数学杂志  2015, Vol. 35 Issue (4): 963-968   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
代瑞香
陈全国
双模范畴间同构态射的构造
代瑞香1, 陈全国2    
1. 石河子大学理学院, 新疆 石河子 832003;
2. 伊犁师范学院数学系, 新疆 伊犁 835000
摘要:本文研究了双模范畴上的同构态射.利用代数上常用的构造方法, 给出了模范畴R (C:T)L (C:T)的定义及双模范畴TMCTMCM之间的同构映射和证明过程, 将代数上双模范畴的一些重要结论进行了推广.
关键词模范畴    对象类    同构态射    
THE CONSTRUCTION OF THE ISOMORPHISM BETWEEN THE BIMODULE CATEGORIES
DAI Rui-xiang1, CHEN Quan-guo2    
1. Department of Mathematics, Shihezi University, Shihezi 832003, China;
2. Department of Mathematics, Yili Normal University, Yili 835000, China
Abstract: The isomorphism between bimodule categories TMC and TMCM is studied.The definitions of the modules categories R (C:T) and L (C:T) and the isomorphism between TMC and TMCM including detailed proofs are given, and some important conclusions of algebra bimodule categories are popularized.
Key words: bimodule category     objects class     isomorphisms    
1 引言

近20年来, 随着量子群研究的兴起, Kaplansky某些猜想的解决, Hopf代数理论日臻完善, 它的一些推广概念如单子、Hopf单子、缠绕结构等也越来越受到重视. 2002年, Moerdijk[1]介绍了张量范畴上的Hopf单子, 并研究了Hopf单子的代数结构等性质.双范畴中的圈是在文[2]中由Lack和Street引入的, 余圈在某种程度上说是圈的对偶.具体地说, 给定双范畴$B$ (见文[2]), 用文[3]中的方法可以构造余单子的Eilenberg-Moore双范畴, 记作REM ($B$). REM ($B$) 中的0-元是指元素对$(C,A)$, 其中$A$$ B$中的0-元, $C$$A$上的余单子. $B$中的1-元$(P,p):(C,A)\rightarrow (D,B)$, 包含1-元$P : A \rightarrow B $, 2-元$p : D \cdot P\Rightarrow P \cdot C$, 并且满足余单子$C$$D$的余积和余单位的条件. $B$中的2-元$\varphi:(P,p)\Rightarrow (Q,q)$, 是指2-元$\varphi:D\cdot P \Rightarrow Q$, 满足$p,q$的条件和余单子$D$的余积条件. $B$中的 (右) 余圈在文[3]中定义为范畴REM ($B$) 中的余单子.具体地, 余圈包含$B$的0-元, 1-元$R:A\rightarrow A$和2-元$r:C\cdot R\Rightarrow R\cdot C$, $\xi : C \cdot R \Rightarrow I_{A}$$\delta : C \cdot(R \cdot R) \Rightarrow R $, 并且满足相应的条件.

本文拟在一般双模范畴的基础上引入模范畴${R}_{C}^{c}$${L}_{C}^{c}$的定义, 并在双模范畴${_{T}}M^{C}$${_{T}}M^{CM}$之间构造了一个同构态射, 且给出了详细的证明过程, 从而拓展并丰富Hopf代数及单子的理论知识.

2 预备知识

本节给出本文所需的知识和概念, 并引入两个新的范畴${R}_{C}^{c}$${L}_{C}^{c}$.

定义2.1[1] 设$C$是任一范畴, $C$上的单子是指三元结构$(T,\mu,\eta)$, 其中$T: C \rightarrow C$是函子, $\mu: T^2 \rightarrow T$$\eta:id_C \rightarrow T$是自然变换, 满足$\mu_X \cdot T(\mu_X)=\mu_X\cdot \mu_{T(X)}$; $\mu_X\cdot \eta_{T(X)}=id_{T(X)}=\mu_X \cdot T(\eta_X)$, $\forall X\in {\rm obj}(C)$.

