数学杂志  2015, Vol. 35 Issue (4): 898-904   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
刘敏
复射影空间中具有常数量曲率的完备全实子流形
刘敏    
安徽师范大学数学计算机科学学院, 安徽 芜湖 241000
摘要:本文研究了复射影空间中具有常数量曲率的完备全实子流形的问题.利用丘成桐的广义极大值原理和自伴随算子, 获得了这类子流形的某些内蕴刚性定理.
关键词复射影空间    完备    数量曲率    全脐    
ON COMPLETE TOTALLY REAL SUBMANIFOLDS WITH CONSTANT SCALAR CARVATURE IN THE COMPLEX PROJECTIVE SPACE
LIU Min    
College of Mathematics and Computer science, Anhui Normal University, Wuhu 241000, China
Abstract: In this paper, the authors study the complete totally real submanifolds with constant scalar curvture in the complex projective space.By making use of the generalized maximal principle and self-adjoint differential operator of Yau, we obtain some intrinsic rigidity theorems.
Key words: complex projective space     complete     scalar curvature     totally umbilical    
1 引言

$CP^{n+p}$是具有Fubini-Study度量的复$n+p$维复射影空间, 全纯截面曲率为常数4.设$J$$CP^{n+p}$的复结构, $M^{n}$$CP^{n+p}$的实$n$维子流形.如果$M^{n}$上每点切空间被$J$变换到自身, 则称$M^{n}$$CP^{n+p}$的全纯子流形.与此相反, 若$M^{n}$上每点的切空间被$J$变换到该点法空间, 则称$M^{n}$$CP^{n+p}$的全实子流形.

关于具有常数量曲率子流形, Cheng和Yau最早研究了空间形式中的常数量曲率超曲面(见文献[1]), 引入了一个自共轭的二阶椭圆算子, 这个算子现在仍是我们研究具有常数量曲率子流形的重要工具.本文研究复射影空间中常数量曲率的完备全实子流形, 得到了

定理 设$M^{n}$$CP^{n+p}$中具有常数量曲率($R\geq1$)的完备全实子流形则

$1)$$p=1$$p\leq2, n\geq3$$p\geq3, n>7$时, 若$\sup S\leq2\sqrt{n-1}$, 则$M^{n}$$CP^{n+p}$中的全脐子流形.

$2)$$p\geq3, 3<n\leq7$时, 若$\sup S\leq\frac{2}{3}n$, 则$M^{n}$$CP^{n+p}$中的全脐子流形.其中$S$为第二基本形式模长平方.

2 准备工作

$M^{n}$$CP^{n+p}$中实$n$维全实子流形, $J$$CP^{n+p}$的复结构.在$CP^{n+p}$上选取局部规范正交标架场

$ e_1, \cdots, e_n, e_{n+1}, \cdots, e_{n+p}, e_{1*}=Je_1, \cdots, e_{n^*}=Je_n, e_{(n+1)^{*}}=Je_{n+1}, \cdots, e_{(n+p)^{*}}=Je_{n+p} $

使得限制于$M^{n}, \{e_1, \cdots, e_{n}\}$$M^{n}$相切, 约定各类指标的取值范围

$ A, B, C, \cdots=1, \cdots, n+p, 1^{*}, \cdots, (n+p)^*; i, j, k, \cdots=1, \cdots, n;\\ \alpha, \beta, \gamma, \cdots=n+1, \cdots, n+p, 1^{*}, \cdots, (n+p)^*;\\ \lambda, \mu\cdots=n+1, \cdots, n+p.$

$\{\omega_A\}$表示$\{e_A\}$的对偶标架场, 则$CP^{n+p}$的结构方程为

$\begin{eqnarray} d\omega_A=-\sum\limits_B\omega_{AB}\wedge \omega_B, \end{eqnarray}$ (2.1)
$\begin{eqnarray} d\omega_{AB}=-\sum\limits_C\omega_{AC}\wedge \omega_{CB}+\frac{1}{2}\sum\limits_{CD}K_{ABCD}\omega_C\wedge \omega_D, \end{eqnarray}$ (2.2)

