数学杂志  2015, Vol. 35 Issue (4): 779-788   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
YANG Yang
ZHANG Ji-hui
SHANG Xu-dong
SHAO Yi-xin
MULTIPLE SOLUTIONS FOR SYMMETRIC AND NON-SYMMETRIC QUASILINEAR ELLIPTIC EQUATIONS:AN ORLICZ-SOBOLEV SPACE SETTING
YANG Yang1, ZHANG Ji-hui2, SHANG Xu-dong3, SHAO Yi-xin1    
1. School of Science, Jiangnan University, Wuxi 214122, China;
2. School of Mathematics Science, Nanjing Normal University, Nanjing 210046, China;
3. School of Mathematics, Nanjing Normal University Taizhou College, Taizhou 225300, China
Abstract: In this paper, we study multiplicity of solutions for the quasilinear elliptic problem in a bounded domain with smooth boundary.By using variational and perturbed methods in Orlicz-Sobolev space, we prove the existence of multiple solutions both in symmetric and nonsymmetric case.
Key words: Orlicz-Sobolev spaces     quasilinear elliptic equations     perturbed methods     symmetry    
Orlicz-Sobolev空间上对称及非对称拟线性椭圆方程的多解性
杨阳1, 张吉慧2, 尚旭东3, 邵益新1    
1. 江南大学理学院, 江苏 无锡 214122;
2. 南京师范大学数学科学学院, 江苏 南京 210046;
3. 南京师范大学泰州学院数科院, 江苏 泰州 225300
摘要:本文研究了具光滑边界的有界域上拟线性椭圆问题的多解性.在Orlicz-Sobolev空间中利用变分及扰动的方法, 得到了方程在对称及非对称情况下解的存在性和多解性.
关键词Orlicz-Sobolev空间    拟线性椭圆方程    扰动方法    对称性    
1 Introduction

In this paper, we discuss multiplicity of solutions of the following boundary value problem

$\left\{ \begin{array}{ll} -\mathrm{div}(a(|\nabla u|)\nabla u)=f(x,u),&\hbox{$x\in\Omega$,} \\ u=0,&\hbox{ $x\in\partial\Omega$.} \end{array} \right.$ (1.1)

and

$\left\{ \begin{array}{ll} -\mathrm{div}(a(|\nabla u|)\nabla u)=f(x,u)+\epsilon g(x,u),&\hbox{$x\in\Omega$,} \\ u=0,&\hbox{ $x\in\partial\Omega$.} \end{array} \right.$ (1.2)

where $\Omega\subset R^N$ is a bounded domain with smooth boundary $\partial\Omega$. The function $a$ is such that $p:R\to R$ defined by

$p(t)=\left\{ \begin{array}{ll} a(|t|)t,&\hbox{$t\not=0$,} \\ 0,&\hbox{$t=0$,} \end{array} \right.$

which is an increasing homeomorphism from $R$ onto itself and the continuous function $f(x, t)\in C(\overline{\Omega}\times R, R)$ satisfies $f(x, 0)=0$, $x\in \overline{\Omega}$ and odd in $t$. $g\in C(\overline{\Omega}\times R, R)$ and $\epsilon$ is a parameter.

As we all know, when $a(t)=|t|^{p-2}$, problem (1.1) is the well known p-Laplacian equation. There is a large number of papers on the existence of solutions for p-Laplacian equation. But Problem (1.1) possesses more complicated nonlinearities, for example, it is inhomogeneous, and has important physical background, e.g.,

(a) nonlinear elasticity: $P(t)=(1+t^2)^{\gamma}-1$, $\gamma>\frac{1}{2}$.

(b) plasticity: $P(t)=t^{\alpha}(log(1+t))^{\beta}$, $\alpha\geq 1$, $\beta>0$.

(c) generalized Newtonian fluids: $P(t)=\int_0^ts^{1-\alpha}(sinh^{-1}s)^{\beta}ds$, $0\leq \alpha\leq 1$, $\beta>0$.

So in the discussions, some special techniques will be needed, and the problem (1.1) is studied in an Orlicz-Sobolev space and received considerable attention in recent years, see, for instance, the papers [1-9]. Motivated by their results, the aim of this paper is to state some multiplicity results under more general assumptions for the nonlinearity $f(x, t)$ in the symmetric case and the case that the breaking of symmetry $g(x, t)$.