$(T,\mu,\eta)$$C$上的单子, $T$-模是指$(M,r)$, 其中$M\in {\rm obj}(C)$$r:T(M) \rightarrow M$$C$中的态射, 使得$r\cdot T(r)= r\cdot \mu_M $; $r\cdot \eta_M= id_M$.

$(M,r)$, $(N,s)$$T$-模, 态射$f\in {\rm Hom}(M,N)$称为$T$-线性的, 若$f\cdot r=s\cdot T(f)$.此$f$也称为$T$-模态射.

定义2.2[4]$(G,\Delta,\varepsilon )$称为范畴$C$上的余单子, 若函子$G:C \rightarrow C$及自然变换$\Delta :G\rightarrow G^{2}$$\varepsilon:G\rightarrow id_{C}$, 满足$G\Delta \cdot \Delta =\Delta G\cdot \Delta$; $\varepsilon G\cdot \Delta=G \varepsilon \cdot \Delta=id_{G}$.

定义2.3[5] 设$(T,\mu,\eta)$是范畴$C$上的单子, 右$T$-模$M\in {\rm obj}(C)$称为实右$T$-模, 若$\varpi^{+}_{M}:MT\rightarrow M$为双射.其逆记作: $d^{+}_{M}:M \rightarrow MT$.

同样, 左$T$-模$M\in {\rm obj}(C)$称为实左$T$-模, 若$\varpi^{-}_{M}:TM\rightarrow M$为双射.其逆记作$d^{-}_{M}:M\rightarrow TM$.

对于范畴$C$上的单子$(T,\mu,\eta)$本身可以看作monoidal范畴End$(C)$中的$T$-模, 其中$r=\mu:TT \rightarrow T$.若$\varpi^{+}_{T}=\varpi^{-}_{T}$, 则$d^{+}_{T}=d^{-}_{T}$, 这样的单子$T$称为实单子.

定义2.4[5] 设$(T,\mu,\eta)$是范畴$C$上的单子, $C\in {\rm End}(C)$, $T$-余单子$C$是指: $C$为实$T$-双模态射; $T$-双线态射$\Delta_{C}:C\rightarrow C^{2}$, $\varepsilon_{C}:C\rightarrow T$满足:

$C\Delta_{C}\cdot \Delta_{C}=\Delta_{C}C\cdot \Delta_{C}; \\ C\varepsilon_{C}\cdot \Delta_{C}=d^{+}_{C};\\ \varepsilon_{C}C\cdot \Delta_{C}=d^{-}_{C}.$

实际上, $T$-余单子$C$就是$T$-模范畴上的余单子.

定义2.5[5] 模范畴${R(C:T)}$:

对象类: $(M, m)$, $M$$T$-双模, $m : CM \rightarrow MC$$T$-双线性态射, 并且满足$M \Delta \cdot m=mC \cdot Cm \cdot \Delta M $.

态射类:设$(M, m),(M^{'}, m^{'})\in {\rm obj}(R(C:T))$, $\varphi: (M,m)\rightarrow (M^{'}, m^{'})$定义为$\varphi: CM\rightarrow CM^{'}$使得

$\Delta M^{'}\cdot \varphi = C \varphi \cdot \Delta M; \\ Cm^{'}\cdot \Delta M^{'}\cdot \varphi = (\varphi C\cdot Cm)\cdot\Delta M.$

同理可定义${L(C:T)}$.

定义2.6[6] 设$C$为Monoidal范畴上的余单子, 右$C$-圈是指Monoidal范畴${R(C:T)}$上的单子, 右$C$-余圈是指Monoidal范畴${R(C:T)}$上的余单子.类似可定义Monoidal ${L(C:T)}$上的左$C$-圈和左$C$-余圈.

3 双模范畴间同构映射的构造

本节在模范畴${R(C:T)}$${L(C:T)}$的定义及圈和余圈的知识的基础上, 在双模范畴${_{T}}M^{C}$${_{T}}M^{CM}$之间构造了一个函子, 并在其对象的同态范畴之间定义了同构态射.

