数学杂志  2015, Vol. 35 Issue (4): 917-926   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
冯丽霞
麻文芳
赵连阔
调和Dirichlet空间上Toeplitz算子与小Hankel算子的交换性
冯丽霞1,2, 麻文芳3, 赵连阔2    
1. 西北大学数学与科学史研究中心, 陕西 西安 710127;
2. 山西师范大学数学与计算机科学学院, 山西 临汾 041004;
3. 朔州市第一中学, 山西 朔州 036000
摘要:本文研究了调和Dirichlet空间上调和符号的Toeplitz算子与小Hankel算子交换性的问题.利用算子矩阵表示的方法, 获得了调和Dirichlet空间上调和符号的Toeplitz算子与小Hankel算子交换的充要条件, 将Dirichlet空间上的相应结果推广到了调和Dirichlet空间上.
关键词调和Dirichlet空间    Toeplitz算子    小Hankel算子    交换性    
COMMUTATIVITY OF TOEPLITZ OPERATOR AND SMALL HANKEL OPERATOR ON HARMONIC DIRICHLET SPACE
FENG Li-xia1,2, MA Wen-fang3, ZHAO Lian-kuo2    
1. Research Center for History of Mathematics and Science, Northwest University, Xi'an 710127, China;
2. School of Mathematics and Computer Sciences, Shanxi Normal University, Linfen 041004, China;
3. First Middle School of Shuozhou City, Shuozhou 036000, China
Abstract: In this paper, we study the commutativity of Toeplitz operator and small Hankel operator on harmonic Dirichlet space.By the matrix representation of Toeplitz operator and small Hankel operator, we obtain the necessity and sufficient condition for Toeplitz operator and small Hankel operator on harmonic Dirichlet space to be commutativity, which extends the corresponding results on Dirichlet space.
Key words: harmonic Dirichlet space     Toeplitz operator     small Hankel operator     commutativity    
1 引言

最近几年, 单圆盘Dirichlet空间上的Toeplitz算子得到深入研究, 取得了丰富的成果[1-8].同时调和Dirichlet空间上Toeplitz算子的研究也受到关注[9-12].文[10, 11]分别给出了调和Dirichlet空间上调和符号Toeplitz算子的(半)交换性与乘积为零的刻画.文[12]推广了[10, 11]中的结论, 给出了一般符号Toeplitz算子一些代数性质及紧性的刻画.本文, 我们考虑调和Dirichlet空间上调和符号的Toeplitz算子与小Hankel算子的交换性.

首先我们回顾调和Dirichlet空间及其上Toeplitz算子和小Hankel算子的基本知识.

$\mathbb{D}$是复平面 $\mathbb{C}$上的单位开圆盘, $dA$表示 $\mathbb{D}$上正规化的面积测度.称 $\mathbb{D}$上光滑函数 $f$在如下范数

$ \begin{eqnarray*}\|f\|=\bigg{\{}\bigg{|}\int_\mathbb{D}f dA\bigg{|}^2+\int_\mathbb{D}\bigg{(}\bigg{|}\frac{\partial f}{\partial z}\bigg{|}^2+\bigg{|}\frac{\partial f}{\partial\bar{z}}\bigg{|}^2\bigg{)}dA\bigg{\}}^\frac{1}{2}<\infty, \end{eqnarray*} $

取闭包所得到的空间为Sobolev空间, 记为 $\mathcal{S}$.则 $\mathcal{S}$是一个Hilbert空间, 其上内积为

$ \langle f, g\rangle=\int_\mathbb{D} f dA\int_\mathbb{D} \overline{g}dA + \int_\mathbb{D} \bigg{(}\frac{\partial f}{\partial z}\overline{\frac{\partial g}{\partial z}}+\frac{\partial f}{\partial \bar{z}}\overline{\frac{\partial g}{\partial \bar{z}}}\bigg{)}dA, \ \ f, g\in S. $

Dirichlet空间是由 $\mathcal{S}$中所有满足条件 $f(0)=0$的解析函数 $f$构成的闭子空间, 记为 $\mathcal{D}$. $\mathcal{D}$的一组标准正交基为 $\{\frac{z^n}{\sqrt{n}}\}_{n=1}^\infty$.

$\mathcal{S}$中所有调和函数构成的闭子空间称为调和Dirichlet空间, 记为 $\mathcal{D}_h$.显然有

$ \mathcal{D}_h=\mathcal{D}\oplus \mathbb{C}\oplus \overline{\mathcal{D}}, $

其中 $\overline{\mathcal{D}}=\{\bar{f}\ \mid \ f\in\mathcal{D}\}$. $\mathcal{D}_h$的一组标准正交基为 $\{\frac{z^n}{\sqrt{n}}\}_{n=1}^\infty\cup\{1\}\cup\{\frac{\bar{z}^n}{\sqrt{n}}\}_{n=1}^\infty$.

$\mathbb{D}$上的一个非负测度 $\mu$称为 $\mathcal{D}$-Carleson测度如果存在非负常数 $c$, 使得

$ \int_\mathbb{D}|f|^2d\mu\leq c\|f\|^2, \ f\in\mathcal{D}. $

$\mathbb{D}$上所有有界解析函数全体记为 $H^\infty(\mathbb{D})$.令

$ \mathcal{M}=\bigg{\{}u\ \text{是}\ \mathbb{D} \text{上的调和函数}\ \bigg{|} \begin{array}{c}u=f+\bar{g}, \quad f, g\in H^\infty(\mathbb{D}), \;\;\;\;\\ |f^\prime|^2dA, \ |g^\prime|^2dA\ \text{是}\ \mathcal{D}-\text{Carleson 测度}\;\;\;\;\end{array}\bigg{\}}. $

$\phi\in \mathcal{M}$, $\mathcal{D}_h$上的Toeplitz算子 $\widetilde{T}_\phi$定义为

$ \widetilde{T}_\phi(f)=Q(\phi f), \quad f\in\mathcal{D}_h, $

其中 $Q$是从 $S$ $\mathcal{D}_h$上的正交投影. $\widetilde{T}_\phi$ $\mathcal{D}_h$上的有界算子[12].

