数学杂志  2015, Vol. 35 Issue (3): 691-698   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
赵雪漪
用牵制控制方法进行含随机噪声的复杂网络的拓扑结构识别
赵雪漪    
郧阳师范高等专科学校数学与财经系, 湖北 十堰 442000
摘要:本文研究了含噪声的复杂动态网络的拓扑结构识别的问题.利用牵制控制(Pinning控制)方法, 基于随机微分方程的理论基础, 来进行网络的拓扑结构识别, 设计自适应反馈控制器和识别率, 来反演网络结构, 通过数值仿真, 获得了pinning控制方法主要是通过一部分未知节点来识别整个网络的拓扑结构的结果, 噪声强度的范围将影响网络结构正确识别时的耦合强度范围, 噪声强度越大, 可识别的耦合强度也越大.
关键词复杂网络    拓扑结构    牵制控制    噪声    随机微分方程    
TOPOLOGY IDENTIFICATION OF COMPLEX DYNAMICAL NETWORKS WITH STOCHASTIC PERTURBATIONS VIA PINNING CONTROL
ZHAO Xue-yi    
Department of Mathematics and Finance, Yunyang Teachers'College, Shiyan 442000, China
Abstract: This paper studies the topology identiflcation of complex dynamical networks with stochastic perturbations. Using the pinning control method and basing on the LaSalle invariance principle of stochastic difierential equation, we get the topology identiflcation network, feedback controller and adaptive inversion recognition rate design, network structure. Through the numerical simulation, we get the result that the pinning control method is identifying the whole network topology structure through the part of the unknown nodes, and the range of noise intensity will afiect the coupling strength range network structure when it is correctly identifled. The greater the itensity of noise is, the larger the recognition of the coupling strength is.
Key words: complex network     topology identiflcation     pinning control     noise     stochastic difierential equation    
1 网络的拓扑识别

针对网络节点动力学是二维的情况, 考虑如下含随机噪声的复杂动力网络:

$ \left\{ \begin{array}{l} {{\dot x}_i} = {f_1}\left( {t,{x_i},{y_i}} \right) + \sum\limits_{j = 1}^N {{c_{ij}}{h_j}\left( {{x_j}} \right)} + {\sigma _1}\left( {{x_i},t} \right)\dot \omega ,\\ {{\dot y}_i} = {f_2}\left( {t,{x_i},{y_i}} \right) + {\sigma _2}\left( {{y_i},t} \right)\dot \omega , \end{array} \right. $ (1.1)

其中$1 \leqslant i, j \leqslant N$, 网络仅通过分量${x_i}$互相耦合, 并假设只有这个分变量可测, ${h_j}\left( {{x_j}} \right)$是内部耦合函数, ${c_{ij}}$是外部耦合强度, $C = {\left( {{c_{ij}}} \right)_{N \times N}}$是网络的外联耦合矩阵, 其定义为若节点$j$对节点$i$有影响($j \ne i$), 则${c_{ij}} \ne 0$; 否则, ${c_{ij}} =0$.另外, $C$满足${c_{ii}} = -\sum\limits_{j = 1, j \ne i} {{c_{ij}}} $, ${\sigma _1}\left( {{x_i}, t} \right)$, ${\sigma _2}\left( {{y_i}, t} \right)$: ${R_ + } \times {R^n} \to {R^{n \times m}}$是与节点状态相关的噪声强度函数, $\omega $为定义在一个完备概率空间$\left( \Omega, f, P \right)$上, 并含有一个自然代数流${{\{{{f}_{t}}\}}_{t\ge 0}}$$m$维布朗运动.