定理3.1 设$\xi:CM\longrightarrow C$$T$-余单子态射, 则有函子

$\begin{aligned} \psi:{_{T}}M^{CM}&\longrightarrow_{T}M^{C},\\ (Y,\rho^{Y})&\longmapsto (Y,Y\xi\cdot \rho^{Y}),\\ f&\longmapsto f. \end{aligned}$

 由$\rho^{Y}:Y\longrightarrow YCM$$CM$-余线性的, 则$\rho^{Y}CM\cdot\rho^{Y}=Y\Delta^{'}\cdot\rho^{Y}$, 其中

$\Delta^{'} = (CmM)\cdot(C\delta) \cdot(\Delta M), \varepsilon^{'} = \varepsilon \cdot \xi.$

${\rho_{\xi}}^{Y}=Y\xi\cdot \rho^{Y}:Y\longrightarrow YC$, 则

$\begin{aligned} Y\Delta \cdot {\rho_{\xi}}^{Y} =&Y\Delta \cdot Y\xi\cdot \rho^{Y} =Y\xi \xi\cdot Y\Delta ^{'}\cdot \rho^{Y} =Y\xi \xi\cdot \rho^{Y}CM\cdot\rho^{Y}\\ =&Y\xi C\cdot YCM\xi\cdot \rho^{Y}CM\cdot\rho^{Y} =Y\xi C\cdot \rho^{Y}C\cdot Y\xi \cdot\rho^{Y} ={\rho_{\xi}}^{Y}C\cdot {\rho_{\xi}}^{Y}. \end{aligned}$

$f:(Y,\rho^{Y})\longrightarrow (Y^{'},\rho^{Y^{'}})$$CM$-余线性的, 则$fCM\cdot \rho^{Y}=\rho^{Y^{'}}\cdot f$, 并且

$ fC\cdot {\rho_{\xi}}^{Y} =fC\cdot Y\xi \cdot\rho^{Y} =Y^{'}\xi\cdot fCM\cdot \rho^{Y} =Y^{'}\xi\cdot\rho^{Y^{'}}\cdot f ={\rho_{\xi}}^{Y}\cdot f, $

$f$$C$-余线性的.

定理3.2 设$(C,T)$$T$-余单子, $(M,m)$$C$-余圈, 则有自然同构

$\begin{aligned} \phi: {\rm Hom}((Y,Y\xi\cdot \rho^{Y}),(X,\rho^{X}))&\longrightarrow {\rm Hom}((Y,\rho^{Y}),(X,\rho^{X})M),\\ f&\longmapsto X\Gamma_{M}\cdot XM\varepsilon\cdot fMC\cdot Ym\cdot \rho^{Y}, \\ \Gamma_{X}\cdot X\varepsilon \cdot X\xi\cdot \rho^{X}M\cdot g &\longleftarrow g. \end{aligned}$

 令$f:(Y,Y\xi\cdot \rho^{Y})\longrightarrow (X,\rho^{X})$为范畴$_{T}M^{C}$中的态射, 则$f$为左$T$-线性的和右$C$-余线性的.

定义$\hat{f}=X\Gamma_{M}\cdot XM\varepsilon\cdot fMC\cdot Ym\cdot \rho^{Y}$, 则$\hat{f}$为右$CM$-余线性的, 因为