定义 $\mathcal{S}$上的算子 $U:$ $(Uf)(z)=f(\bar{z})$, $f\in\mathcal{S}$.则 $U$ $\mathcal{S}$上的酉算子, $U^*=U=U^{-1}$[9].

对于 $\phi\in \mathcal{M}$, 定义 $\mathcal{D}_h$上的小Hankel算子 $\widetilde{\mathit{\Gamma}}_\phi$

$ \widetilde{\mathit{\Gamma}}_\phi(f)=Q(U(\phi f)), \quad f\in\mathcal{D}_h. $

容易验证 $\widetilde{\mathit{\Gamma}}_\phi$是有界算子.实际上, 如果记 $\hat{f}(z)=f(\bar{z})$, $f\in\mathcal{S}$, 则有 $\widetilde{\mathit{\Gamma}}_\phi=\widetilde{T}_{\hat{\phi}}U$.

在Hardy空间上, 文[13, 14]分别给出了Toeplitz算子与Hankel算子交换性和本质交换性的刻画.文[8]将Dirichlet空间上调和符号Toeplitz算子与小Hankel算子的交换性转化为Hardy空间上相应问题的研究.但目前关于调和函数空间上Toeplitz算子与(小) Hankel算子的交换性研究较少.文[15, 16]研究了调和Bergman空间上Toeplitz算子的交换性.

利用Sobolev空间的正交分解, 文[7]和[12]分别刻画了Dirichlet空间和调和Dirichlet空间上一般符号Toeplitz算子的代数性质等, 其证明过程表明, 在Dirichlet空间和调和Dirichlet空间上一般符号定义的Toeplitz算子与调和符号定义的Toeplitz算子有着密切的联系, 一般符号Toeplitz算子的研究可转化为相应调和符号Toeplitz算子的研究上.因此本文集中研究调和符号定义的Toeplitz算子和Hankel算子.主要结论如下.

定理1.1  设 $\varphi$, $\psi\in\mathcal{M}$.在 $\mathcal{D}_h$ $\widetilde{T}_\varphi\widetilde{\mathit{\Gamma}}_\psi=\widetilde{\mathit{\Gamma}}_\psi\widetilde{T}_\varphi$当且仅当下列条件之一成立:

$1^\circ$ $\varphi$是常数;

$2^\circ$ $\varphi$不是常数, 存在常数 $\alpha$, $\beta$使得 $\psi=\alpha\varphi+\beta$, 且当 $\alpha\neq 0$ $\beta\neq 0$时, $\varphi=U\varphi$.

2 主要结论的证明

本节, 我们给出定理1.1的证明.

$P$是从 $S$ $\mathcal{D}$上的正交投影, $P_1$是从 $S$ $\bar{\mathcal{D}}$上的正交投影, 则 $P_1=UPU$[9].对于从 $S$ $\mathcal{D}_h$上的正交投影 $Q$, 我们有下面的结论.

引理2.1   $UQ=QU$.即 $\forall\ f\in\mathcal{S}, \ (UQ)f=(QU)f.$

  设 $f\in S$, 则

$ Q(f)=P(f)+\langle f, 1\rangle + P_1(f). $

因此

$ \begin{eqnarray*} && (UQ)f=UPf+U\langle f, 1\rangle+UP_{1}f =UPf+\langle f, 1\rangle+PUf, \\ && (QU)f=PUf+\langle Uf, 1\rangle+P_{1}Uf=PUf+\langle\hat{f}, 1\rangle+UPf. \end{eqnarray*} $

因为

$ \langle f, 1\rangle=\int_{\mathbb{D}}f(z)dA(z)=\int_{\mathbb{D}}f(\bar{z})dA(z)=\langle \hat{f}, 1\rangle, $

所以由上面两个等式可得 $(UQ)f=(QU)f, $ $f\in S$.证毕.

容易验证 $U$ $\overline{\mathcal{D}}$映到 $\mathcal{D}$上.定义算子 $\widetilde{U}:$ $\mathcal{D}_h=\mathcal{D}\oplus \mathbb{C}\oplus \overline{\mathcal{D}}\rightarrow \mathcal{D}\oplus \mathbb{C}\oplus \mathcal{D}$, 其中

$ \tilde{U}=\left( \begin{array}{ccc} I&0&0\\ 0&1&0\\ 0&0&U \end{array} \right). $

显然, $\tilde{U}^*$ $\mathcal{D}\oplus \mathbb{C}\oplus \mathcal{D}$映到 $\mathcal{D}_h$上, 且

$ \tilde{U}^*=\left( \begin{array}{ccc} I&0&0\\ 0&1&0\\ 0&0&U \end{array} \right). $

$\phi\in\mathcal{M}$, 定义

$ (1\otimes \phi)(f)=\int_{\mathbb{D}}f(z)\phi(z)dA(z), \ f\in\mathcal{D}_h, P_\phi(a)=aP(\phi), \ a\in\mathbb{C}. $

$T_\phi$表示 $\mathcal{D}$上的Toeplitz算子, $T_\phi(f)=P(\phi f), \ f\in\mathcal{D}.$ $\mathit{\Gamma}_\phi$表示 $\mathcal{D}$上的小Hankel算子

$ \mathit{\Gamma}_\phi(f)=P(U(\phi f)), \ \ f\in\mathcal{D}. $

下面的引理分别给出了调和Dirichlet空间上Topelitz算子与小Hankel算子的矩阵表示.它们表明调和Dirichlet空间上Topelitz算子与小Hankel算子与Dirichlet空间上Topelitz算子与小Hankel算子有着密切的联系.这一思想来自于文[17].

