数学杂志  2015, Vol. 35 Issue (4): 941-944   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
艾小川
陈建华
陈华
张四兰
高次高斯和均值的精确计算公式
艾小川1,2, 陈建华2, 陈华3, 张四兰4    
1. 海军工程大学理学院, 湖北 武汉 430033;
2. 武汉大学数学与统计学院, 湖北 武汉 430072;
3. 湖北工业大学理学院, 湖北 武汉 430068;
4. 华中农业大学理学院, 湖北 武汉 430070
摘要:本文研究了高次高斯和的计算问题.利用指数和的相关性质及各种变换技巧与方法, 获得了高次均值的一个精确计算公式, 拓展了经典高斯和均值计算的结果.
关键词高斯和    指数和    高次均值    Dirichlet特征    
EXPLICIT FORMULAS FOR THE MEAN VALUE OF HIGH GAUSS SUMS
AI Xiao-chuan1,2, CHEN Jian-hua2, CHEN Hua3, ZHANG Si-lan4    
1. School of Science, Navy University of Engineering, Wuhan 430033, China;
2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;
3. School of Science, Hubei University of Technology, Wuhan 430068, China;
4. College of Science, Huazhong Agricultural University, Wuhan 430070, China
Abstract: In this paper, the computation problem of the kth Gauss sums is studied and an explicit formula of the mean value is obtained.By using the properties of exponential sums and various techniques and methods, the mean value of classical Gauss sums is promoted.
Key words: Gauss sums     exponential sums     mean value     Dirichlet character    
1 引言

$q \ge 3$为奇数, $k, n$为整数且 $k\ge 2, (n, q)=1$, 我们考虑 $k$次高斯和

$ \begin{equation} G(n, \chi ;q) = \sum\limits_{a = 1}^q {\chi (a)e(\frac{{na^k }}{q})}, \end{equation} $ (1.1)

其中 $e(x)=e^{2\pi ix}$, $\chi (a)$为模 $q$的Dirichlet特征.高斯和本质上为带Dirichlet特征的指数和.指数和的研究源于著名的华林问题, 它是加法数论中的一个非常重要的问题.国内外许多著名的学者致力于指数和的研究并获得了丰硕的研究成果[1-12].

单个指数和的取值并不规则, 但是其高次均值却呈现出良好的分布性质.目前, 指数和高次均值的计算已成为这一领域的热点问题.近几年, 对于指数和高次均值的研究也取得了较多的成果[8-12].

本文研究了高次高斯和 $G(n, \chi ;q) = \sum\limits_{a = 1}^q {\chi (a)e(\frac{{na^k }}{q})}$的计算, 并获得了其高次均值的精确计算公式, 主要结果如下:

定理1.1  设 $q \ge 3$为奇数, $l, k, n$是正整数且 $(n, q) = (k, \phi (q)) = 1$, 则我们有

$ \begin{eqnarray*} \sum\limits_{\chi \bmod q}^{} {|G(n, \chi;q)|^{2l} } = \sum\limits_{\chi \bmod q}^{} {|\sum\limits_{a = 1}^q {\chi (a)e(\frac{{na^k }}{q})} |^{2l} }\\ =\prod\limits_{p\left\| q \right.}^{} {[p^l (p-2) + 1]} \cdot \prod\limits_{\scriptstyle p^\alpha \left\| q \right. \atop \scriptstyle \, \alpha \ge 2 }^{} {p^{(l + 1)\alpha - 2} (p - 1)^2 }, \end{eqnarray*} $

这里 $\prod\limits_{p^\alpha ||q} {}$表示乘积遍历 $q$所有不同的素因子 $p$且满足

2 引理

引理2.1  令 $p \ge 3$为奇素数, $n, k, \alpha, l$是正整数且 $(n, p) = (k, \phi (p^\alpha )) = 1, $则有

$ \begin{equation*} \sum\limits_{\chi \bmod p^\alpha }^{} {|G(n, \chi ;p^\alpha )|^{2l} } = \left\{ {\begin{array}{*{20}c} {p^l (p - 2) + 1, \quad \;\alpha = 1, } \\ {p^{(l + 1)\alpha - 2} (p - 1)^2, \;\alpha \ge 2, } \end{array}} \right. \end{equation*} $

这里 $\phi (q)$是欧拉函数.

