}}{2} - 6n + 23 \ge 1. \end{array} $

We have

$ {{\gamma '}_{scl}}(G) \le \sum\limits_{e \in E(G)} f (e) = 2(6 - n)\left\lceil {\frac{m}{2}} \right\rceil - (n + 1)m + \frac{{n(n - 1)}}{2}. $

For other cases the proof is similar to Theorem 2.1.

References
[1] Bondy J A, Murty U S R. Graph theory with applications[M]. London: Macmillan, 1977.
[2] Xu Baogen. Domination theory of graph[M]. Beijing: Science Press, 2008.
[3] Xu Baogen. On signed edge domination numbers of graphs[J]. Discrete Math., 2001, 239: 179–189. DOI:10.1016/S0012-365X(01)00044-9
[4] Xu Baogen. On edge domination numbers of graphs[J]. Discrete Math., 2005, 294: 311–316. DOI:10.1016/j.disc.2004.11.008
[5] Xu Baogen. On clique signed domination numbers of graph[J]. Sys. Sci. Math., 2008, 3: 282–287.
[6] Xu Baogen. On signed star domination numbers of graphs[J]. East China Jiaotong Univ., 2004, 21: 116–118.
[7] Xu Baogen. On signed cycle domination numbers of graphs[J]. Discrete Math., 2009, 309: 1007–1012. DOI:10.1016/j.disc.2008.01.007
[8] Xu Baogen. On minus domination and signed domination in graphs[J]. Math. Res. Exposition., 2003, 23: 586–590.
[9] Karami H, Sheikholeslami S M, Khodkar A. Lower bounds on signed edge total domination numbers in graphs[J]. Czechoslovak Math., 2008, 3: 595–603.