The paper is organized as follows: in Section 2, we present some preliminary knowledge on the Orlicz-Sobolev spaces and give the main results. In section 3, we will give the proof for symmetric case (1.1) by symmetric mountain pass theorem, and in Section 4, with the method used in [13], we give the proof for perturbed problem (1.2).

2 Preliminaries

Obviously, our problems allow a nonhomogeneous function $p$ in the differential operator. To deal with this situation, we introduce an Orlicz-Sobolev space setting as follows:

Let

$P(t)=\int_0^t p(s)ds,\hspace{2mm}\widetilde{P}(t)=\int_0^t p^{-1}(s)ds,t\in R,$

then $P$ and $\widetilde{P}$ are complementary $N$-functions (see[10]), which define the Orlicz spaces $L^P:=L^P(\Omega)$ and $L^{\widetilde{P}}:=L^{\widetilde{P}}(\Omega)$ respectively.

Throughout this paper, we assume the following condition on $P$:

$(p) 1<p^-:=\inf\limits_{t>0}\frac{tp(t)}{P(t)}\leq p^+:=\sup\limits_{t>0}\frac{tp(t)}{P(t)}<+\infty.$

Under the condition $(p)$, the Orlicz space $L^P$ coincides with the set (equivalence classes) of measurable functions $u:\Omega\to R$ such that

$\int_{\Omega}P(|u|)dx<+\infty,$

and is equipped with the (luxemburg) norm, i.e.

$|u|_P:=\inf\{k>0:\int_{\Omega}P(\frac{|u|}{k})dx<1\}.$

We will denote by $W^{1, P}(\Omega)$ the corresponding Orlicz-Sobolev space with the norm

$||u||_{W^{1, P}(\Omega)}:=|u|_P+|\nabla u|_P$

and define $W_0^{1, P}(\Omega)$ as the closure of $C_0^{\infty}$ in $W^{1, P}(\Omega)$. In this paper, we will use the following equivalent norm on $W_0^{1, P}(\Omega)$:

$||u||:=\inf\{k>0:\int_{\Omega}P(\frac{|\nabla u|}{k})dx<1\}.$

Now we introduce the Orlicz-Sobolev conjugate $P_*$ of $P$, which is given by

$P_*^{-1}(t):=\int_0^t\frac{p^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}d\tau,$

where we suppose that

$\lim\limits_{t\to0}\int_t^1\frac{p^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}d\tau<+\infty, \lim\limits_{t\to\infty}\int_1^t\frac{p^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}d\tau=+\infty.$

Let $p_*^-:=\inf\limits_{t>0}\frac{tP_*'(t)}{P_*(t)}, p_*^+:=\sup\limits_{t>0}\frac{tP_*'(t)}{P_*(t)}.$ Throughout this paper, we assume that $p^+<p_*^-$. Now we will make the following assumptions on $f(x, t)$.

$(f_*)$ There exists an odd increasing homeomorphism $h$ from $R$ to $R$, and nonnegative constants $c_1, c_2$ such that

$|f(x, t)|\leq c_1+c_2h(|t|), \forall t\in R, \forall x\in \overline{\Omega},$
$\lim\limits_{t\to+\infty}\frac{H(t)}{P_*(kt)}=0, \forall k>0,$ (2.1)

where

$H(t):=\int_0^th(s)ds.$

Let

$\widetilde{H}(t):=\int_0^th^{-1}(s)ds,$

then we can obtain complementary N-functions which define corresponding Orlicz spaces $L^H$ and $L^{H_*}$.

Similar to condition $(p)$, we also assume the following condition on $H$:

$(h) 1<h^-:=\inf\limits_{t>0}\frac{th(t)}{H(t)}\leq h^+:=\sup\limits_{t>0}\frac{th(t)}{H(t)}<+\infty.$

Lemma 2.1 [10] Under the condition $(p)$, the spaces $L^P(\Omega)$, $W_0^{1, P}(\Omega)$ and $W^{1, P}(\Omega)$ are separable and reflexive Banach spaces.