为了识别(1.1) 的拓扑结构, 将(1.1) 看作驱动网络, 构造相应的响应网络如下:

$ \left\{ \begin{array}{*{35}{l}} {{{\dot{\hat{x}}}}_{i}}={{f}_{1}}\left( t,{{{\hat{x}}}_{i}},{{{\hat{y}}}_{i}} \right)+\sum\limits_{j=1}^{N}{{{{\hat{c}}}_{ij}}{{h}_{j}}\left( {{{\hat{x}}}_{j}} \right)}+{{u}_{i}}+{{\sigma }_{1}}\left( {{{\hat{x}}}_{i}},t \right)\dot{\omega }, \\ {{{\dot{\hat{y}}}}_{i}}={{f}_{2}}\left( t,{{{\hat{x}}}_{i}},{{{\hat{y}}}_{i}} \right)+{{\sigma }_{2}}\left( {{{\hat{y}}}_{i}},t \right)\dot{\omega }, \\ \end{array} \right. $ (1.2)

其中${u_i}$是控制项, $\hat C = {\left( {{{\hat c}_{ij}}} \right)_{N \times N}}$是对原网络结构$C$的估计.

${\tilde x_i} = {\hat x_i} - {x_i}$, ${\tilde y_i} = {\hat y_i} - {y_i}$, ${\tilde c_{ij}} = {\hat c_{ij}} - {c_{ij}}$, ${\sigma _1}\left( {{e_1}, t} \right)\dot \omega = {\sigma _1}\left( {{{\hat x}_i}, t} \right)\dot \omega - {\sigma _1}\left( {{x_i}, t} \right)\dot \omega $, ${\sigma _2}\left( {{e_2}, t} \right)\dot \omega = {\sigma _2}\left( {{{\hat y}_i}, t} \right)\dot \omega - {\sigma _2}\left( {{y_i}, t} \right)\dot \omega $, 则可得如下误差系统

$ \left\{ \begin{align} &{{{\dot{\tilde{x}}}}_{i}}={{f}_{1}}\left( t,{{{\hat{x}}}_{i}},{{{\hat{y}}}_{i}} \right)-{{f}_{1}}\left( t,{{x}_{i}},{{y}_{i}} \right)+\sum\limits_{j=1}^{N}{{{{\hat{c}}}_{ij}}{{h}_{j}}\left( {{{\hat{x}}}_{j}} \right)}-\sum\limits_{j=1}^{N}{{{c}_{ij}}{{h}_{j}}\left( {{x}_{j}} \right)}+{{u}_{i}}+{{\sigma }_{1}}\left( {{e}_{1}},t \right)\dot{\omega }, \\ &{{{\dot{\tilde{y}}}}_{i}}={{f}_{2}}\left( t,{{{\hat{x}}}_{i}},{{{\hat{y}}}_{i}} \right)-{{f}_{2}}\left( t,{{x}_{i}},{{y}_{i}} \right)+{{\sigma }_{2}}\left( {{e}_{2}},t \right)\dot{\omega }, \\ \end{align} \right. $ (1.3)

其中$1 \leqslant i \leqslant N$.

假设 1.1  假设${h_j}\left( x \right)\left( {1 \leqslant j \leqslant {l_2}} \right)$是线性无关的, 满足${m_1} \leqslant \left| {{{h'}_j}\left( x \right)} \right| \leqslant {m_2}$, 其中${m_1}$${m_2}$是正常数.

假设 1.2  设噪声强度函数${\sigma _i}\left( {{e_i}, t} \right)$有界, 满足$ \frac{1}{2}{\hbox{tr}}\left( {{\sigma _i}^T{\sigma _i}} \right) \leqslant \sum\limits_{i = 1}^N {{p_i}{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde y}_i}^2}, $其中${p_i}$为非负实数.

假设 1.3  存在一个正的$q>0$使得$ \left| {f\left( {t, x, z} \right) - f\left( {t, y, w} \right)} \right| \leqslant q\left( {\left| {x - y} \right| + \left| {z - w} \right|} \right), $其中$x, y, z, w \in {\mathbb{R}^n}$.