其中

$\begin{eqnarray} \omega_{ij}=\omega_{i^*j^*}, \omega_{i^*j}=\omega_{j^*i}, \omega_{\lambda\mu}=\omega_{\lambda^*\mu^*};\nonumber\\ \omega_{\lambda^*\mu}=\omega_{\mu^*\lambda}, \omega_{i\mu}=\omega_{i^*\mu^*}, \omega_{i^*\lambda}=\omega_{\lambda^*i};\end{eqnarray}$ (2.3)
$\begin{eqnarray} K_{ABCD}=\delta_{AC}\delta_{BD}-\delta_{AD}\delta_{BC}+J_{AC}J_{BD}-J_{AD}J_{BC}+2J_{AB}J_{CD}, \end{eqnarray}$ (2.4)

这里$(J_{AB})$为线性变换$J$关于$\{e_A\}$的变换矩阵, 即

$\begin{equation}J_{AB}=\left( \begin{array}{cc} 0 I_{n+p} \\ -I_{n+p} 0 \\ \end{array} \right), \end{equation}$ (2.5)

其中$I_{n+p}$$n+p$阶单位矩阵.

将上述形式限制在$M$上, 则有

$\begin{eqnarray} \omega_\alpha=0, \omega_{\alpha i}=\sum\limits_j h^{\alpha}_{ij}\omega_j, \end{eqnarray}$ (2.6)
$\begin{eqnarray} h=\sum\limits_{\alpha, i, j}h_{ij}^\alpha \omega_i\otimes \omega_j\otimes e_\alpha, h_{jk}^{i^*}=h_{ik}^{j^*}=h_{ij}^{k^*}, \end{eqnarray}$ (2.7)
$\begin{eqnarray} \begin{cases} d\omega_i=-\sum\limits_j\omega_{ij}\wedge \omega_j, \\ d\omega_{ij}=-\sum\limits_k\omega_{ik}\wedge \omega_{kj}+\frac{1}{2}\sum\limits_{kl}R_{ijkl}\omega_k\wedge \omega_l, \end{cases}\end{eqnarray}$ (2.8)
$\begin{eqnarray} R_{ijkl}=K_{ijkl}+\sum\limits_\alpha(h_{ik}^\alpha h_{jl}^\alpha-h_{il}^\alpha h_{jk}^\alpha), \end{eqnarray}$ (2.9)
$\begin{eqnarray} d\omega_{\alpha\beta}=-\sum\limits_\gamma \omega_{\alpha \gamma}\wedge \omega_{\gamma\beta}+\frac{1}{2}\sum\limits_{kl}R_{\alpha \beta kl}\omega_k\wedge \omega_l, \end{eqnarray}$ (2.10)
$\begin{eqnarray} R_{\alpha \beta ij}=K_{\alpha \beta ij}+\sum\limits_k(h_{ik}^\alpha h_{kj}^\beta-h_{jk}^\alpha h_{ki}^\beta), \end{eqnarray}$ (2.11)

其中$R_{ijkl}, R_{\alpha\beta ij}$分别是$M^n$的Riemann曲率张量场和法曲率张量场关于$\{e_A\}$的分量.进一步, $M^n$的平均曲率向量场$\xi$, 平均曲率$H, $第二基本形式模长平方$S$及标准化数量曲率$R$可表示为

$\begin{eqnarray} \xi=\frac{1}{n}\sum\limits_\alpha(\sum\limits_ih_{ii}^\alpha)e_\alpha, H=\parallel \xi\parallel^2, S=\parallel h \parallel^{2}, \end{eqnarray}$ (2.12)
$\begin{eqnarray} n(n-1)R =n(n-1)+n^2H^2-S.\end{eqnarray}$ (2.13)