  若 $(k, \phi (p^\alpha )) = 1, $则存在整数 $s$ $t$使得 $ks + \phi (p^\alpha )t = 1, $则显然有 $(s, \phi (p^\alpha )) = 1.$ $a$过模 $p^\alpha$的缩余系, 则 $a^s$亦过模 $p^\alpha$的缩余系, 则

$ \begin{equation*} G(n, \chi ;p^\alpha ) = \sum\limits_{a = 1}^{p^\alpha } {\chi (a)e(\frac{{na^k }}{{p^\alpha }})} = \sum\limits_{a = 1}^{p^\alpha } {\chi (a^s )e(\frac{{na^{ks} }}{{p^\alpha }})} = \sum\limits_{a = 1}^{p^\alpha } {\chi ^s (a)e(\frac{{na}}{{p^\alpha }})}. \end{equation*} $

情形1   $\alpha = 1.$ $\chi {\rm{ = }}\chi _0$是模 $p$的主特征, 则 $\chi ^s$也为模 $p$的主特征, 所以

$ | {\sum\limits_{a = 1}^p {\chi ^s (a)e(\frac{{na}}{p})} } |{\rm{ = }}| {\sum\limits_{a = 1}^p {\chi _0 ^s (a)e(\frac{{na}}{p})} } | = | {\sum\limits_{a = 1}^{p{\rm{ - }}1} {e(\frac{{na}}{p})} } | = 1. $

$\chi$不是模 $p$的主特征, 则易见 $\chi ^s$也不是模 $p$的主特征, 显然 $\chi ^s$是模 $p$的原特征, 所以 $ \left| {\sum\limits_{a = 1}^p {\chi ^s (a)e(\frac{{na}}{p})} } \right| = \sqrt p, $则有

$ \begin{eqnarray*} \sum\limits_{\chi \bmod p}^{} {|G(n, \chi ;p)|^{2l} }&= &\sum\limits_{\scriptstyle \quad \chi \bmod p \atop \scriptstyle \quad \chi \ne \chi _0 }^{} {|G(n, \chi ;p)|^{2l} } + |G(n, \chi _0 ;p)|^{2l}\\ &= &(\sqrt p )^{2l} (p - 2) + 1 = p^l (p - 2) + 1. \end{eqnarray*} $

情形2   $\alpha \ge 2.$ $\chi$是模 $p^\alpha$的原特征, 则由文献[13]第七章第3节内容可知 $\chi ^s$也是模 $p^\alpha$的原特征, 所以 $ | {\sum\limits_{a = 1}^{p^\alpha } {\chi ^s (a)e(\frac{{na}}{{p^\alpha }})} } | = \sqrt {p^\alpha }. $ $\chi$不是模 $p^\alpha$的原特征, 则 $\chi ^s$亦不是模 $p^\alpha$的原特征, 由文献[13]中定理7.2可知 $ \sum\limits_{a = 1}^{p^\alpha } {\chi ^s (a)e(\frac{{na}}{{p^\alpha }})} = 0. $所以

$ \begin{eqnarray*} \sum\limits_{\chi \bmod p^\alpha }^{} {|G(n, \chi ;p^\alpha )|^{2l} } &=& \sum\limits_{\scriptstyle \;\;\chi \bmod p^\alpha \atop \scriptstyle \chi {\hbox{为原特征}}\, }^{} {|G(n, \chi ;p^\alpha )|^{2l} } + \sum\limits_{\scriptstyle \;\chi \bmod p^\alpha \atop \scriptstyle \chi {\hbox{为非原特征}}\, }^{} {|G(n, \chi ;p^\alpha )|^{2l} }\\ &=&(\sqrt {p^\alpha } )^{2l} (\phi (p^\alpha ) - \phi (p^{\alpha - 1} )) = p^{(l + 1)\alpha - 2} (p - 1)^2 . \end{eqnarray*} $