考虑如下$n$维随机微分方程[1]:

$ \begin{equation} dx\left( t \right) = f\left( {t, x\left( t \right)} \right)dt + g\left( {t, x\left( t \right)} \right)dW\left( t \right), \end{equation} $ (1.4)

其中$f\left( {t, x} \right):\left[{0, + \infty } \right] \times {R^n} \to {R^n}$$g\left( {t, x} \right):\left[{0, + \infty } \right] \times {R^n} \to {R^{n \times m}}.$

定义 1.1  如果开集$G \subset {R^n}$满足$P\left\{ {x\left( {t, {x_0}} \right) \in G, \forall t \geqslant 0} \right\} = 1, {x_0} \in G$, 则称$G$为关于方程(1.4) 的解的不变集, 也就是说, 所有从$G$出发的轨道永远在$G$内.

这里, 设${C^{1, 2}}\left( {{R_ + } \times G;{R_ + }} \right)$表示所有定义在${R_ + } \times G$上的非负函数集合$V\left( {t, x} \right)$, 其中$V\left( {t, x} \right)$关于$x$二阶连续可微, 关于$t$一阶连续可微, $\bar G$表示G的闭包.

引理 1.1  如果存在函数$V \in {C^{1, 2}}\left( {{R_ + } \times G;{R_ + }} \right), \gamma \in {L^1}\left( {{R_ + };{R_ + }} \right)$以及连续函数$w:\bar G \to {R_ + }$使得$LV\left( {t, x} \right) \leqslant \gamma \left( t \right) - w\left( x \right)$, $\left( {t, x} \right) \in {R_ + } \times G, $如果$G$有界; 或者

$ \mathop {\mathop {\lim }\limits_{x \in G} }\limits_{\left| x \right| \to \infty } \mathop {\inf }\limits_{0 \leqslant t < \infty } V\left( {t, x} \right) = \infty $

$G$有界, 则$\forall {x_0} \in G$, $\mathop {\lim }\limits_{t \to \infty } V\left( {t, x\left( {t;{x_0}} \right)} \right)$存在而且几乎处处有界.进一步地, 有

$ \mathop {\lim }\limits_{t \to \infty } w\left( {x\left( {t;{x_0}} \right)} \right) = 0\quad {\hbox{a.s.}}. $

也就是说, 从$G$内出发的方程(1.4) 的解最终会以概率$1$渐进稳定到$D_w^G: = \left\{ {x \in \bar G:w\left( x \right) = 0} \right\}$.

引理 1.2  (Schur complement)下列线性矩阵不等式

$ \left( {\begin{array}{*{20}{c}} {A\left( x \right)}&{B\left( x \right)} \\ {B{{\left( x \right)}^T}}&{C\left( x \right)} \end{array}} \right) < 0 $

等价于下列条件:

1) $A\left( x \right) < 0$, $C\left( x \right) - B{\left( x \right)^T}A{\left( x \right)^{ - 1}}B\left( x \right) < 0$;

2) $C\left( x \right) < 0$, $A\left( x \right) - B\left( x \right)A{\left( x \right)^{ - 1}}B{\left( x \right)^T} < 0$, 其中$A{\left( x \right)^T} = A\left( x \right)$, $C{\left( x \right)^T} = C\left( x \right).$

定理 1.1  当假设1.1--1.3成立时, 采用下列控制率

$ \begin{equation} \dot{\hat{c}}_{ij} = - {\delta _i}{\tilde x_i}^T{h_j}\left( {{{\hat x}_j}} \right), 1 \leqslant i \leqslant {l_1}, 1 \leqslant j \leqslant {l_2}, \end{equation} $ (1.5)
$ {u_i} = - {d_i}{\tilde x_i}, $ (1.6)
$ \begin{cases} {{\dot d}_i} = {k_i}{{\tilde x}_i}^2, 1 \leqslant i \leqslant {l_1}, \hfill \\ {d_i} = 0, {\hbox{其它}}, \end{cases} $ (1.7)

$\mathop {\lim }\limits_{t \to \infty } {\hat c_{ij}} = {c_{ij}}$.