$h_{ijk}^\alpha $$h_{ijkl}^\alpha $表示$h_{ij}^\alpha $的共变导数, 则

$\begin{eqnarray} h_{ijk}^\alpha-h_{ikj}^\alpha=-K_{\alpha ijk}=0, \end{eqnarray}$ (2.14)
$\begin{eqnarray} h_{ijkl}^\alpha-h_{ijlk}^\alpha=\sum\limits_m(h_{im}^\alpha R_{mjkl}+h_{mj}^\alpha R_{mikl})-\sum\limits_\beta h_{ij}^\beta R_{\alpha\beta k l}, \end{eqnarray}$ (2.15)

由(2.14), (2.15) 式, 且记$h_{ij}^\alpha$的Laplacian为$\bigtriangleup h_{ij}^\alpha$, 则

$\begin{eqnarray} \frac{1}{2}\Delta S =\sum\limits_{i, j, k, \alpha}(h_{ijk}^{\alpha})^2+\sum\limits_{i, j, k, \alpha}h_{ij}^{\alpha} h_{kkij}^{\alpha}+nS-n^2H^2+2\sum\limits_{\alpha, \beta >n+1}[{\hbox{tr}}(A_{\alpha} A_{\beta})^2-{\hbox{tr}}(A^{2}_{\alpha} A^{2}_{\beta})]\nonumber\\ -\sum\limits_{\alpha, \beta >n+1}[{\hbox{tr}}A_{\alpha} A_{\beta}]^{2} -\sum\limits_{\alpha >n+1}[{\hbox{tr}}A{_\alpha} A_{n+1}]^{2}-\sum\limits_{\beta}[\hbox{tr}A_{n+1}A_{\beta}]^2+2\sum\limits_\beta[{\hbox{tr}}(A_{n+1}A{_\beta})^2\nonumber\\-A^{2}_{n+1} A^{2}_{\beta})]+\sum\limits_{\alpha, \beta}({\hbox{tr}}A{_\alpha}^{2} A_{\beta})\cdot {\hbox{tr}}A_{\beta}+\sum\limits_{m}{\hbox{tr}}A_{m^*}^2. \end{eqnarray}$ (2.16)

可选取$e_{n+1}=\frac{\xi}{H}^{[2]}$, 此时(2.16) 式变为

$\begin{eqnarray} \frac{1}{2}\Delta S =\sum\limits_{i, j, k, \alpha}(h_{ijk}^{\alpha})^2+\sum\limits_{i, j}h_{ij}^{n+1} (nH)_{ij}+nS-n^2H^2\\ +2\sum\limits_{\alpha, \beta >n+1}[{\hbox{tr}}(A_{\alpha} A_{\beta})^2-{\hbox{tr}}(A^{2}_{\alpha} A^{2}_{\beta})]\nonumber\\ -\sum\limits_{\alpha, \beta >n+1}[\hbox{tr}A_{\alpha} A_{\beta}]^{2} -\sum\limits_{\alpha >n+1}[{\hbox{tr}}A{_\alpha} A_{n+1}]^{2}-\sum\limits_{\beta}[\hbox{tr}A_{n+1}A_{\beta}]^2\\ +2\sum\limits_\beta[\hbox{tr}(A_{n+1}A{_\beta})^2\nonumber\\-{\hbox{tr}}A^{2}_{n+1} A^{2}_{\beta})]+nH\sum\limits_{\alpha>n+1}({\hbox{tr}}A{_\alpha}^{2} A_{n+1})+nH{\hbox{tr}}(A_{n+1}^{3})+\sum\limits_{m}{\hbox{tr}}A_{m^*}^2. \end{eqnarray}$ (2.17)

另外, 我们需要下面的引理

引理1 [3]  设$a_1, a_2, \cdots, a_n, b_1, \cdots, b_n(n\geq2)$是实数, 且$\sum\limits_ia_i=0$, 则

$\sum\limits_{i, j}b_ib_j(a_i-a_j)^2\geq-\frac{n}{\sqrt{n-1}}(\sum\limits_ia_i^2)(\sum\limits_ib_i^2).$

引理2 [4] 设$a_1, a_2, \cdots, a_n(n\geq 2)$是实数, 且满足$\sum\limits_ia_i=0$.则有

$|\sum\limits_ia_i^3|\leq\frac{n-2}{\sqrt{n(n-1)}}(\sum\limits_ia_i^2)^{\frac{3}{2}}$

且等号成立当且仅当至少有$n-1$$a_i$相等.