引理2.2[9]  设 $\phi\in\mathcal{M}$, 则在 $\mathcal{D}\oplus\mathbb{C}\oplus\mathcal{D}$上,

$ \begin{eqnarray*} \tilde{U}\tilde{T}_\phi\tilde{U}^*=\left( \begin{array}{ccc} T_\phi&P_\phi&\mathit{\Gamma}_{\hat{\phi}}\\ 1\otimes \phi&1\otimes \phi&1\otimes \hat{\phi}\\ \mathit{\Gamma}_{\phi}&P_{\hat{\phi}}&T_{\hat{\phi}} \\ \end{array} \right). \end{eqnarray*} $

引理2.3  设 $\phi\in\mathcal{M}$.则在 $\mathcal{D}\oplus\mathbb{C}\oplus\mathcal{D}$上,

$ \begin{eqnarray*} \tilde{U}\tilde{\mathit{\Gamma}}_\phi\tilde{U}^*=\left( \begin{array}{ccc} \mathit{\Gamma}_\phi&P_{\hat{\phi}}&T_{\hat{\phi}}\\ 1\otimes \phi&1\otimes {\hat{\phi}}&1\otimes {\hat{\phi}}\\ T_\phi&P_\phi&\mathit{\Gamma}_{\hat{\phi}} \end{array} \right). \end{eqnarray*} $

  设 $(f_1, \ a, \ f_2)\in \mathcal{D}\oplus\mathbb{C}\oplus\mathcal{D}$, 直接计算可得

$ \begin{eqnarray*} \widetilde{\mathit{\Gamma}}_{\phi}f_{1}&=&Q(U(\phi f_{1})) =P(U(\phi f_{1}))+\langle\hat{\phi}\hat{f_{1}}, 1\rangle+P_{1}(U(\phi f_{1}))\\ &=&\mathit{\Gamma}_{\phi}f_{1}+(1\otimes\hat{\phi})\hat{f}_{1}+UPU(U(\phi f_{1})) =\mathit{\Gamma}_{\phi}f_{1}+(1\otimes\hat{\phi})\hat{f}_{1}+UP(\phi f_{1})\\ &=&\mathit{\Gamma}_{\phi}f_{1}+(1\otimes\phi)f_{1}+UT_{\phi}f_{1}, \\ \widetilde{\mathit{\Gamma}}_{\phi}a &=&Q(U(\phi a)) =P(\hat{\phi}a)+\langle\hat{\phi}a, 1\rangle+P_{1}(\hat{\phi}a) =P_{\hat{\phi}}(a)+(1\otimes\hat{\phi})(a)+UP_{\phi}(a), \\ \widetilde{\mathit{\Gamma}}_{\phi}\hat{f_{2}}&=&Q(U(\phi\hat{f_{2}}) ) =P(\hat{\phi}f_{2})+\langle\hat{\phi}f_{2}, 1\rangle+P_{1}(\hat{\phi}f_{2})\\ &=&P(\hat{\phi}f_{2})+\langle\hat{\phi}f_{2}, 1\rangle+UPU(\hat{\phi}f_{2}) =T_{\hat{\phi}}f_{2}+(1\otimes\hat{\phi})f_{2}+U\mathit{\Gamma}_{\hat{\phi}}f_{2}. \end{eqnarray*} $

因此

$ \begin{eqnarray*} \widetilde{U}\widetilde{\mathit{\Gamma}}_{\phi}\widetilde{U}^{*}\left( \begin{array}{c} f_{1} \\ a \\ f_{2} \end{array} \right) &=&\widetilde{U}\widetilde{\mathit{\Gamma}}_{\phi}\left( \begin{array}{c} f_{1} \\ a \\ \hat{f_{2}} \end{array} \right) =\widetilde{U}\left( \begin{array}{c} \mathit{\Gamma}_{\phi}f_{1} +P_{\hat{\phi}}(a)+T_{\hat{\phi}}f_{2}\\ (1\otimes\phi)f_{1}+(1\otimes\hat{\phi})(a)+(1\otimes\hat{\phi})f_{2}\\ UT_{\phi}f_{1}+UP_{\phi}(a)+U\mathit{\Gamma}_{\hat{\phi}}f_{2} \end{array} \right)\\ &=&\left( \begin{array}{c} \Gamma_{\phi}f_{1} +P_{\hat{\phi}}(a)+T_{\hat{\phi}}f_{2}\\ (1\otimes\phi)f_{1}+(1\otimes\hat{\phi})(a)+(1\otimes\hat{\phi})f_{2}\\ T_{\phi}f_{1}+P_{\phi}(a)+\mathit{\Gamma}_{\hat{\phi}}f_{2} \end{array} \right)\\ &=&\left( \begin{array}{ccc} \mathit{\Gamma}_\phi&P_{\hat{\phi}}&T_{\hat{\phi}}\\ 1\otimes \phi&1\otimes {\hat{\phi}}&1\otimes {\hat{\phi}}\\ T_\phi&P_\phi&\mathit{\Gamma}_{\hat{\phi}} \end{array} \right)\left( \begin{array}{c} f_{1} \\ a \\ f_{2} \\ \end{array} \right). \end{eqnarray*} $

证毕.

为了方便后面的应用, 下面给出 $\mathcal{D}$上Toeplitz算子与Hankel算子及其它算子在标准正交基 $\{e_n=\frac{z^n}{\sqrt{n}}\}_{n=1}^\infty$下的系数.

引理2.4  设 $\varphi(z)=\sum\limits_{k<0}a_k\bar{z}^{-k}+\sum\limits_{k\geq 0}a_kz^k, $ $\psi(z)=\sum\limits_{k<0}b_k\bar{z}^{-k}+\sum\limits_{k\geq 0}b_kz^k\in\mathcal{M}$, 则

$1^\circ$ $\langle T_\varphi e_n, e_m\rangle=\frac{\sqrt{m}}{\sqrt{n}}a_{m-n}, \ \ \langle \mathit{\Gamma}_\varphi e_n, e_m\rangle=\frac{\sqrt{m}}{\sqrt{n}}a_{-(m+n)}$;

$2^\circ$ $\langle T_{\varphi}\mathit{\Gamma}_{\psi}e_{n}, e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{m-k}b_{-n-k}$, $\langle\mathit{\Gamma}_{\varphi}T_{\psi}e_{n}, e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{-m-k}b_{-n+k}$;

$3^\circ$ $\langle\mathit{\Gamma}_{\varphi}\mathit{\Gamma}_{\psi}e_{n}, e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{-m-k}b_{-n-k}$, $\langle T_{\varphi}T_{\psi}e_{n}, e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{m-k}b_{-n+k}$;

$4^\circ$ $(1\otimes \varphi) e_n =\frac{a_{-n}}{\sqrt{n}(n+1)}, $ $\langle P_{\varphi}(1\otimes\psi)e_{n}, e_{m}\rangle =\frac{\sqrt{m}~a_{m}b_{-n}}{\sqrt{n}(1+n)}$;