 令${\tilde c_{ij}} \triangleq {\hat c_{ij}} - {c_{ij}}$, $1 \leqslant i, j \leqslant N$, ${h_i}\left( {{{\hat x}_i}} \right) - {h_i}\left( {{x_i}} \right) = {h'_i}\left( {{\xi _i}} \right)\left( {{{\hat x}_i} - {x_i}} \right), $构造如下Lyapunov函数

$ V = \frac{1}{2}\sum\limits_{i = 1}^N {\left( {{{\tilde x}_i}^T{{\tilde x}_i} + {{\tilde y}_i}^T{{\tilde y}_i}} \right)} + \frac{1}{2}\sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {\frac{{{{\tilde c}_{ij}}^2}}{{{\delta _i}}}} } + \frac{1}{2}\sum\limits_{i = 1}^{{l_1}} {\frac{{{{\left( {{d_i} - d} \right)}^2}}}{{{k_i}}}}, \\ \;\;\;\;\;\;\;\;V \in {C^{1, 2}}\left( {{R_ + } \times G;{R_ + }} \right), G = {R^{nN + N + {N^2}}}, \\ LV = \sum\limits_{i = 1}^N {\left( {{{\tilde x}_i}^T\dot{\tilde{x}}_i + {{\tilde y}_i}^T\dot{\tilde{y}}_i} \right)} + \sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {\frac{{{{\tilde c}_{ij}} \cdot \dot{\tilde{c}}_{ij}}}{{{\delta _i}}}} } + \sum\limits_{i = 1}^{{l_1}} {\frac{{\left( {{d_i} - d} \right) \cdot {{\dot d}_i}}}{{{k_i}}}} + \frac{1}{2}tr\left( {{\sigma _i}^T{\sigma _i}} \right) \\ \;\;\;\;\;\;\;\;\leqslant \sum\limits_{i = 1}^N {\left[{q{{\tilde x}_i}^2 + q\left( {\left| {{{\tilde x}_i}^T} \right|\left| {{{\tilde y}_i}} \right| + \left| {{{\tilde y}_i}^T} \right|\left| {{{\tilde x}_i}} \right|} \right) + q{{\tilde y}_i}^2} \right]}\\ \;\;\;\;\;\;\;\;+\sum\limits_{i = 1}^N {\sum\limits_{j = 1}^N {{c_{ij}}{{\tilde x}_i}^T\left( {{h_j}\left( {{{\hat x}_j}} \right) - {h_j}\left( {{x_j}} \right)} \right)} } - \sum\limits_{i = 1}^{{l_1}} {d{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde y}_i}^2} \\ \;\;\;\;\;\;\;\;= \sum\limits_{i = 1}^N {\left[{q{{\tilde x}_i}^2 + q\left( {\left| {{{\tilde x}_i}^T} \right|\left| {{{\tilde y}_i}} \right| + \left| {{{\tilde y}_i}^T} \right|\left| {{{\tilde x}_i}} \right|} \right) + q{{\tilde y}_i}^2} \right]} + \sum\limits_{i = 1}^N {{c_{ii}}{{\tilde x}_i}^T{{h'}_i}\left( {{\xi _i}} \right){{\tilde x}_i}} \\ \;\;\;\;\;\;\;\;+ \sum\limits_{i = 1}^N {\sum\limits_{j = 1, j \ne i}^N {{c_{ij}}{{\tilde x}_i}^T{{h'}_i}\left( {{\xi _i}} \right){{\tilde x}_j}} } - \sum\limits_{i = 1}^{{l_1}} {d{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde y}_i}^2} \\ \;\;\;\;\;\;\;\;\leqslant \sum\limits_{i = 1}^N {\left[{q{{\tilde x}_i}^2 + q\left( {\left| {{{\tilde x}_i}^T} \right|\left| {{{\tilde y}_i}} \right| + \left| {{{\tilde y}_i}^T} \right|\left| {{{\tilde x}_i}} \right|} \right) + q{{\tilde y}_i}^2} \right]} + \sum\limits_{i = 1}^N {{c_{ii}}{m_1}{{\tilde x}_i}^2} \\ \;\;\;\;\;\;\;\;+ \sum\limits_{i = 1}^N {\sum\limits_{j = 1, j \ne i}^N {{c_{ij}}{m_2}\left| {{{\tilde x}_i}^T} \right|\left| {{{\tilde x}_j}} \right|} } - \sum\limits_{i = 1}^{{l_1}} {d{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde x}_i}^2} + \sum\limits_{i = 1}^N {{p_i}{{\tilde y}_i}^2} \\ \;\;\;\;\;\;\;\;= \left( {{{\tilde X}^T}, {{\tilde Y}^T}} \right)\left( {\begin{array}{*{20}{c}}{{m_2}\bar C - D + \left( {q + p} \right){I_{NN}}}{q{I_{NN}}} \\ {q{I_{NN}}}{\left( {p + q} \right){I_{NN}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\tilde X} \\ {\tilde Y} \end{array}} \right) \\ \;\;\;\;\;\;\;\;\triangleq \left( {{{\tilde X}^T}, {{\tilde Y}^T}} \right)R\left( {\begin{array}{*{20}{c}} {\tilde X} \\ {\tilde Y} \end{array}} \right), $