引理3 [5-6]  设$M$是Ricci曲率有下界的完备黎曼流形, 若$F$$M$$C^{\infty}$有上界的函数, 则$\forall\varepsilon>0, \exists x\in M$使得

$\sup F-\varepsilon<F(x), \|{\hbox{grad}}F\|<\varepsilon, \Delta F(x)<\varepsilon.$ (2.18)
3 定理证明

定理证明还需要下面的引理.

引理4  设$M$$CP^{n+p}$中具有常数量曲率的完备子流形, 若$S$有上界, 且$F=-(f^{2}+a)^{-\frac{1}{2}}$, 这里$a\in R, f=\sqrt{nH}$$M$上的$C^2$非负函数, 则对任意收敛序列$\{\varepsilon_{m}\}$满足$\varepsilon_m>0, \varepsilon_m\rightarrow 0(m\rightarrow 0)$, 存在点列{$x_m$}使得

$\lim\limits_{m\rightarrow\infty}\sup\triangle(nH)(x_m)\leq 0, F_0:=\lim\limits_{m\rightarrow\infty}F(x_m)=\sup F, f_0:=\lim\limits_{m\rightarrow\infty}f(x_m)=\sup f.$

 通过直接计算

$\begin{equation}F\triangle F=3\|{\hbox{grad}}F\|^2-\frac{1}{2}F^4\Delta f^2.\end{equation}$ (3.1)

$S$有上界及$R$为常数知F有上界.由Gauss方程知$M$的Ricci曲率有下界.由引理3及(3.1) 式我们有

$ \begin{equation}\frac{1}{2}F^4(x)\Delta f^2(x)=3\|{\hbox{grad}}F\|^2(x)-F(x)\Delta F(x)<3\varepsilon^2-\varepsilon F(x).\end{equation}$ (3.2)

这样对任意收敛序列$\{\varepsilon_m\}$满足$\varepsilon_m>0, \varepsilon_m\rightarrow 0(m\rightarrow 0), $存在点列$\{\tilde{x_m}\}$使得(2.18) 式成立.因此$\varepsilon_{m} (3 \varepsilon -F(\tilde{x_m}))\rightarrow 0(m\rightarrow 0)$.

另一方面, 由(2.18) 式知$F(\tilde{x_m})>\sup F-\varepsilon_m.$$F$有上界, 可选$\{\tilde{x_m}\}$的子列记作$\{x_m\}$使得$F(x_m)\rightarrow F_0(m\rightarrow\infty)$并且(2.18) 式成立.由上确界的定义及(2.18) 式知$F_0=\sup F$且由F的定义知$f(x_m)\rightarrow f_0=\sup f(m\rightarrow\infty)$, 由(3.2) 式有

$3\varepsilon_m^2-F(x_m)\varepsilon_m>\frac{1}{2}F^4(x_m)\Delta f^2(x_m)=\frac{1}{2}F^4(x_m)\Delta(nH)(x_m), $

$\lim\limits_{m\rightarrow\infty}\sup\triangle(nH)(x_m)\leq 0.$

现在证明定理.