$5^\circ$ $\langle T_{\varphi}P_{\psi}1, e_{m}\rangle =\sqrt{m}\sum\limits_{k=1}^\infty a_{m-k}b_{k}$, $\langle P_{\varphi}(1\otimes\psi)1, e_{m}\rangle =\sqrt{m}~a_{m}b_{0}$,

$ \langle\mathit{\Gamma}_{\varphi}P_{\psi}1, e_{m}\rangle =\sqrt{m}\sum\limits_{k=1}^\infty a_{-m-k}b_{k}. $

  直接计算可知 $\langle T_\varphi e_n, e_m\rangle=\frac{\sqrt{m}}{\sqrt{n}}a_{m-n}, \ \ \langle \mathit{\Gamma}_\varphi e_n, e_m\rangle=\frac{\sqrt{m}}{\sqrt{n}}a_{-(m+n)}. $因此

$\begin{eqnarray*} T_\varphi e_n&=&\sum\limits_{k=1}^\infty\frac{\sqrt{k}}{\sqrt{n}}a_{k-n}e_k, \mathit{\Gamma}_\varphi e_n=\sum\limits_{k=1}^\infty\frac{\sqrt{k}}{\sqrt{n}}a_{-(k+n)}e_k.\\ \langle T_{\varphi}\mathit{\Gamma}_{\psi}e_{n}, e_{m}\rangle &=&\langle T_{\varphi}(\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n-k}e_{k}), e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n-k}\langle T_{\varphi}e_{k}, e_{m}\rangle\\ &=&\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{m-k}b_{-n-k}, \\ \langle\mathit{\Gamma}_{\varphi}T_{\psi}e_{n}, e_{m}\rangle &=&\langle\mathit{\Gamma}_{\varphi}(\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n+k}e_{k}), e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n+k}\langle\mathit{\Gamma}_{\varphi}e_{k}, e_{m}\rangle\\ &=&\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{-m-k}b_{-n+k}, \\ % \nonumber to remove numbering (before each equation) \langle\mathit{\Gamma}_{\varphi}\mathit{\Gamma}_{\psi}e_{n}, e_{m}\rangle &=&\langle\mathit{\Gamma}_{\varphi}(\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n-k}e_{k}), e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n-k}\langle\mathit{\Gamma}_{\varphi}e_{k}, e_{m}\rangle\\ &=&\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{-m-k}b_{-n-k}, \\ % \nonumber to remove numbering (before each equation) \langle T_{\varphi}T_{\psi}e_{n}, e_{m}\rangle &=&\langle T_{\varphi}(\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n+k}e_{k}), e_{m}\rangle =\sum\limits_{k=1}^{\infty}\frac{\sqrt{k}}{\sqrt{n}}b_{-n+k}\langle T_{\varphi}e_{k}, e_{m}\rangle\\ &=&\sum\limits_{k=1}^{\infty}\frac{\sqrt{m}}{\sqrt{n}}a_{m-k}b_{-n+k}. \end{eqnarray*} $

同样计算可得

$ \begin{eqnarray*} (1\otimes \varphi) e_n&=& \int_{\mathbb{D}}\varphi e_ndA =\int_{\mathbb{D}}\big{(}\sum\limits_{k<0}a_k\bar{z}^{-k}+\sum\limits_{k\geq 0}a_kz^k\big{)}\frac{z^n}{\sqrt{n}}dA(z) =\frac{a_{-n}}{\sqrt{n}(n+1)}, \\ \langle P_{\varphi}(1\otimes\psi)e_{n}, e_{m}\rangle &=&(1\otimes\psi)e_{n}\langle P(\varphi), e_{m}\rangle =\frac{b_{-n}}{\sqrt{n}(1+n)}\langle \sum\limits_{k>0}a_kz^k, e_m\rangle =\frac{\sqrt{m}~a_{m}b_{-n}}{\sqrt{n}(1+n)}, \\ \langle T_{\varphi}P_{\psi}1, e_{m}\rangle &=&\langle T_{\varphi}P(\psi), e_{m}\rangle =\sum\limits_{k>0}b_{k}\sqrt{k}~\langle T_{\varphi}e_{k}, e_{m}\rangle =\sqrt{m}\sum\limits_{k=1}^\infty a_{m-k}b_{k}, \\ \langle P_{\varphi}(1\otimes\psi)1, e_{m}\rangle &=&((1\otimes\psi)1)\langle P(\varphi), e_{m}\rangle =b_{0}~\langle\sum\limits_{k>0}a_{k}z^{k}~, ~e_{m}\rangle =\sqrt{m}~a_{m}b_{0}, \\ \langle\mathit{\Gamma}_{\varphi}P_{\psi}1, e_{m}\rangle &=&\langle\mathit{\Gamma}_{\varphi}P(\psi), e_{m}\rangle =\sum\limits_{k>0}b_{k}\sqrt{k}~\langle\mathit{\Gamma}_{\varphi}e_{k}~, ~e_{m}\rangle =\sqrt{m}\sum\limits_{k=1}^\infty a_{-m-k}b_{k}. \end{eqnarray*} $

下面我们给出本文主要定理1.1的证明.

  充分性的证明.

$\varphi$是常数时, 则 $\widetilde T_{\varphi}\widetilde{\mathit{\Gamma}}_{\psi}=\widetilde{\mathit{\Gamma}}_{\psi}\widetilde T_{\varphi}$显然成立.