其中

$ \tilde{X}={{\left( \left| {{{\tilde{x}}}_{1}} \right|,\cdots ,\left| {{{\tilde{x}}}_{N}} \right| \right)}^{T}},\tilde{Y}={{\left( \left| {{{\tilde{y}}}_{1}} \right|,\cdots ,\left| {{{\tilde{y}}}_{N}} \right| \right)}^{T}},p=\mathop {\max }\limits_{1≤i≤N}\,\left\{ {{p}_{i}} \right\}, \\R=\left( \begin{matrix} {{R}_{1}}\ \ \ \ \ \ \ \ \ \ \ \ q{{I}_{NN}} \\ q{{I}_{NN}}\ \ \ \ \ \left( p+p \right){{I}_{NN}} \\ \end{matrix} \right), $

${R_1} = {m_2}\bar C - D + \left( {q + p} \right){I_{NN}}$, ${I_{NN}}$$N \times N$的单位矩阵, $D$是对角矩阵, 其中第$i $ ($1 \leqslant i \leqslant {l_1}$)个元素为$d, $其余元素为0, 定义${C^S} = \left( {{C^T} + C} \right)/2$, $\bar C$是将矩阵${C^S}$的对角元素${c_{ii}}$变成$\left( {{m_1}/{m_2}} \right){c_{ii}}$后所形成的矩阵.取一个合适的正常数d可以使${R_1} < 0$, 并且$\left( {p + q} \right){I_{NN}} - {q^2} \cdot {R_1}^{ - 1} < 0$, 由引理1.2可知, $R < 0$.令$\lambda < 0$是矩阵$R$的最大特征值, 则$LV \leqslant \lambda {\tilde x^T}\tilde x \triangleq w\left( {\tilde x} \right)$.

又因为$\mathop {\mathop {\lim }\limits_{x \in G} }\limits_{\left| x \right| \to \infty } \mathop {\inf }\limits_{0 \leqslant t < \infty } V = \infty $${\sigma _i}$有界, 由引理1.1可知对于$G$内任意初值, $\mathop {\lim }\limits_{t \to \infty } V$存在而且几乎处处有界, 且$\mathop {\lim }\limits_{t \to \infty } w\left( {\tilde x} \right) = 0$.进一步地, 从$G$出发的关于方程(1.3), (1.5)-(1.6) 的解最终会以概率1渐进稳定到

$ D_w^G: = \left\{ {x \in \bar G:w\left( {\tilde x} \right) = 0} \right\} = \left\{ {x \in \bar G:\tilde x = 0} \right\} = \left\{ {\tilde x = 0;{{\tilde c}_{ij}} = 0;{d_i} = {\hbox{cons}}\tan ts} \right\}, $

其中$i, j = 1, 2, \cdots, N$, 也就是说, 采用控制率(1.5)-(1.7) 响应网络(1.2) 与网络(1.1) 同步, 且$\forall i, j \in \left\{ {1, 2, \cdots, N} \right\}$, $\mathop {\lim }\limits_{t \to \infty } {\hat c_{ij}} = {c_{ij}}$.