$\begin{aligned} \rho^{XM}\cdot\hat{f} =&XmM\cdot X\delta\cdot\rho^{X}M\cdot X\Gamma_{M}\cdot XM\varepsilon\cdot fMC\cdot Ym\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot\rho^{X}MC\cdot\cdot fMC\cdot Ym\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot Y\xi MC\cdot\rho^{Y}MC\cdot Ym\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot Y\xi MC\cdot YCMm\cdot\rho^{Y}CM\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot Y\xi MC\cdot YCMm\cdot Y\Delta^{'}\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot Y\xi MC\cdot YCMm\cdot Y(CmM\cdot C\delta) \cdot\Delta M)\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot Y\xi MC\cdot YCMm\cdot YCmM\cdot YC\delta \cdot Y\Delta M\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot YCm\cdot Y\xi CM\cdot YCmM\cdot Y\Delta MM \cdot Y\delta\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot YCm\cdot Y\Delta M\cdot Y\xi M\cdot Y\delta\cdot \rho^{Y}\\ =&XmM\cdot X\delta\cdot XC\Gamma_{M}\cdot XCM\varepsilon\cdot fCMC\cdot YCm\cdot Y\Delta M\cdot \rho^{Y}\\ =&XmM\cdot XCM\Gamma_{M}\cdot XCMM\varepsilon\cdot X\delta C\cdot fCMC\cdot YCm\cdot Y\Delta M\cdot \rho^{Y}\\ =&XmM\cdot XCM\Gamma_{M}\cdot XCMM\varepsilon\cdot fCMMC\cdot Y\delta C\cdot YCm\cdot Y\Delta M\cdot \rho^{Y}\\ =&XmM\cdot XCM\Gamma_{M}\cdot XCMM\varepsilon\cdot fCMMC\cdot YCMm \cdot YCmM \cdot Y\Delta MM\cdot Y\delta \cdot \rho^{Y}\\ =&XMC\Gamma_{M}\cdot XMCM\varepsilon \cdot XmMC\cdot fCMMC\cdot YCMm \cdot YCmM \cdot Y\Delta MM\cdot Y\delta \cdot \rho^{Y}\\ =&XMC\Gamma_{M}\cdot XMCM\varepsilon \cdot fMCMC \cdot YmMC \cdot YCMm \cdot YCmM \cdot Y\Delta MM\cdot Y\delta \cdot \rho^{Y}\\ =&XMC\Gamma_{M}\cdot XMCM\varepsilon \cdot fMCMC \cdot YMCm \cdot YmCM \cdot YCmM \cdot Y\Delta MM\cdot Y\delta \cdot \rho^{Y}\end{aligned}$
$\begin{aligned} =&XMC\Gamma_{M}\cdot XMCM\varepsilon \cdot XMCm \cdot fMCCM \cdot Y M\Delta M \cdot YmM \cdot Y\delta \cdot \rho^{Y}\\ =&XMC(\Gamma_{M}\cdot M\varepsilon \cdot m )\cdot fMCCM \cdot Y M\Delta M \cdot YmM\cdot Y\delta \cdot \rho^{Y}\\ =&XMC(\mu_{M}\cdot \varepsilon M )\cdot X M\Delta M \cdot fMCM \cdot YmM\cdot Y\delta \cdot \rho^{Y}\\ =&XM(C\mu_{M}\cdot C\varepsilon M \cdot \Delta M )\cdot fMCM \cdot YmM\cdot Y\delta \cdot \rho^{Y}\\ =&fMCM\cdot YmM\cdot Y\delta\cdot\rho^{Y}; \\ \hat{f}CM\cdot\rho^{Y}=&(X\Gamma_{M}\cdot XM\varepsilon\cdot fMC\cdot Ym\cdot \rho^{Y})CM\cdot\rho^{Y}\\ =&X\Gamma_{M}CM\cdot XM\varepsilon CM\cdot fMCCM\cdot YmCM\cdot \rho^{Y}CM\cdot\rho^{Y}\\ =&X\Gamma_{M}CM\cdot XM\varepsilon CM\cdot fMCCM\cdot YmCM\cdot Y\Delta^{'}\cdot\rho^{Y}\\ =&X\Gamma_{M}CM\cdot XM\varepsilon CM\cdot fMCCM\cdot YmCM\cdot YCmM\cdot YC\delta \cdot Y\Delta M\cdot\rho^{Y}\\ =&X\Gamma_{M}CM\cdot XM\varepsilon CM\cdot fMCCM\cdot YmCM\cdot YCmM\cdot Y\Delta MM\cdot Y\delta\cdot\rho^{Y}\\ =&fMCM \cdot Y\Gamma_{M}CM\cdot YM\varepsilon CM\cdot YmCM\cdot YCmM\cdot Y\Delta MM\cdot Y\delta\cdot\rho^{Y}\\ =&fMCM \cdot Y\Gamma_{M}CM\cdot YM\varepsilon CM\cdot Ym\Delta M\cdot YmM\cdot Y\delta\cdot\rho^{Y}\\ =&fMCM \cdot Y(\Gamma_{M}C\cdot M\varepsilon C\cdot m\Delta )M\cdot YmM\cdot Y\delta\cdot\rho^{Y}\\ =&fMCM\cdot YmM\cdot Y\delta\cdot\rho^{Y}. \end{aligned}$