$\varphi$不为常数, $\psi=\alpha\varphi+\beta, $且当 $\alpha\neq 0$ $\beta\neq0$时, $\varphi=\hat{\varphi}$, 则 $\forall~f\in\mathcal{D}_{h}$,

$ \begin{eqnarray*} \widetilde{T}_{\varphi}\widetilde{\mathit{\Gamma}}_{\psi}f &=&\widetilde{T}_{\varphi}\widetilde{\mathit{\Gamma}}_{\alpha\varphi}f +\widetilde{T}_{\varphi}\widetilde{\mathit{\Gamma}}_{\beta}f =\widetilde{T}_{\varphi}Q(U(\alpha\varphi f)) +\widetilde{T}_{\varphi}Q(U(\beta f))\\ &=&\alpha\widetilde{T}_{\varphi}UQ(\varphi f)+\beta\widetilde{T}_{\varphi}Uf =\alpha Q(\varphi UQ(\varphi f))+\beta Q(\varphi Uf) =\alpha\widetilde{\mathit{\Gamma}}_{\hat{\varphi}}\widetilde{T}_{\varphi}f+\beta\widetilde{\mathit{\Gamma}}_{\hat{\varphi}}f, \\ \widetilde{\mathit{\Gamma}}_{\psi}\widetilde{T}_{\varphi}f &=&\widetilde{\mathit{\Gamma}}_{\alpha\varphi}\widetilde{T}_{\varphi}f+\widetilde{\mathit{\Gamma}}_{\beta}\widetilde{T}_{\varphi}f=Q(U(\alpha\varphi \widetilde{T}_{\varphi}f))+Q(\beta UQ(\varphi f))\\ &=&\alpha Q(U(\varphi \widetilde{T}_{\varphi}f))+Q(\beta QU(\varphi f)) =\alpha\widetilde{\mathit{\Gamma}}_{\varphi}\widetilde{T}_{\varphi}f+\beta\widetilde{\mathit{\Gamma}}_{\varphi}f. \end{eqnarray*} $

在上面两式中用到引理2.1.

比较上面两式可知, 当 $\alpha\neq 0$ $\beta\neq0, $ $\varphi=\hat{\varphi}$时, $\widetilde T_{\varphi}\widetilde{\mathit{\Gamma}}_{\psi}=\widetilde{\mathit{\Gamma}}_{\psi}\widetilde T_{\varphi}$.

必要性的证明.

$\widetilde T_{\varphi}\widetilde{\mathit{\Gamma}}_{\psi}=\widetilde{\mathit{\Gamma}}_{\psi}\widetilde T_{\varphi}, $ $\widetilde{U}\widetilde T_{\varphi}\widetilde{U}^{*}\widetilde{U}\widetilde{\mathit{\Gamma}}_{\psi}\widetilde{U}^{*}=\widetilde{U}\widetilde{\mathit{\Gamma}}_{\psi}\widetilde{U}^{*}\widetilde{U}\widetilde T_{\varphi}\widetilde{U}^{*}$, 由引理2.2与引理2.3得

$ \begin{eqnarray*}&& \left( \begin{array}{ccc} T_{\varphi}&P_{\varphi}&\mathit{\Gamma}_{\hat{\varphi}} \\ 1\otimes\varphi&1\otimes\varphi&1\otimes\hat{\varphi} \\ \mathit{\Gamma}_{\varphi}&P_{\hat{\varphi}}&T_{\hat\varphi} \end{array} \right)\left( \begin{array}{ccc} \mathit{\Gamma}_{\psi}&P_{\hat{\psi}}&T_{\hat\psi} \\ 1\otimes\psi&1\otimes\hat{\psi}&1\otimes\hat{\psi} \\ T_{\psi}& P_{\psi}&\mathit{\Gamma}_{\hat{\psi}} \end{array} \right)\\ &=&\left( \begin{array}{ccc} \mathit{\Gamma}_{\psi}&P_{\hat{\psi}}&T_{\hat\psi} \\ 1\otimes\psi&1\otimes\hat{\psi}& 1\otimes\hat{\psi} \\ T_{\psi}& P_{\psi}&\mathit{\Gamma}_{\hat{\psi}} \end{array} \right)\left( \begin{array}{ccc} T_{\varphi}&P_{\varphi}&\mathit{\Gamma}_{\hat{\varphi}} \\ 1\otimes\varphi&1\otimes\varphi&1\otimes\hat{\varphi} \\ \mathit{\Gamma}_{\varphi}&P_{\hat{\varphi}}&T_{\hat\varphi} \end{array} \right). \end{eqnarray*} $

因此

$ T_{\varphi}\mathit{\Gamma}_{\psi}+P_{\varphi}(1\otimes\psi)+\mathit{\Gamma}_{\hat{\varphi}}T_{\psi} =\mathit{\Gamma}_{\psi}T_{\varphi}+P_{\hat{\psi}}(1\otimes\varphi)+T_{\hat{\psi}}\mathit{\Gamma}_{\varphi}, $ (2.1)
$ T_{\varphi}T_{\hat{\psi}}+P_{\varphi}(1\otimes\hat{\psi})+\mathit{\Gamma}_{\hat{\varphi}}\mathit{\Gamma}_{\hat{\psi}} =\mathit{\Gamma}_{\psi}\mathit{\Gamma}_{\hat{\varphi}}+P_{\hat{\psi}}(1\otimes\hat{\varphi})+T_{\hat{\psi}}T_{\hat{\varphi}}, $ (2.2)
$ \mathit{\Gamma}_{\varphi}\mathit{\Gamma}_{\psi}+P_{\hat{\varphi}}(1\otimes\psi)+T_{\hat{\varphi}}T_{\psi} =T_{\psi}T_{\varphi}+P_{\psi}(1\otimes\varphi)+\mathit{\Gamma}_{\hat{\psi}}\mathit{\Gamma}_{\varphi}, $ (2.3)
$ \mathit{\Gamma}_{\varphi}T_{\hat{\psi}}+P_{\hat{\varphi}}(1\otimes\hat{\psi})+T_{\hat{\varphi}}\mathit{\Gamma}_{\hat{\psi}} =T_{\psi}\mathit{\Gamma}_{\hat{\varphi}}+P_{\psi}(1\otimes\hat{\varphi})+\mathit{\Gamma}_{\hat{\psi}}T_{\hat{\varphi}}, $ (2.4)
$ T_{\varphi}P_{\hat{\psi}}+P_{\varphi}(1\otimes\hat{\psi})+\mathit{\Gamma}_{\hat{\varphi}}P_{\psi} =\mathit{\Gamma}_{\psi}P_{\varphi}+P_{\hat{\psi}}(1\otimes\varphi)+T_{\hat{\psi}}P_{\hat{\varphi}}, $ (2.5)
$ \mathit{\Gamma}_{\varphi}P_{\hat{\psi}}+P_{\hat{\varphi}}(1\otimes\hat{\psi})+T_{\hat{\varphi}}P_{\psi} =T_{\psi}P_{\varphi}+P_{\psi}(1\otimes\varphi)+\mathit{\Gamma}_{\hat{\psi}}P_{\hat{\varphi}}, $ (2.6)
$ (1\otimes\varphi)P_{\hat\psi}+(1\otimes\varphi)(1\otimes\hat{\psi})+(1\otimes\hat{\varphi})P_{\psi} =(1\otimes\psi)P_{\varphi}+(1\otimes\hat{\psi})(1\otimes\varphi)+(1\otimes\hat{\psi})P_{\hat{\varphi}}. $ (2.7)