2 数值仿真

本节中, 我们将用FHN方程作为模型来验证上述方法的有效性. FHN方程表述为

$ \left\{ \begin{align} &\dot{V}=V-\frac{1}{3}{{V}^{3}}-W+\text{ }{{I}_{ex}}, \\ &\dot{W}=\varepsilon \left( V+a-bW \right), \\ \end{align} \right. $

其中$V$代表膜电位, $W$是恢复变量, ${I_{_{ex}}}$是外部刺激电流, $ a, $ $b, $ $\varepsilon $是正数, 通常情况下, 在$0 < \varepsilon \ll 1$时, $V$$W$分别作为快变量和慢变量, 参数$b$是显著影响系统动态特性的其中一个决定性条件.

在这里, 考虑含噪声的FHN系统

$ \left\{ \begin{align} &{{{\dot{V}}}_{i}}=V-\frac{1}{3}{{V}^{3}}-W+\text{ }{{I}_{ex}}-\sum\limits_{j=1,j\ne i}^{N}{{{g}_{ij}}\left( {{h}_{i}}\left( {{V}_{i}} \right)-{{h}_{j}}\left( {{V}_{j}} \right) \right)}+{{\sigma }_{1}}\left( {{V}_{i}},t \right)\dot{\omega }, \\ &\ \ \ \ \triangleq {{f}_{1}}\left( {{V}_{i}},{{W}_{i}} \right)+\sum\limits_{j=1}^{N}{{{g}_{ij}}{{h}_{j}}\left( {{V}_{j}} \right)}+{{\sigma }_{1}}\left( {{V}_{i}},t \right)\dot{\omega }, \\ &\ \ \ \ {{{\dot{W}}}_{i}}=\varepsilon \left( V+a-bW \right)+{{\sigma }_{2}}\left( {{W}_{i}},t \right)\dot{\omega }\triangleq {{f}_{2}}\left( {{V}_{i}},{{W}_{i}} \right)+{{\sigma }_{2}}\left( {{W}_{i}},t \right)\dot{\omega }. \\ \end{align} \right. $

$\varepsilon =0.08, a=0.7, b=0.8, {I_{ex}} = \left( {0.1 + 0.1i} \right)\cos \left( {t/50} \right), $ ${k_i}=20, $ ${\delta _i}=30, $易证FHN方程满足3个假设条件.

2.1 耦合函数为线性的网络的数值仿真

当耦合为线性时, 以含有20个节点的环状网络为例来进行仿真, 为了识别

$ {c_{ij}}\left( {1 \leqslant i \leqslant 4, 1\leqslant j \leqslant 2} \right), $

其中${c_{11}} = - 2, {c_{21}} = 1, {c_{31}} = 0, {c_{41}} = 0, {c_{12}} = 1, {c_{22}} = - 2, {c_{32}} = 1, $${c_{42}} = 0$未知, 图 1给出了当耦合强度取1, 噪声取1, $ p=1$时, 识别${\hat c_{ij}}$的演化结果, 由图可以看出, 识别结果与原网络耦合矩阵$C$的结果相同, 由此可以看出理论的正确性.

图 1 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果, 由图可以看出, 与原网络耦合矩阵$C$的结果相同

图 2, 3可以看出, 在其它值不变的情况下, $p$值增大时, 适用的耦合强度也随之增大, 但是当$p$太小时(图 4), 不能正确识别出结果, 这是因为网络内部达到了近似同步.

图 2 $p=2, $ ouhe$=10$时, 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果, 由图可以看出, 与原网络耦合矩阵$C$的结果相同

图 3 $ p=10, $ ouhe$=20$时, 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果, 由图可以看出, 与原网络耦合矩阵$C$的结果相同

由仿真可以得到, 网络结构可识别时, 噪声强度越大, 适用的耦合强度的范围越大.