引理2.2  令整数 $q = p_1 ^{\alpha _1 } p_2 ^{\alpha _2 } \cdots p_t ^{\alpha _t }, $这里 $p_1, p_2, \cdots, p_t$ $q$的所有素因子, 则有

$ \begin{equation*} \sum\limits_{\chi \bmod q}^{} {|G(n, \chi ;q)|^{2l} } = \sum\limits_{\chi \bmod q}^{} {|\sum\limits_{a = 1}^q {\chi (a)e(\frac{{na^k }}{q})} |^{2l} } . \end{equation*} $

  由文献[8]的引理2.2可知

$ \begin{equation*} | {\sum\limits_{a = 1}^{q_1 q_2 } {\chi (a)e(\frac{{f(a)}}{{q_1 q_2 }})} } | = | {\sum\limits_{a = 1}^{q_1 } {\chi _1 (q_2 a)e(\frac{{f(q_2 a)}}{{q_1 q_2 }})} } || {\sum\limits_{a = 1}^{q_2 } {\chi _2 (q_1 a)e(\frac{{f(q_1 a)}}{{q_1 q_2 }})} } |, \end{equation*} $

在上式中令 $f(a) = na^k, $则有

$ \begin{eqnarray*} | {\sum\limits_{a = 1}^{q_1 q_2 } {\chi (a)e(\frac{{na^k }}{{q_1 q_2 }})} }|&= & | {\sum\limits_{a = 1}^{q_1 } {\chi _1 (q_2 a)e(\frac{{nq_2 ^k a^k }}{{q_1 q_2 }})} } || {\sum\limits_{a = 1}^{q_2 } {\chi _2 (q_1 a)e(\frac{{nq_1 ^k a^k }}{{q_1 q_2 }})} } |\\ &= &| {\sum\limits_{a = 1}^{q_1 } {\chi _1 (q_2 a)e(\frac{{nq_2 ^{k - 1} a^k }}{{q_1 }})} } | | {\sum\limits_{a = 1}^{q_2 } {\chi _2 (q_1 a)e(\frac{{nq_1 ^{k - 1} a^k }}{{q_2 }})} } |\\ &= &| {\sum\limits_{a = 1}^{q_1 } {\chi _1 (q_2 a)e(\frac{{n_1 a^k }}{{q_1 }})} } || {\sum\limits_{a = 1}^{q_2 } {\chi _2 (q_1 a)e(\frac{{n_2 a^k }}{{q_2 }})} } |, \end{eqnarray*} $

这里 $(n_1, q_1 ) = 1, (n_2, q_2 ) = 1.$所以

$ \begin{eqnarray*} &&\sum\limits_{\chi \bmod q}^{} {|G(n, \chi ;q)|^{2l} } = \sum\limits_{\chi \bmod q}^{} {|\sum\limits_{a = 1}^q {\chi (a)e(\frac{{na^k }}{q})} |^{2l} }\\ &=&\sum\limits_{\chi _1 \bmod p_1 ^{\alpha _1 } } {\sum\limits_{\chi _2 \bmod p_2 ^{\alpha _2 } } { \cdots \sum\limits_{\chi _r \bmod p_r ^{\alpha _r } }^{} {\prod\limits_{i = 1}^r {|\sum\limits_{a = 1}^{p_i ^{\alpha _i } } {\chi _i (a)e(\frac{{n_i a^k }}{{p_i ^{\alpha _i } }})} |^{2l} } } } }\\ &= &\prod\limits_{i = 1}^r {\sum\limits_{\chi _i \bmod p_i ^{\alpha _i } } {|\sum\limits_{a = 1}^{p_i ^{\alpha _i } } {\chi _i (a)e(\frac{{n_i a^k }}{{p_i ^{\alpha _i } }})} |^{2l} } } = \prod\limits_{p^\alpha \left\| q \right.}^{} {\sum\limits_{\chi \bmod p^\alpha } {|\sum\limits_{a = 1}^{p^\alpha } {\chi (a)e(\frac{{na^k }}{{p^\alpha }})} |^{2l} } }, \end{eqnarray*} $

其中 $n_i = n\left( {\frac{q}{{p_i ^{\alpha _i } }}} \right)^{k - 1}, (n_i, p_i ) = 1.$

3 定理的证明

下面我们证明定理1.1.