故有

$\hat{f}CM\cdot\rho^{Y}=\rho^{XM}\cdot\hat{f}.$

$g:(Y,\rho^{Y})\longrightarrow (X,\rho^{X})M=(XM,\rho^{XM}),$

$g$为右$CM$-余线性的, 且

$\rho^{XM}=XmM\cdot X\delta\cdot\rho^{X}M. $

$\tilde{g}=\Gamma_{X}\cdot X\varepsilon\cdot X\xi\cdot\rho^{X}M\cdot g$, 则$\tilde{g}$是右$C$-余线性的, 因为

$\begin{aligned} \tilde{g}C\cdot{\rho_{\xi}}^{Y}=&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot\rho^{X}MC\cdot gC\cdot Y\xi\cdot\rho^{Y}\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot\rho^{X}MC\cdot XM\xi \cdot gCM \cdot\rho^{Y}\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot\rho^{X}MC\cdot XM\xi \cdot \rho^{XM} \cdot g\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot\rho^{X}MC\cdot XM\xi \cdot XmM\cdot X\delta\cdot\rho^{X}M \cdot g\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot\rho^{X}MC\cdot X(M\xi \cdot mM\cdot \delta)\cdot\rho^{X}M \cdot g\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot\rho^{X}MC\cdot Xm\cdot\rho^{X}M \cdot g\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot X\xi C\cdot XCm\cdot \rho^{X}CM\cdot\rho^{X}M \cdot g\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot XC\xi \cdot \rho^{X}CM\cdot\rho^{X}M \cdot g\\ =&\Gamma_{X}C\cdot X\varepsilon C\cdot\rho^{X}C\cdot X\xi\cdot\rho^{X}M \cdot g\\ =&\rho^{X}\cdot\Gamma_{X} \cdot X\varepsilon \cdot X\xi\cdot\rho^{X}M \cdot g\\ =&\rho^{X}\cdot\tilde{g}. \end{aligned}$