Lemma 2.2 [10] Under the condition $(f_*)$ and (2.1), the imbedding $W_0^{1, P}(\Omega)\hookrightarrow L^H(\Omega)$ is compact.

Next we assume

$N<p_0<\liminf\limits_{t\to\infty}\frac{\log(P(t))}{\log(t)}.$ (2.2)

Lemma 2.3 Under the condition (2.2), the imbedding $W_0^{1, P}(\Omega)\hookrightarrow C(\overline{\Omega})$ is compact.}

Proof Using Lemma D.2 in [14], it follows that $W_0^{1, P}(\Omega)$ is continuously embedded in $W^{1, p^-}(\Omega)$. On the other hand, since we assume $p^->N$, we deduce that $W_0^{1, p^-}(\Omega)$ is compactly embedded in $C(\overline{\Omega})$. Thus, we obtain that $W_0^{1, P}(\Omega)$ is compactly embedded in $C(\overline{\Omega})$.

Lemma 2.4 [2] Let $\rho(u)=\int_{\Omega}P(u)dx$, we have

(1) if $|u|_P<1$, then $|u|_P^{p^+}\leq \rho(u)\leq |u|_P^{p^-}$;

(2) if $|u|_P>1$, then $|u|_P^{p^-}\leq \rho(u)\leq |u|_P^{p^+}$;

(3) if $0<t<1$, then $t^{p^+}P(u)\leq P(tu)\leq t^{p^-}P(u), $;

(4) if $t>1$, then $t^{p^-}P(u)\leq P(tu)\leq t^{p^+}P(u)$.

With all the lemmas mentioned above, we now state our results and make the following assumptions:

$(f_1)$ there exist $\eta>p^+$ and $1<\sigma<p^-$, and $a_1$, $a_2>0$, such that

$\frac{1}{\eta}f(x, t)t-F(x, t)\geq -a_1-a_2|t|^{\sigma}$

for every $t\in R$, a.e. in $\Omega$.

$(f_2)$ $\liminf\limits_{|t|\to\infty} F(x, t)/|t|^{p^+}=\infty$ uniformly a.e. in $\Omega$.

Theorem 2.1 (Symmetric case) Assume that $f(x, t)$ is odd in $t$, satisfies $(f_*)$ $(f_1)$ $(f_2)$ and $(2.1)$ with $p^-<h^+\leq p^+$, Then problem (1.1) possesses infinitely many nontrivial solutions.

Theorem 2.2 (Non-symmetric case) Assume that $f(x, t)$ is odd in $t$, satisfies $(f_*)$, $(f_1)$, $(f_2)$, $(2.1)$, $(2.2)$ with $p^-<h^+\leq p^+$, $g\in C(\overline{\Omega}\times R)$, then for any $m\in N$, there exists $\epsilon_m>0$ such that if $|\epsilon|\leq\epsilon_m$, the problem (1.2) possesses at least $m$ distinct solutions.

3 Proof for symmetric case

In this section, we assume that $N\geq 1$ and $E=W_0^{1, P}(\Omega)$, $u\in E$ is called a weak solution of problem (1.1) if

$\int_{\Omega}a(|\nabla u|)\nabla u\nabla \phi dx=\int_{\Omega}f(x, u)\phi dx, \forall \phi \in E.$

Set

$I(u)=\int_{\Omega}P(|\nabla u|)dx-\int_{\Omega}F(x, u)dx, \forall u\in E$

and we know that the critical points of $I$ are just the weak solutions of problem (1.1).

Now we state the symmetric mountain pass theorem used in this section.

Lemma 3.1 [11] Let $E$ be an infinite dimensional Banach space and let $I\in C^1(E, R)$ be even, satisfy (PS), and $I(0)=0$, if $E=V\oplus X$, where $V$ is finite dimensional, and $I$ satisfies

$(I_1)$ there are constants $\rho, \alpha>0$ such that $I|_{\partial B_{\rho}\cap X}\geq \alpha$;

$(I_2)$ for each finite dimensional subspace $\widetilde{E}\subset E$, there is an $R=R(\widetilde{E})$ such that $I\leq 0$ on $\widetilde{E}\setminus B_{R(\widetilde{E})}$, then $I$ possesses an unbounded sequence of critical values.