  由引理2.2, 可知

$ \begin{eqnarray*} &&\sum\limits_{\chi \bmod q}^{} {|G(n, \chi ;q)|^{2l} } = \sum\limits_{\chi \bmod q}^{} {|\sum\limits_{a = 1}^q {\chi (a)e(\frac{{na^k }}{q})} |^{2l} } = \prod\limits_{p^\alpha \left\| q \right.}^{} {\sum\limits_{\chi \bmod p^\alpha } {|\sum\limits_{a = 1}^{p^\alpha } {\chi (a)e(\frac{{na^k }}{{p^\alpha }})} |^{2l} } }\\ &=&\prod\limits_{p\left\| q \right.}^{} {\sum\limits_{\chi \bmod p} {|\sum\limits_{a = 1}^p {\chi (a)e(\frac{{na^k }}{p})} |^{2l} } } \cdot \prod\limits_{\scriptstyle p^\alpha \left\| q \right. \atop \scriptstyle \alpha \ge 2 }^{} {\sum\limits_{\chi \bmod p^\alpha } {|\sum\limits_{a = 1}^{p^\alpha } {\chi (a)e(\frac{{na^k }}{{p^\alpha }})} |^{2l} } }, \end{eqnarray*} $

结合引理2.1的结论, 有

$ \begin{equation*} \sum\limits_{\chi \bmod q}^{} {|G(n, \chi ;q)|^{2l} } = \prod\limits_{p\left\| q \right.}^{} {[p^l (p-2) + 1]} \cdot \prod\limits_{\scriptstyle p^\alpha \left\| q \right. \atop \scriptstyle \, \alpha \ge 2 }^{} {p^{(l + 1)\alpha - 2} (p - 1)^2 }, \end{equation*} $

这里 $\chi = \chi _1 \chi _2 \cdots \chi _r \bmod q, \chi _j (j = 1, 2, \cdots, t)$是模 $p_j ^{\alpha _j }$的特征.

参考文献
[1] Darvenport H, Heibronn H. On an exponential sum[J]. Proc. London Math. Soc, 1936, 41: 49–53.
[2] Hua L K. On exponential sums[J]. Sci Record (Peking)(N.S.), 1982, 26(2): 15–20.
[3] Loxton J H, Smith R A. On Hua' s estimate for exponential sums[J]. J. London Math. Soc, 1982, 26(2): 15–20.
[4] Loxton J H, Vaughan R.C.. The estimate for complete exponential sums[J]. Canada Math. Bull, 1995, 26(4): 442–454.
[5] Smith R A. On n-dimensional Kloosterman sums[J]. J. Number Theory, 1979, 11: 324–343. DOI:10.1016/0022-314X(79)90006-4
[6] Carlitz L. Explicit evaluation of certain exponential sums[J]. Math. Scand, 1979, 44: 5–16. DOI:10.7146/math.scand.a-11793
[7] Carlitz L. Evaluation of some exponential sums over a finite field[J]. Math. Nachr., 1980, 96: 319–339. DOI:10.1002/(ISSN)1522-2616
[8] Xu Z F, Zhang T P, Zhang W P. On the mean value of the two-term exponential sums with Dirichlet characters[J]. J. Number Theory, 2007, 123(2): 352–362. DOI:10.1016/j.jnt.2006.07.005
[9] Liu H N. Mean value of some exponential sums and applications to Kloosterman sums[J]. J. Math. Anal. Appl, 2010, 361(4): 205–223.
[10] Liu H N. Mean value of mixed exponential sums[J]. Proc. Amer. Math. Soc., 2008, 136(4): 1193–1203.
[11] Calderon C, Velasco M J De, Zarate M J. An explicit formula for the fourth moment of certain exponential sums[J]. Acta Math. Hungar, 2011, 130(3): 203–222. DOI:10.1007/s10474-010-0043-5
[12] 王婷婷, 张文鹏. 关于四次及六次混合指数和的均值[J]. 中国科学:数学, 2011, 41(3): 265–270.
[13] 华罗庚. 数论导引[M]. 北京: 科学出版社, 1979.