$u_i = h_{ii}^{n+1} - H$, 于是$\sum\limits_iu_i = 0, \sum\limits_iu_i^2 = {\hbox{tr}}A_{n+1}^2 - nH^2 \triangleq \big| z\big|^2.$

由引理2, 有

$\begin{eqnarray} nH{\hbox{tr}}(A_{n+1}^3) = nH\sum\limits_i(h_{ii}^{n+1})^3\nonumber \\ = 3nH^2 \cdot | z|^2 + n^2H^4 + nH \cdot \sum\limits_iu_i^3\nonumber\\ \geq 3nH^2 \cdot |z|^2 + n^2H^4 - \frac{n(n-2)}{\sqrt{n(n-1)}}H\cdot |z|^3 \nonumber\\ = |z|^2( nH^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}H\cdot |z| - |z|^2 ) + ({\hbox{tr}}A_{n+1}^2)^2, \end{eqnarray}$ (3.3)

考虑以$\pm \frac{n}{2\sqrt{n-1}}$为特征值的二次型

$ F(x, y) = x^2 - \frac{n-2}{\sqrt{n-1}}xy - y^2 $

作正交变换

$\begin{eqnarray} \begin{cases} u = \frac{1}{\sqrt{2n}}\left[(1+\sqrt{n-1})x + (1-\sqrt{n-1})y \right], \\ v = \frac{1}{\sqrt{2n}}\left[(\sqrt{n-1}-1)x + (\sqrt{n-1}+1)y \right], \end{cases}\\ F(x, y) = \frac{n}{2\sqrt{n-1}}(u^2 - v^2). \nonumber\end{eqnarray}$ (3.4)

$x = \sqrt{n} H, y = \big|z\big|$, 则$x^2+y^2 = \hbox{tr}A_{n+1}^2$且(3.4) 式是正交变换, 于是从$x^2+y^2 = u^2 + v^2 = {\hbox{tr}}A_{n+1}^2$

$\begin{eqnarray} nH^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}H\cdot \big|z\big| - \big|z\big|^2 = x^2 - \frac{n-2}{\sqrt{n-1}}xy - y^2 \nonumber\\ =\frac{n}{2\sqrt{n-1}}(u^2 - v^2) =\frac{n}{2\sqrt{n-1}}(2u^2 -{\hbox{ tr}}A_{n+1}^2)\nonumber\\ \geq -\frac{n}{2\sqrt{n-1}}{\hbox{tr}}A_{n+1}^2, \end{eqnarray}$ (3.5)

$\begin{equation} \sum\limits_{\beta}[\hbox{tr}(A_{n+1}A_\beta)]^2 = \sum\limits_{\beta > n+1}( \sum\limits_{i, j}(h_{ij}^{n+1} - H\delta_{ij})h_{ij}^\beta )^2 \leq \big|z\big|^2 \cdot S, \end{equation}$ (3.6)

由(2.13) 式及引理1知

$\begin{aligned} nH{\hbox{tr}}(A_\alpha^2 A_{n+1}) - \left[{\hbox{ tr}}(A_\alpha A_{n+1}) \right]^2 = \frac{1}{2}\sum\limits_{i, j}h_{ii}^{n+1}h_{jj}^{n+1}(h_{ii}^\alpha - h_{jj}^\alpha)^2 \\ \geq -\frac{n}{2\sqrt{n-1}}{\hbox{ tr}}A_\alpha^2 {\hbox{ tr}}A_{n+1}^2 \quad (\alpha > n+1). \end{aligned}$

$\begin{equation} nH\sum\limits_{\alpha > n+1}{\hbox{ tr}}(A_\alpha^2 A_{n+1}) - \sum\limits_{\alpha > n+1} \left[{\hbox{ tr}} (A_\alpha A_{n+1}) \right]^2 \geq -\frac{n}{2\sqrt{n-1}}tr A_{n+1}^2 \sum\limits_{\alpha > n+1}{\hbox{ tr}} A_\alpha^2, \end{equation}$ (3.7)