$\varphi(z)=\sum\limits_{k<0}a_{k}\bar{z}^{-k}+\sum\limits_{k\geq0}a_{k}z^{k}, ~~\psi(z)=\sum\limits_{k<0}b_{k}\bar{z}^{-k}+\sum\limits_{k\geq0}b_{k}z^{k}$, 则

$ \hat{\varphi}(z)=\sum\limits_{k<0}a_{-k}\bar{z}^{-k}+\sum\limits_{k\geq0}a_{-k}z^{k}, ~~\hat{\psi}(z)=\sum\limits_{k<0}b_{-k}\bar{z}^{-k}+\sum\limits_{k\geq0}b_{-k}z^{k}. $

由引理2.4计算得

$ \begin{eqnarray*}&&\langle (T_{\varphi}\mathit{\Gamma}_{\psi}+P_{\varphi}(1\otimes\psi)+\mathit{\Gamma}_{\hat{\varphi}}T_{\psi})e_{n}, e_{m}\rangle \\ &=&\sum\limits_{k=1}^\infty \frac{\sqrt{m}}{\sqrt{n}}a_{m-k}b_{-n-k}+\frac{\sqrt{m}}{\sqrt{n}}\frac{a_mb_{-n}}{1+n}+\sum\limits_{k=1}^\infty \frac{\sqrt{m}}{\sqrt{n}}a_{m+k}b_{k-n}, \\ && \langle(\mathit{\Gamma}_{\psi}T_{\varphi}+P_{\hat{\psi}}(1\otimes\varphi)+T_{\hat{\psi}}\mathit{\Gamma}_{\varphi})e_{n}, e_{m}\rangle\\ &=&\sum\limits_{k=1}^\infty \frac{\sqrt{m}}{\sqrt{n}}a_{-n+k}b_{-m-k}+\frac{\sqrt{m}}{\sqrt{n}}\frac{a_{-n}b_{-m}}{1+n}+\sum\limits_{k=1}^\infty \frac{\sqrt{m}}{\sqrt{n}}a_{-n-k}b_{-m+k}.\end{eqnarray*} $

由(2.1) 式得

$ \sum\limits_{k=-\infty}^{\infty}a_{m+k}b_{-n+k}+(\frac{1}{1+n}-1)a_{m}b_{-n} =\sum\limits_{k=-\infty}^{\infty}a_{-n+k}b_{-m-k}+(\frac{1}{1+n}-1)a_{-n}b_{-m}. $ (2.1')

同样计算(2.2), (2.3), (2.4) 式得

$ \sum\limits_{k=-\infty}^{\infty}a_{m+k}b_{n+k}+(\frac{1}{1+n}-1)a_{m}b_{n} =\sum\limits_{k=-\infty}^{\infty}a_{n+k}b_{-m-k}+(\frac{1}{1+n}-1)a_{n}b_{-m}, $ (2.2')
$ \sum\limits_{k=-\infty}^{\infty}a_{-m+k}b_{-n+k}+(\frac{1}{1+n}-1)a_{-m}b_{-n} =\sum\limits_{k=-\infty}^{\infty}a_{-n+k}b_{m-k}+(\frac{1}{1+n}-1)a_{-n}b_{m}, $ (2.3')
$ \sum\limits_{k=-\infty}^{\infty}a_{-m+k}b_{n+k}+(\frac{1}{1+n}-1)a_{-m}b_{n} =\sum\limits_{k=-\infty}^{\infty}a_{n+k}b_{m-k}+(\frac{1}{1+n}-1)a_{n}b_{m}. $ (2.4')

由引理2.4得

$ \langle (T_{\varphi}P_{\hat{\psi}}+P_{\varphi}(1\otimes\hat{\psi})+\mathit{\Gamma}_{\hat{\varphi}}P_{\psi})1~, e_{m}\rangle =\\ \sqrt{m}\sum\limits_{k=1}^\infty a_{m-k}b_{-k}+\sqrt{m}~a_{m}b_{0}+\sqrt{m}\sum\limits_{k=1}^\infty a_{m+k}b_{k}, \\ \langle(\mathit{\Gamma}_{\psi}P_{\varphi} +P_{\hat{\psi}}(1\otimes\varphi)+T_{\hat{\psi}}P_{\hat{\varphi}})1~, e_{m}\rangle=\sqrt{m}\sum\limits_{k=1}^\infty a_{k}b_{-m-k}+\\ \sqrt{m}~a_{0}~b_{-m}+\sqrt{m}~\sum\limits_{k=1}^\infty a_{-k}b_{-m+k}. $

由(2.5) 式得

$ \sum\limits_{k=-\infty}^{\infty}a_{m+k}b_{k}=\sum\limits_{k=-\infty}^{\infty}a_{k}b_{-m-k}. $ (2.5')

同样计算(2.6) 式可得

$ \sum\limits_{k=-\infty}^{\infty}a_{-m+k}b_{k}=\sum\limits_{k=-\infty}^{\infty}a_{k}b_{m-k}. $ (2.6')

因为

$ \begin{eqnarray*} \langle(1\otimes\varphi)P_{\hat\psi}1, 1\rangle&=&\langle(1\otimes\varphi)P(\hat{\psi}), 1\rangle =\langle(1\otimes\varphi)\sum\limits_{k>0}b_{-k}z^{k}, 1\rangle \\ &=&\sum\limits_{k>0}b_{-k}\sqrt{k}\langle(1\otimes\varphi)e_{k}, 1\rangle =\sum\limits_{k=1}^\infty {\frac{a_{-k}b_{-k}}{1+k}}, \\ \langle(1\otimes\varphi)(1\otimes\hat{\psi})1, 1\rangle&=&a_{0}b_{0}, \\ \langle(1\otimes\hat{\varphi})P_{\psi}1, 1\rangle &=&\langle(1\otimes\hat{\varphi})P(\psi), 1\rangle =\langle(1\otimes\hat{\varphi})\sum\limits_{k>0}b_{k}z^{k}, 1\rangle\\ &=&\sum\limits_{k>0}b_{k}\sqrt{k}~\langle(1\otimes\hat{\varphi})e_{k}, 1\rangle =\sum\limits_{k=1}^\infty{\frac{a_{k}b_{k}}{1+k}}, \end{eqnarray*} $