For E a separable and reflexive Banach space, then there exist (see [9]) $\{e_n\}_{n=1}^{\infty}\subset E$ and $\{e_n^*\}_{n=1}^{\infty}\subset E^*$ such that

$e_n^*(e_m)=\delta_{n,m}=\left\{ \begin{array}{ll} 1,&\hbox{ if $n=m$;} \\ 0,&\hbox{if $n\not=m$.} \end{array} \right. \hbox{and}\; e_n^*(v)=\alpha_n \;\hbox{for}\hspace{2mm} v=\sum\limits_{i=1}^{\infty}\alpha_i e_i\in E.$

Now we set

$V_j=\{u\in W_0^{1, P}(\Omega):e_i^*(u)=0, i>j\},\\ X_j=\{u\in W_0^{1, P}(\Omega):e_i^*(u)=0, i\leq j\},$

so

$W_0^{1, P}(\Omega)=V_j\oplus X_j.$ (3.1)

Lemma 3.2 Given $\delta>0$, there is $j\in N$ such that for all $u\in X_j$, $|u|_H\leq \delta ||u||$.

Proof We prove the lemma by contradiction. Suppose that there exist $\delta>0$ and $u_j\in X_j$ for every $j\in N$ such that $|u_j|_H\geq \delta ||u_j||$. Taking $v_j=\frac{u_j}{|u_j|_H}$, we have $|v_j|_H=1$, for every $j\in N$ and $||v_j||\leq \frac{1}{\delta}$. Hence $\{v_j\}\subset W_0^{1, P}(\Omega)$ is a bounded sequence, and we may suppose, without loss of generality, that $v_j\rightharpoonup v$ in $W_0^{1, P}(\Omega)$. Furthermore, $e_n^*(v)=0$ for every $n\in N$ since $e_n^*(v_j)=0$ for all $j\geq n$. This shows that $v=0$. On the other hand, by the compactness of embedding $W_0^{1, P}(\Omega)\hookrightarrow L^H(\Omega)$, we conclude that $|v|_H=1$. This proves the lemma.

Lemma 3.3 Suppose $f$ satisfy $(f_*)$, then there exist $j\in N$ and $\rho, \alpha >0$, such that $I|_{\partial B_{\rho}\cap X_j}\geq \alpha$.

Proof: Now suppose that $||u||>1$, from $(f_*)$, we know that

$\begin{eqnarray*} I(u)&=&\int_{\Omega}P(|\nabla u|)dx-\int_{\Omega} F(x,u)dx\\ &\geq& ||u||^{p^-}-C_1|u|_H^{h^+}-C_2. \end{eqnarray*}$

Consequently, considering $\delta>0$ to be chosen posteriorly by Lemma 3.2, we have for all $u\in X_j$ and $j$ sufficiently large,

$I(u)\geq ||u||^{p^-}(1-C_1\delta^{h^+}||u||^{h^+-p^-})-C_2.$

Now, taking $||u||=\rho(\delta)=(\frac{1}{2C\delta^{h^+}})^{\frac{1}{h^+-p^-}}$, and noting that $\rho(\delta)\to+\infty$, if $\delta\to0$. We can choose $\delta>0$ such that $\frac{1}{2}\rho^{p^-}>C_2$, $\rho>1$, and $I(u)>0$ for every $u\in X_j$, $||u||=\rho$, the proof is complete.

Lemma 3.4 Suppose $f$ satisfy $(f_2)$, then for each finite dimensional subspace $\widetilde{E}\subset E$, there is an $R=R(\widetilde{E})$ such that $I\leq 0$ on $\widetilde{E}\setminus B_{R(\widetilde{E})}$.

Proof: From condition $(f_2)$, given $L>0$, there is a $C>0$ such that for every $t\in R$, a.e. $x\in\Omega$,

$F(x, t)\geq L|t|^{p^+}-C.$

Now let $\widetilde{E}$ be a finite dimensional subspace, suppose that $u\in \widetilde{E}$ with $||u||>1$, then

$\begin{eqnarray*} I(u)&=&\int_{\Omega}P(\nabla u|)dx-\int_{\Omega} F(x, u)dx&\leq& ||u||^{p^+}-L\int_{\Omega}|u|^{p^+}dx +C&\leq& (1-CL)||u||^{p^+}+C. \end{eqnarray*}$

Choose $L$ large enough such that $1-LC<0$ then there exists $R(\widetilde{E})>1$ such that $I(u)\leq0$ for all $||u||\geq R(\widetilde{E})$ and the proof is complete.