下证$\hat{-}$$\tilde{-}$互逆.若$f$$g$如上, 根据定义, 则有

$\begin{aligned} \tilde{\hat{f}}=&\Gamma_{X}\cdot X\varepsilon\cdot X\xi\cdot\rho^{X}M\cdot \hat{f}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot X\xi\cdot\rho^{X}M\cdot X\Gamma_{M}\cdot XM\varepsilon\cdot fMC\cdot Ym\cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot X\xi\cdot\rho^{X}M\cdot fM\cdot Y\Gamma_{M}\cdot YM\varepsilon\cdot Ym\cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot X\xi\cdot fCM\cdot Y\xi M\cdot\rho^{Y}M\cdot Y\Gamma_{M}\cdot YM\varepsilon\cdot Ym\cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot X\xi\cdot fCM\cdot Y\xi M\cdot\rho^{Y}M\cdot Y\mu_{M}\cdot Y\varepsilon M\cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot\rho^{Y}M\cdot Y\mu_{M}\cdot Y\varepsilon M\cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot YC\Gamma_{M}M\cdot YCM\varepsilon M\cdot\rho^{Y}CM \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot YC\Gamma_{M}M\cdot YCM\varepsilon M\cdot Y\Delta^{'} \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot YC\Gamma_{M}M\cdot YCM\varepsilon M\cdot YCmM\cdot YC\delta \cdot Y\Delta M \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot YC(\Gamma_{M}\cdot M\varepsilon \cdot m)M\cdot YC\delta \cdot Y\Delta M \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot YC\mu_{M}M\cdot\varepsilon MM\cdot YC\delta \cdot Y\Delta M \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot YC\mu_{M}M\cdot\varepsilon MM\cdot Y\Delta MM\cdot Y\delta \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi\cdot Y\xi M\cdot Y\delta \cdot \rho^{Y}\\ =&\Gamma_{X}\cdot X\varepsilon\cdot fC\cdot Y\xi \cdot \rho^{Y}\\ =&f\cdot\Gamma_{Y}\cdot Y\varepsilon\cdot Y\xi \cdot \rho^{Y}\\ =&f\cdot\Gamma_{Y}\cdot Y\varepsilon^{'} \cdot \rho^{Y}\\ =&f; \\ \hat{\tilde{g}} =&X\Gamma_{M}\cdot XM\varepsilon\cdot \tilde{g}MC\cdot Ym\cdot \rho^{Y}\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot X\xi MC\cdot\rho^{X}MMC \cdot gMC\cdot Ym\cdot \rho^{Y}\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot X\xi MC\cdot\rho^{X}MMC \cdot XMm \cdot gCM\cdot \rho^{Y}\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot X\xi MC\cdot\rho^{X}MMC \cdot XMm \cdot XmM \cdot X\delta\cdot\rho^{X}M\cdot g\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot X\xi MC\cdot XCmM\cdot XCmM \cdot \rho^{X}CMM \cdot X\delta\cdot\rho^{X}M\cdot g\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot X\xi MC\cdot XCmM\cdot XCmM \cdot XC\delta\cdot \rho^{X}CM \cdot\rho^{X}M\cdot g\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot X\xi MC\cdot XCmM\cdot XCmM \cdot XC\delta\cdot X\Delta M \cdot\rho^{X}M\cdot g\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot XCm\cdot X\xi CM \cdot XCmM \cdot XC\delta\cdot X\Delta M \cdot\rho^{X}M\cdot g\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot \Gamma_{X}MC \cdot X\varepsilon MC \cdot XCm\cdot X\Delta M \cdot X\xi M \cdot X\delta\cdot \cdot\rho^{X}M\cdot g\\ =&X\Gamma_{M}\cdot XM\varepsilon\cdot Xm \cdot\Gamma_{X}CM \cdot X\varepsilon CM\cdot X\Delta M\cdot\rho^{X}M\cdot g\\ =&\Gamma_{X}M\cdot X\varepsilon M\cdot\rho^{X}M\cdot g\\ =&g. \end{aligned}$
参考文献
[1] Moerdijk I. Monads on tensor categories[J]. J. Pure Appl. Algebra, 2002, 168(2-3): 189–208. DOI:10.1016/S0022-4049(01)00096-2
[2] Lack S, Street R. The formal theory of monad ii[J]. J. Pure Appl. Algebra, 2002, 175(1-3): 243–265. DOI:10.1016/S0022-4049(02)00137-8
[3] Benabou J. Introduction to bicategories: in report of the midwest category seminar[J]. Lecture Notes in Math., Springer-Verlag, 1967, 47: 1–77. DOI:10.1007/BFb0074298
[4] Mac Lane S. Categories for the working mathematician[M]. New York: Springer-Verlag, 1998.
[5] 代瑞香. 余导子与余积分及其性质[J]. 石河子大学学报(自然科学版), 2010, 28(5): 658–660.
[6] El Kaoutit L. Extended distributive law: Co-wreath over co-rings[J]. arXiv: math.RA/0612818, 2006.
[7] Skoda Z. Distributive laws for actions of monoidal categories[J]. arXiv:math.CT/0406310, 2004.
[8] Caenepeel S, Ion B, Militaru G, Zhu S L. The factorization problem and the smash biproduct of algberas and coalgebras[J]. Algebras Represent Theory, 2002(3): 19–42.