所以

$ \langle((1\otimes\varphi)P_{\hat\psi}+(1\otimes\varphi)(1\otimes\hat{\psi}) +\\ (1\otimes\hat{\varphi})P_{\psi})1, 1\rangle =\sum\limits_{k=1}^\infty{\frac{a_{-k}b_{-k}}{1+k}}+a_{0}b_{0}+\sum\limits_{k=1}^\infty{\frac{a_{k}b_{k}}{1+k}}, \\ \langle((1\otimes\psi)P_{\varphi} +(1\otimes\hat{\psi})(1\otimes\varphi)+(1\otimes\hat{\psi})P_{\hat{\varphi}})1, 1\rangle=\sum\limits_{k=1}^\infty{\frac{a_{k}b_{-k}}{1+k}}+\\ a_{0}b_{0}+\sum\limits_{k=1}^\infty{\frac{a_{-k}b_{k}}{1+k}}. $

由(2.7) 式得

$ \sum\limits_{k=1}^\infty{\frac{a_{-k}b_{-k}}{1+k}}+a_{0}b_{0}+\sum\limits_{k=1}^\infty{\frac{a_{k}b_{k}}{1+k}} =\sum\limits_{k=1}^\infty{\frac{a_{k}b_{-k}}{1+k}}+a_{0}b_{0}+\sum\limits_{k=1}^\infty{\frac{a_{-k}b_{k}}{1+k}}. $ (2.7')

在(2.1')与(2.3')式中令 $-n+k=j, $ $k=n+j, $

$ \sum\limits_{j=-\infty}^{\infty}a_{m+n+j}b_{j}+(\frac{1}{1+n}-1)a_{m}b_{-n} =\sum\limits_{j=-\infty}^{\infty}a_{j}b_{-m-n-j}+(\frac{1}{1+n}-1)a_{-n}b_{-m}, $ (2.1")
$ \sum\limits_{j=-\infty}^{\infty}a_{n-m+j}b_{j}+(\frac{1}{1+n}-1)a_{-m}b_{-n} =\sum\limits_{j=-\infty}^{\infty}a_{j}b_{m-n-j}+(\frac{1}{1+n}-1)a_{-n}b_{m}. $ (2.3")

在(2.2')与(2.4')中令 $n+k=j, $ $k=-n+j, $

$ \sum\limits_{j=-\infty}^{\infty}a_{m-n+j}b_{j}+(\frac{1}{1+n}-1)a_{m}b_{n} =\sum\limits_{j=-\infty}^{\infty}a_{j}b_{n-m-j}+(\frac{1}{1+n}-1)a_{n}b_{-m}, $ (2.2")
$ \sum\limits_{j=-\infty}^{\infty}a_{-m-n+j}b_{j}+(\frac{1}{1+n}-1)a_{-m}b_{n} =\sum\limits_{j=-\infty}^{\infty}a_{j}b_{m+n-j}+(\frac{1}{1+n}-1)a_{n}b_{m}. $ (2.4")

对任意正整数 $m, n$, 由(2.1")和(2.5')式结合可得

$ a_{m}b_{-n}=a_{-n}b_{-m}. $ (2.8)

由(2.3")和(2.5'), (2.6')式结合可得

$ a_{-m}b_{-n}=a_{-n}b_{m}~~(m\neq n). $ (2.9)

由(2.2")和(2.5'), (2.6')式结合可得

$ a_{m}b_{n}=a_{n}b_{-m}~~(m\neq n). $ (2.10)

由(2.4")和(2.6')式结合可得

$ a_{-m}b_{n}=a_{n}b_{m}. $ (2.11)

在(2.2"), (2.3")式中令 $m=n$, 则

$ \begin{eqnarray*}&& \sum\limits_{j=-\infty}^{\infty}a_{j}b_{j}+(\frac{1}{n+1}-1)a_{-n}b_{-n} =\sum\limits_{j=-\infty}^{\infty}a_{j}b_{-j}+(\frac{1}{n+1}-1)a_{-n}b_{n}, \\ && \sum\limits_{j=-\infty}^{\infty}a_{j}b_{j}+(\frac{1}{n+1}-1)a_{n}b_{n} =\sum\limits_{j=-\infty}^{\infty}a_{j}b_{-j}+(\frac{1}{n+1}-1)a_{n}b_{-n}.\end{eqnarray*} $

即有

$ \begin{eqnarray*}&& \sum\limits_{j=-\infty}^{\infty}a_{j}b_{j}-\sum\limits_{j=-\infty}^{\infty}a_{j}b_{-j} =(\frac{1}{1+n}-1)(a_{-n}b_{n}-a_{-n}b_{-n}), \\ && \sum\limits_{j=-\infty}^{\infty}a_{j}b_{j}-\sum\limits_{j=-\infty}^{\infty}a_{j}b_{-j}= (\frac{1}{1+n}-1)(a_{n}b_{-n}-a_{n}b_{n}).\end{eqnarray*} $

对比以上两式可得 $a_{-n}b_{n}-a_{-n}b_{-n}=a_{n}b_{-n}-a_{n}b_{n}, $

$ (a_{-n}+a_{n})(b_{n}-b_{-n})=0. $ (2.12)

从而 $a_{-n}=-a_{n}$ $b_{-n}=b_{n}.$

$\varphi$不是常数, 则存在正整数 $m_0$使得 $a_{m_0}\neq 0$ $a_{-m_0}\neq 0$.由对称性, 不妨设 $a_{m_0}\neq 0$.