Lemma 3.5 Suppose $f$ satisfies $(f_1)$, then $I$ satisfies (PS) condition.}

Proof We suppose that $||u_n||>1$,

$\begin{aligned} M+o(1)||u_n|| & \geq I(u_n)-\frac{1}{\eta}I'(u_n)u_n \\ & = \int_{\Omega}P(|\nabla u_n|)dx-\frac{1}{\eta}\int_{\Omega}p(|\nabla u_n|)\nabla u_n dx+\int_{\Omega}(\frac{1}{\eta}f(x, u_n)u_n-F(x, u_n)) dx \\ & \geq (1-\frac{p^+}{\eta})||u_n||^{p^-}-a_1|\Omega|-C||u_n||^{\sigma}, \end{aligned}$

Noting that $1<\sigma <p^-$, $\eta>p^+$, $\{u_n\}$ is bounded. By [9] Lemma 3.1, we know that $I$ satisfies the (PS) condition.

Proof of Theorem 1.1 First, we recall that $W_0^{1, P}(\Omega)=V_j\oplus X_j$, where $V_j$ and $X_j$ are defined in (3.1). Invoking Lemma 3.3, we find $j\in N$, and $I$ satisfies $(I_1)$ with $X=X_j$. Now by Lemma 3.4 $I$ satisfies $(I_2)$. Since $I(0)=0$ and $I$ is even, we may apply Lemma 3.1 to conclude that $I$ possesses infinitely many nontrivial critical points. The proof is complete.

4 Proof for non-symmetric case

First of all, let us recall some notions and facts from Degiovanni and Lancelotti [12]. Let $E$ be a Banach space and $I\in C^1(E, R)$. For $b\in \widetilde{R}:=R\cup\{-\infty, +\infty\}$, set $I^b=\{u\in E|I(u)\leq b\}$.

Definition 4.1 [12] Let $a$, $b\in\widetilde{R}$ with $a\leq b$. The pair $(I^b, I^a)$ is said to be trivial, if for every neighborhood $[\alpha', \alpha'']$ of $a$ and $[\beta', \beta'']$ of $b$ $(\alpha', \alpha'', \beta', \beta''\in R)$ there exist two closed subsets $A$ and $B$ such that $I^{\alpha'}\subset A\subset I^{\alpha''}$, $I^{\beta'}\subset B\subset I^{\beta''}$ and $A$ is a strong deformation retract of $B$.

Definition 4.2 [12] A real number $c$ is said to be an essential value of $I$, if for every $\epsilon>0$, there exist $a, b\in(c-\epsilon, c+\epsilon)$ with $a<b$ such that the pair $(I^b, I^a)$ is not trivial.

Lemma 4.1 [12] Let $a$, $b\in \widetilde{R}$ with $a<b$. Let us assume that $I$ has no essential value in $(a, b)$. Then the pair $(I^b, I^a)$ is trivial.

Lemma 4.2 [12] Let $c$ be an essential value of $I$. Then for every $\epsilon>0$ there exists $\delta>0$ such that every $J\in C^1(E, R)$ with $sup\{|J(u)-I(u)||u\in E\}<\delta$ admits an essential value in $(c-\epsilon, c+\epsilon)$.

Lemma 4.3 [12] Let $c$ be an essential value of $I$. If $(PS)_c$ holds for $I$, then $c$ is a critical value of $I$.