再由文献[7]及简单计算有

$\begin{eqnarray} -2\sum\limits_{\alpha, \beta > n+1}\left[{\hbox{ tr}}(A_\alpha^2 A_\beta^2)-{\hbox{ tr}} (A_\alpha A_\beta)^2 \right] - \sum\limits_{\alpha, \beta > n+1}\left[{\hbox{ tr}} (A_\alpha A_\beta) \right]^2\nonumber\\ \geq -\left[1+ \frac{1}{2}\textrm{sgn}(p-2) \right]\left( \sum\limits_{\alpha > n+1}{\hbox{ tr}} A_\alpha^2 \right)^2, \end{eqnarray}$ (3.8)

$\omega_{n+1\alpha}=0$外微分, 注意到$K_{n+1\alpha ij}=0$,

$0= d\omega_{n+1\alpha}=\sum\limits_{i}\omega_{n+1i}\wedge \omega_{i\alpha}+\sum\limits_{\beta}\omega_{n+1\beta}\wedge \omega_{\beta\alpha}\\ = -\sum\limits_{i, j, k}h_{ij}^{n+1}h_{ik}^\alpha \omega_j\wedge \omega_k =\sum\limits_{j<k}\sum\limits_i(h_{ij}^{n+1}h_{ik}^\alpha-h_{ik}^{n+1}h_{ij}^{\alpha})\omega_j\wedge \omega_k, $

从而

$\begin{equation}H_{n+1}H_\alpha=H_\alpha H_{n+1}, \end{equation}$ (3.9)

于是对于任意$\alpha, H_\alpha, H_{n+1}$可同时对角化, 由(2.17), (3.3)-(3.9) 式有

$\begin{equation}\frac{1}{2}\Delta S\geq\sum\limits_{i, j, k, \alpha}(h_{ijk}^{\alpha})^2+\sum\limits_{i, j}h_{ij}^{n+1}(nH)_{ij}+nS-n^2H^2-|z|^2 \frac{n}{2\sqrt{n-1}}S-MS\sum\limits_{\alpha>n+1}\hbox{tr}A^2_{\alpha}.\end{equation}$ (3.10)

其中$M = \max\left\{ 1+ \frac{1}{2}\textrm{sgn}(p-2), \frac{n}{2\sqrt{n-1}} \right\}.$

定义$M^n$上的对称张量场$T=\sum\limits_{i, j}T_{ij}w_i\otimes w_j$如下

$T_{ij}=nH\delta_{ij}-h_{ij}^{n+1}.$

我们引入一个与$T$有关的算子$\Box$, 它作用在函数$f\in C^2(M^n)$上为

$\square f=\sum\limits_{i, j}T_{ij}f_{ij}=nH\triangle f-\sum\limits_{i, j}h_{ij}^{n+1}f_{ij}.$

由于R是常数, 应用自伴算子$\Box$$nH$并利用(2.13) 式有

$\begin{eqnarray} \Box(nH) =\sum\limits_{i, j}(nH\delta_{ij}-h^{n+1}_{ij})(nH)_{ij}=\frac{1}{2}\Delta(nH)^2-\|{\hbox{grad}}(nH)\|^2-\sum\limits_{i, j}h^{n+1}_{ij}(nH)_{ij}\nonumber\\ =\frac{1}{2}\Delta S-\|{\hbox{grad}}(nH)\|^2-\sum\limits_{i, j}h^{n+1}_{ij}(nH)_{ij}. \end{eqnarray}$ (3.11)

由R(R$\geq 1$)是常数, 利用(2.13) 式有$nH\nabla_k(nH)=\sum\limits_{i, j, \alpha}h^{\alpha}_{ij}h^{\alpha}_{ijk}$, 利用施瓦兹不等式有