图 4 $p=0.01, $ ouhe$=0.1$时, 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果, 不能正确识别
2.2 耦合函数为非线性的网络的数值仿真

${h_j}\left( x \right) = \exp ( - {x^2}/2)$, 易证满足假设1.1.在其它条件相同的情况下, 在2邻接网络上进行加边, 产生小世界网络模型, 令$N=20, $为了识别${c_{ij}}\left( {1 \leqslant i \leqslant 4, 1 \leqslant j \leqslant 2} \right)$, 其中${c_{11}} = 0, {c_{21}} = 1, {c_{31}} = 1, {c_{41}} = 0, {c_{12}} = 1, $${c_{22}} = 0, {c_{32}} = 1, {c_{42}} = 1$未知, 噪声、耦合强度和$p$都为1. 图 5给出了${\hat c_{ij}}$的识别结果, 由此可见, 当耦合取为非线性时, 上述理论依然正确.

图 5 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果, 由图可以看出, 我们的方法可正确识别原始网络中未知的边

同样的, 当耦合为非线性时, 也会有2.1节中的结论, $p$越大, 耦合强度也越大. 图 6, 7给出了将$p$取不同值时, 网络结构识别的结果, 由图可以看出, 都可以正确识别.

图 6 $p=2, $ ouhe$=10$时, 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果

图 7 当p=10, ouhe=20时, 左图为$\left\{ {{{\hat c}_{11}}, {{\hat c}_{21}}, {{\hat c}_{31}}, {{\hat c}_{41}}} \right\}$的结果, 右图为$\left\{ {{{\hat c}_{12}}, {{\hat c}_{22}}, {{\hat c}_{32}}, {{\hat c}_{42}}} \right\}$的结果

由上述图形可以得出与2.1节相同的规律, 也即噪声强度的范围将影响网络结构正确识别时的耦合强度范围, 噪声强度越大, 可识别的耦合强度也越大.

3 本文小结

本文针对节点动力学含随机噪声的复杂网络, 基于随机微分方程理论, 用牵制控制方法来进行拓扑识别, 设计自适应反馈控制器和识别率, 反演网络结构.不同于节点全部控制的识别方法, 牵制控制方法是通过控制部分节点来识别网络中未知的连接, 数值仿真验证了该方法的有效性.数值仿真部分主要分为两个部分:耦合为线性的和非线性的.通过仿真结果表明, 耦合不管为线性的或者非线性的, 都能达到很好的识别效果.噪声强度越大时, 耦合强度的适用范围也越大, 当噪声强度太小时, 反而不能达到很好的识别效果, 这是因为此时网络内部达到了近似同步.

参考文献
[1] Mao X R. A note on the lasalle-type theorems for stochastic differential delay equations[J]. J. Math. Anal. Appl., 2002, 268: 125–142. DOI:10.1006/jmaa.2001.7803
[2] Zhou J, Lu J A. Topology identification of weighted complex dynamical networks[J]. Physica A, 2007, 386: 481–491. DOI:10.1016/j.physa.2007.07.050
[3] Zhou J, Yu W W, Li X M, Lu J A. Identifying the topology of a coupled fitzhugh-nagumo neurobiological network via a pinning mechanism[J]. IEEE Trans. Neural Networks, 2009, 20(1679): 1684.
[4] Sun Y Z, Ruan J. Synchronization between two different chaotic systems with noise perturbation[J]. Chin. Phys. B, 2010, 19: 070513. DOI:10.1088/1674-1056/19/7/070513
[5] Wu Xiaoqun, Zhou Changsong, Chen Guanrong, Lu Junan. Detecting the topologies of complex networks with stochastic perturbations[J]. Chaos, 2011, 21: 043129. DOI:10.1063/1.3664396
[6] Xiaoqun Wu, Weihan Wang, Wei Xing Zheng. Inferring topologies of complex networks with hidden variables[J]. Physical Review E, 2012, 86: 046106. DOI:10.1103/PhysRevE.86.046106
[7] Tao He, Xiliang Lu, Xiaoqun Wu, Jun-an Lu, Wei Xing Zheng. Optimization-based structure identification of dynamical networks[J]. Physica A, 2013, 392: 1038–1049. DOI:10.1016/j.physa.2012.11.014