Proof of Theorem 1.2 Fix a number $m\in N$. For $k\in N$, choose a continuous function $\beta_k(t)=1$ if $|t|\leq k$, $\beta_k(t)=0$ if $|t|\geq k+1$ and $0<\beta_k(t)<1$, if $k<|t|<k+1$. Let $g_k(x, t)=\beta_k(t)g(x, t)$ and $G_k(x, t)=\int_0^t g_k(x, s)ds$. For any $k\in N$, choose $\epsilon_1(k)>0$ such that for all $x\in \Omega$ and $t\in R$,

$\epsilon_1(k)|g_k(x, t)|<1, \epsilon_1(k)|G_k(x, t)|<1, \epsilon_1(k)tg_k(x, t)<1.$

For $k\in N$ and $|\epsilon|\leq\epsilon_1(k)$, set

$I(u)=\int_{\Omega}P(|\nabla u|)dx-\int_{\Omega} F(x, u)dx, u\in W_0^{1, P}(\Omega),$

and

$I_{\epsilon k}(u)=\int_{\Omega}P(|\nabla u|)dx-\int_{\Omega}(F(x, u)+\epsilon G_k(x, u))dx, u\in W_0^{1, P}(\Omega).$

Then $I$ and $I_{\epsilon k}$ satisfies $(PS)_c$ for every real number $c$. Denote $E_k=span\{e_1, e_2, \cdots e_k\}$. By $(f_2)$, there exists an increasing sequence of positive numbers $\{R_k\}$ such that

$I(u)\leq 0, \forall u\in E_k, ||u||\geq R_k.$

Let $D_k=\{u|u\in E_k, ||u||\leq R_k\}$, and $\partial D_k$ be the boundary of $D_k$ in $E_k$.

Define a sequence $\{\Phi_k\}$ of sets of functions inductively as

$\Phi_1=\{h|h\in C(D_1, E), \hbox{h is odd, and }h|_{\partial D_1}=id\},$

and for $k=1, 2, \cdots$,

$\Phi_{k+1}=\{h|h\in C(D_{k+1}, E), \hbox{h is odd, } h|_{\partial D_{k+1}}=id, \hbox{and }h|_{D_k}\in \Phi_k\}.$

Define for $k=1, 2\cdots$

$b_k=\inf\limits_{h\in \Phi_k}\max\limits_{u\in D_k} I(h(u)).$

It is obvious that $b_1\leq b_2\leq b_3\leq \cdots$.Define for $k=1, 2\cdots$,

$\begin{gathered} {G_k} = \{ h|h \in C({D_k},E),h{\text{ is odd, and }}h{|_{\partial {D_k}}} = id\} , \hfill \\ {\Gamma _k} = \{ h(\overline {{D_j} \setminus Y} )|h \in {G_j},j \geqslant k,Y \in \Sigma ,\;{\text{and}}\;\gamma (Y) \leqslant j - k\} , \hfill \\ \end{gathered} $

and

$c_k=\inf\limits_{B\in \Gamma_k}\max\limits_{u\in B} I(u).$

where $\Sigma$ is the class of closed symmetric subsets of $E$ and $\gamma(Y)$ is the genus of $Y$ for $Y\in\Sigma$. By Rabinowitz [11, Proposition 9.33], $c_k\to\infty$, as $k\to\infty$. From the definition of $b_k$ and $c_k$, it is clear that $b_k\geq c_k$ for all $k\in N$. So $b_k\to\infty$ as $k\to\infty$. Let $\Lambda =\{c\in R, c \hspace{2mm}\hbox{is an essential value of} \hspace{2mm}I\}$. Now we prove that $\Lambda\not=\emptyset$, and $\sup\Lambda=+\infty$. If this statement was false, then there would exists $k\in N$ such that $0<b_k<b_{k+1}$ and $[b_k, +\infty)\cap \Lambda=\emptyset$. Choose real numbers $\alpha'$, $a$, $\alpha''$ such that

$b_k<\alpha'<a<\alpha''<b_{k+1}.$ (4.1)

Let $h\in \Phi_k$ be such that $\max_{u\in D_k} I(h(u))<\alpha'$. for $k\in N$, define

$D_{k+1}^+=\{u|u=v+te_{k+1}, v\in E_k, t\geq0, ||u||\leq R_{k+1}\},$

and let $\partial D_{k+1}^+$ be the boundary of $D_{k+1}^+$ in $E_{k+1}$. Extend $h$ to be a function $h_1\in C(\partial D_{k+1}^+, E)$ as