$\begin{eqnarray} n^2H^2\|{\hbox{grad}}(nH)\|^2 =\sum\limits_k(\sum\limits_{i, j, \alpha}h^{\alpha}_{ij}h^{\alpha}_{ijk})^2\leq(\sum\limits_{i, j, \alpha}(h^\alpha_{ij})^2) (\sum\limits_k\sum\limits_{i, j, \alpha}(h^\alpha_{ijk})^2)\nonumber\\ = S\sum\limits_k\sum\limits_{i, j, \alpha}(h^\alpha_{ijk})^2\leq n^2H^2\sum\limits_{i, j, k, \alpha}(h^\alpha_{ijk})^2, \end{eqnarray}$ (3.12)

将(3.10), (3.12) 式代入(3.11) 式得

$\Box(nH)\geq n(S-nH^2)-|z|^2\frac{n}{2\sqrt{n-1}}S-MS\sum\limits_{\alpha>n+1}{\hbox{tr}}A^2_{\alpha}.$ (3.13)

另一方面

$\Box(nH)=\sum\limits_{i}(nH-h^{n+1}_{ii})(nH)_{ii}\leq(nH_{\max}-\lambda)\Delta(nH), $ (3.14)

其中$H_{\max}$是平均曲率H的最大值,$\lambda$是主曲率$\{\lambda_i\}^{n+p}_{i=1}$的最小值.

由(2.13) 式和引理3, 取一收敛序列$\{\varepsilon_m\}$满足$\varepsilon_m>0, \varepsilon_m\rightarrow 0(m\rightarrow\infty), $存在点列$\{x_m\}$使得$H(x_m)\rightarrow \sup H(m\rightarrow\infty)$, 由(2.13) 式知$S(x_m)\rightarrow \sup S(m\rightarrow\infty).$

下面分两种情况讨论

(1) 当$p=1$$p\leq 2, n\geq 3$$p\geq 3, n>7$时, 此时$M=\frac{n}{2\sqrt{n-1}}$, 则由引理4, (3.13), (3.14) 式得

$\sup(S-nH^2)(n-\frac{n}{2\sqrt{n-1}}\sup S)\leq 0.$ (3.15)

$\sup S< 2\sqrt{n-1}$, 则由(3.15) 式知$S=nH^2$, 即$M$$CP^{n+p}$中全脐子流形.

(2) 当$p\geq 3, n<3\leq 7$时, $M=\frac{3}{2}$, 此时由引理4, (3.13), (3.14) 式得

$\sup(S-nH^2)(n-\frac{3}{2}\sup S)\leq 0.$ (3.16)

$\sup S<\frac{2}{3}n$, 则由(3.16) 式知$S=nH^2$, 即$M$$CP^{n+p}$中全脐子流形.

参考文献
[1] Cheng S Y, Yau S T. Hypersurfaces with constant scalar curvature[J]. Math. Ann., 1977, 225: 195–204. DOI:10.1007/BF01425237
[2] Zhang L. On totally real pseudo-umbilical submanifolds in a complex projective space[J]. Journalof Math. Research & Exposition, 2008, 2: 421–428.
[3] Zhang J F. An rigidity theorem for submanifolds in Sn+p with constant scalar curvature[J]. ZhejiangUniv. (Sci.), 2005, 6A(4): 322–328.
[4] Okumua M. Hypersurfaces and a pinching problem on the second fundamental tensor[J]. Amer. J.Math., 1974, 96: 207–213. DOI:10.2307/2373587
[5] Yau S T. Harmonic function on complete Riemannian manifolds[J]. Comm. Pure. Appl. Math., 1975, 28: 201–228. DOI:10.1002/(ISSN)1097-0312
[6] Chen Q, Xin Y L. A generalized maximum principle and its applications in geometry[J]. Amer. J.Math., 1992, 114: 355–366. DOI:10.2307/2374707
[7] Li A M, Li J M. An intrinsic rigidity theorem for minimal Submanifolds in sphere[J]. Arch. Math., 1992, 58: 582–594. DOI:10.1007/BF01193528
[8] 宋卫东, 刘敏. 关于局部对称共形平坦空间中具有常数量曲率的子流形[J]. 数学物理学报, 2010, 30: 1102–1110.