对任意正整数 $n$, 由 $(2.8)$式得

$ b_{-n}=\frac{b_{-m_{0}}}{a_{m_{0}}}a_{-n}. $ (2.13)

由(2.10) 式得

$ b_{n}=\frac{b_{-m_{0}}}{a_{m_{0}}}a_{n}(n\neq m_{0}). $ (2.14)

$b_{-m_0}\neq 0$, 则由(2.13) 式得 $a_{-m_{0}}=a_{m_{0}}\neq 0$, 由(2.12) 式得 $b_{m_0}=b_{-m_0}=\frac{b_{-m_0}}{a_{m_0}}a_{m_0}$.令 $\alpha_1=\frac{b_{-m_{0}}}{a_{m_{0}}}$, 则存在常数 $\beta_1$, 使得 $\psi=\alpha_1\varphi+\beta_1$.

$b_{-m_0}=0$, 则由(2.13), (2.14) 式得 $b_{-n}=0, $ $b_n=0(n\neq m_0)$.由(2.7')式得

$ a_0b_0+\frac{a_{m_0}b_{m_0}}{1+m_0}=a_0b_0+\frac{a_{-m_0}b_{m_0}}{1+m_0}. $

因此有 $(a_{m_0}-a_{-m_0})b_{m_0}=0.$因为 $b_{-m_0}= 0$, 由(2.12) 式得 $(a_{-{m_0}}+a_{m_0})b_{m_0}=0.$ $b_{m_0}\neq 0$, 则 $a_{-{m_0}}+a_{m_0}=0$, 且 $a_{m_0}-a_{-{m_0}}=0$, 因此有 $a_{m_0}=0$, 矛盾.所以 $b_{m_0}=0$.因此 $\psi$是一个常数.设 $\psi=\beta_2$, 令 $\alpha_2=0$, 则有 $\psi=\alpha_2\varphi+\beta_2$.

以下设 $\psi=\alpha\varphi+\beta$, 则对于任意正整数 $n$, $b_n=\alpha a_n$, $b_{-n}=\alpha a_{-n}.$

$\alpha\neq0$时, 代入(2.11) 式得 $a_{-m}a_{n}=a_{n}a_{m}$.因为 $a_{m_0}\neq 0$, 所以对任意正整数 $n$, 有 $a_n=a_{-n}$.因此 $\varphi=U\varphi$.

$\alpha=0$, $\beta\neq 0$时, 由 $\widetilde{T}_{\varphi}\widetilde{\mathit{\Gamma}}_{\psi}=\widetilde{\mathit{\Gamma}}_{\psi}\widetilde{T}_{\varphi}$ $\widetilde{T}_{\varphi}\widetilde{\mathit{\Gamma}}_{\psi}(1)=\widetilde{\mathit{\Gamma}}_{\psi}\widetilde{T}_{\varphi}(1)$.直接计算得 $\varphi=U\varphi.$证毕.

参考文献
[1] Cao G. Fredholm properties of Toeplitz operators on Dirichlet space[J]. Pacific J. Math., 1999, 188(2): 209–224. DOI:10.2140/pjm
[2] Lee Y. Algebraic properties of Toeplitz operators on the Dirichlet space[J]. J. Math. Anal. Appl., 2007, 329(2): 1316–1329. DOI:10.1016/j.jmaa.2006.07.041
[3] Lee Y. Finite sums of Toeplitz products on the Dirichlet space[J]. J. Math. Anal. Appl., 2009, 357(2): 504–515. DOI:10.1016/j.jmaa.2009.04.035
[4] Chen Y. Commuting Toeplitz operators on the Dirichlet space[J]. J. Math. Anal. Appl., 2009, 357(1): 214–224. DOI:10.1016/j.jmaa.2009.03.068
[5] Chen Y, Nguyen Q. Toeplitz and Hankel operators with $L^{\infty,1}$ symbols on Dirichlet space[J]. J. Math. Anal. Appl., 2010, 369(1): 368–376. DOI:10.1016/j.jmaa.2010.03.025
[6] ChenY, XuH, YuT. Dirichlet空间上Toeplitz算子的交换性(Ⅱ)[J]. 数学年刊(A辑), 2010, 31(6): 737–748.
[7] Yu T. Toeplitz operators on the Dirichlet Space[J]. Integ. Equ. Oper. Theory, 2010, 67(2): 163–170. DOI:10.1007/s00020-010-1754-2
[8] Zhao L. Hankel operators on the Dirichlet space[J]. J. Math. Anal. Appl., 2009, 352(2): 767–777. DOI:10.1016/j.jmaa.2008.11.028
[9] Zhang Z, Zhao L. Toeplitz algebra on the Harmonic Dirichlet space[J]. J. Fudan Univ. Nat. Sci., 2008, 47(2): 251–259.
[10] Zhao L. Commutativity of Toeplitz operators on the harmonic Dirichlet space[J]. J. Math. Anal. Appl., 2008, 339(2): 1148–1160. DOI:10.1016/j.jmaa.2007.07.030
[11] Zhao L. Product of Toeplitz operators on the harmonic Dirichlet space[J]. Acta Math. Sin. (Engl. Ser.), 2012, 28: 1033–1040. DOI:10.1007/s10114-011-9300-y
[12] Chen Y, Lee Y, Nguyen Q. Algebraic properties of Toeplitz operators on harmonic Dirichlet space[J]. Integ. Equ. Oper. Theory, 2011, 69(2): 183–201. DOI:10.1007/s00020-010-1822-7
[13] Martinez-Avendano R. When do Toeplitz and Hankel operators commute?[J]. Integ. Equ. Oper. Theory, 2000, 37(3): 341–349. DOI:10.1007/BF01194483
[14] Guo K, Zheng D. Essentially commuting Hankel and Toeplitz operators[J]. J. Funct. Anal., 2003, 201(1): 121–147. DOI:10.1016/S0022-1236(03)00100-9
[15] Choe B, Lee Y. Commuting Toeplitz operators on the harmonic Bergman space[J]. Michigan Math. J., 1999, 46: 163–174. DOI:10.1307/mmj/1030132367
[16] Ding X. A question of Toeplitz operators on the harmonic Bergman space[J]. J. Math. Anal. Appl., 2008, 344(1): 367–372. DOI:10.1016/j.jmaa.2008.02.063
[17] Guo K, Zheng D. Toeplitz algebra and Hankel algebra on the harmonic Bergman space[J]. J. Math. Anal. Appl., 2002, 276(1): 213–230. DOI:10.1016/S0022-247X(02)00429-8