$h_1(u)=\left\{ \begin{array}{ll} h(u),&\hbox{$u\in D_k$;} \\ u,&\hbox{$u\in\partial D_{k+1}^+\setminus D_k$.} \end{array} \right.$

Clearly, $h_1$ is well defined, continuous and $h_1(\partial D_{k+1}^+)\subset I^{\alpha'}$. Extend $h_1$ to a function $h_2\in C(D_{k+1}^+, E)$ and let $\beta=\max\{I(h_2(u))|u\in D_{k+1}^+\}$. By lemma 4.1, the pair $(I^{+\infty}, I^a)$ is trivial. So there exist closed subsets $A$ and $B$ of $E$ such that $I^{\alpha'}\subset A\subset I^{\alpha''}$, $I^{\beta}\subset B$, and there exists a strong deformation interaction $\eta:B\times[0,1]\to B$ of $B$ to $A$. Define $h_3\in C(D_{k+1}^+, E)$ as $h_3(u)=\eta(h_3(u), 1)$ then $h_3(u)$ satisfies

$I(h_3(D_{k+1}^+))\subset I^{\alpha''},$ (4.2)
$h_3\hbox{ is odd on }D_{k+1}^+\cap E_k,$ (4.3)
$h_3=id \hspace{2mm}\hbox{on }\partial D_{k+1}^+\cap \partial D_{k+1},$ (4.4)
$h_3|_{D_k}=h.$ (4.5)

Define $h_4\in C(D_{k+1}, E)$ as

$h_4(u)=\left\{ \begin{array}{ll} h_3(u),&\hbox{$u\in D_{k+1}^+$;} \\ -h_3(-u),&\hbox{$u\in D_{k+1}\setminus D_{k+1}^+$.} \end{array} \right.$

Then (4.3) implies that $h_4$ is odd, (4.4) implies $h_4|_{\partial D_{k+1}}=id, $ and (4.5) implies $h_4|_{D_k}\in\Phi_k$. So $h_4\in \Phi_{k+1}$ which is a contradiction, since by (4.1) and (4.2) we have

$b_{k+1}\leq\max\limits_{u\in D_{k+1}}I(h_4(u))=\max\limits_{u\in D_{k+1}^+}I(h_3(u))\leq\alpha ''<b_{k+1}.$

Therefore $\Lambda\not=\emptyset$ and $\sup \Lambda=+\infty$. Choose a strictly increasing sequence of positive number $\{d_k\}\subset \Lambda$, such that $d_k\to+\infty$ as $k\to+\infty$. By Lemma 4.2 and the definition of $I_{\epsilon k}$, there exists $\epsilon_2(k)\in(0, \epsilon_1(k))$ such that if $|\epsilon|\leq\epsilon_2(k)$, then $I_{\epsilon k}$ has at least $m$ essential values $d_{\epsilon k1}$, $d_{\epsilon k2}$, $\cdots$, $d_{\epsilon km}$ such that

$0<d_{\epsilon k1}<d_{\epsilon k2}<\cdots<d_{\epsilon km}<d_{m+1}.$

According to Lemma 4.3, there are $m$ distinct critical points $u_{\epsilon ki}$ $(i=1, 2, \cdots, m)$ of $I_{\epsilon k}$ such that

$\int_{\Omega}P(|\nabla u_{\epsilon ki}|)dx-\int_{\Omega}(F(x, u_{\epsilon ki})+\epsilon G_k(x, u_{\epsilon ki}))dx=d_{\epsilon ki},$

and

$\int_{\Omega}p(|\nabla u_{\epsilon ki}|)\nabla u_{\epsilon ki}dx=\int_{\Omega}(f(x, u_{\epsilon ki})u_{\epsilon ki}+\epsilon g_k(x, u_{\epsilon ki})u_{\epsilon ki})dx.$

Then there exists a constant $C_m>0$ independent of $\epsilon$ and $k$ such that for every $k\in N$, $|\epsilon|\leq \epsilon_2(k)$ and $i=1, 2, \cdots, m$,

$\int_{\Omega}P(|\nabla u_{\epsilon ki}|)dx-\int_{\Omega}(F(x, u_{\epsilon ki})+\epsilon G_k(x, u_{\epsilon ki}))dx\leq C_m,\\ \int_{\Omega}p(|\nabla u_{\epsilon ki}|)\nabla u_{\epsilon ki}dx-\int_{\Omega}f(x, u_{\epsilon ki})u_{\epsilon ki}\geq-C_m.$

Then we have for every $k\in N$, $|\epsilon|\leq \epsilon_2(k)$, and $i=1, 2, \cdots m$,

$||u_{\epsilon ki}||\leq C_m'.$ (4.6)

where $C_m'$ is a constant independent of $\epsilon$ and $k$ and so there exists a constant $C_m''$ independent of $\epsilon$ and $k$ such that for every $k\in N$, $|\epsilon|\leq \epsilon_2(k)$ and $i=1, 2\cdots, m$,

$||u_{\epsilon ki}||_{C(\overline{\Omega})}\leq C_m''.$ (4.7)

So if $k>C_m''$ then for any $\epsilon$ with $|\epsilon|\leq \epsilon_2(k)$ the problem possesses $m$ distinct solutions $u_{\epsilon k1}$, $u_{\epsilon k2}$, $\cdots$, $u_{\epsilon km}$. The proof is complete.

Remark 4.1 In this theorem we assume (2.2) just because we can get (4.7) from (4.6) by the embedding result such that $C_m''$ is independent of $\epsilon$ and $k$.

References
[1] Clément P H, García-Huidobro M, Manásevich R, Schmitt K. Mountain pass type solutions for quasilinear elliptic equations[J]. Calc. Var. Partial Difierential Equations, 2000, 11(1): 33–62. DOI:10.1007/s005260050002
[2] Fukagai N, Ito M, Narukawa M K. Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on RN[J]. Funkcialaj Ekvacioj, 2006, 49(2): 235–267. DOI:10.1619/fesi.49.235
[3] Fukagai N, Narukawa K. On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems[J]. Annadli di Matematica, 2007, 186(3): 539–564. DOI:10.1007/s10231-006-0018-x
[4] García-Huidobro M, Le V, Manásevich R, Schmitt K. On the principal eigenvalues for quasilinear elliptic difierential operators: An Orlicz-Sobolev space setting[J]. Nonlinear Difi. Eqns. Appl, 1999, 6(2): 207–225. DOI:10.1007/s000300050073
[5] Tan Zhong, Fang Fei. Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations[J]. J. Math. Anal. Appl., 2013, 402(1): 348–370. DOI:10.1016/j.jmaa.2013.01.029
[6] Mihăilescu M, Rădulescu V. Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces[J]. C.R. Acad. Sci. Paris. Ser. I, 2008, 346(7-8): 401–406. DOI:10.1016/j.crma.2008.02.020
[7] Bonanno G, Bisci G M, Rădulescu V D. Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal[J]. Nonlinear Anal., 2012, 75: 4441–4456. DOI:10.1016/j.na.2011.12.016
[8] Černý R. Generalized n-Laplacian: quasilinear nonhomogenous problem with critical growth[J]. Nonlinear Anal., 2011, 74(11): 3419–3439. DOI:10.1016/j.na.2011.03.002
[9] Fang Fei, Tan Zhong. Existence and multiplicity of solutions for a class of quasilinear elliptic equations: An Orlicz-Sobolev space setting[J]. J. Math. Anal. Appl., 2012, 389(1): 420–428. DOI:10.1016/j.jmaa.2011.11.078
[10] Adams R A, Fournier J J F. Sobolev spaces (2nd ed)[M]. Amsterdam: Elsevier/Academic Press, 2003.
[11] Rabinowitz P H. Minimax methods in critical point theory with applications to difierential equations[M]. Providence RI: AMS, 1986.
[12] Degiovanni M, Lancelotti S. Perturbations of even nonsmooth functionals[J]. Difierential Intergral equations, 1995, 8(5): 981–992.
[13] Li Shujie, Liu ZhaoLi. Perturbations from symmetirc elliptic boundary value problems[J]. J. Difierential equations, 2002, 185(1): 271–280. DOI:10.1006/jdeq.2001.4160
[14] Clément, P H, De pagter B, Sweets G, Thélin D F. Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[J]. Mediterr. J. Math., 2004, 1(3): 241–267. DOI:10.1007/s00009-004-0014-6