数学杂志  2015, Vol. 35 Issue (3): 626-634   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
唐保祥
任韩
4类图完美匹配数目的递推求法
唐保祥1, 任韩2    
1. 天水师范学院数学与统计学院, 甘肃 天水 741001;
2. 华东师范大学数学系, 上海 200062
摘要:本文研究了4类特殊图完美匹配数目的显式表达式.利用划分, 求和, 再递推的方法分别给出了图 3-nZ4, 2-n(2-C6), 2-n(2-K4) 和3-n(C4-C6) 的完美匹配数目的计算公式.
关键词完美匹配    线性递推式    特征方程    
RECURSIVE METHOD FOR FINDING THE NUMBER OF PERFECT MATCHINGS OF THE FOUR TYPES OF GRAPHS
TANG Bao-xiang1, REN Han2    
1. School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, China;
2. Department of Mathematics, East China Normal University, Shanghai 200062, China
Abstract: In this paper, we study the explicit expression of the perfect matching number of four types of graphs. By using difierentiation, summation and re-recursion, the counting formula of the perfect matching for graphs 3-nZ4, 2-n(2-C6), 2-n(2-K4) and 3-n(C4-C6) is made.
Key words: perfect matching     linear recurrence relation     characteristic equation    
1 引言及预备知识

完美匹配的计数理论在量子化学、晶体物理学和计算机科学中都有重要的应用, 例如, 二分图的完美匹配的数目可以方便地表示为计算积和式的值[1-4].由于完美匹配的计数理论在化学、物理学和计算机科学中有重要的理论价值和现实意义, 所以引起人们对此问题的广泛研究[5-16].本文研究特殊图类完美匹配的计数方法, 给出了4类图完美匹配数的显式表达式, 其研究方法为得到一般有完美匹配图的所有完美匹配数目提供了借鉴.

定义1 若图$G$的两个完美匹配$M_1$$M_2$中有一条边不同, 则称$M_1$$M_2$$G$的两个不同的完美匹配.

定义2 分别连接$n$$u_1u_2\cdot\cdot\cdot{u_n}u_1$$v_1v_2\cdot\cdot\cdot{v_n}v_1$的顶点$u_i$$v_i (i=1,2,\cdot\cdot\cdot,n)$, 得到的图称为$n$棱柱, 记为$Z_n$.

2 主要结果

定理1$2n$$6$圈为$C_{i1}: u_{i1}u_{i2}\cdot\cdot\cdot{u_{i6}}u_{i1}$, $C_{i2}: v_{i1}v_{i2}\cdot\cdot\cdot{v_{i6}}v_{i1}(i=1,2,\cdot\cdot\cdot,n)$, 分别连接圈$C_{i1}$$C_{i2}$的顶点$u_{i4}$$v_{i2}$, $u_{i5}$$v_{i1}$; 再分别连接$C_{i1}$$C_{i+1, 1}$, $C_{i2}$$C_{i+1,2}$的顶点$u_{i3}$$u_{i+1,6}$, $v_{i2}$$v_{i+1,1} (i=1,2,\cdot\cdot\cdot,n-1)$, 这样所得的图记为$2-n(2-C_6)$, 如图 1所示. $f(n)$表示图$2-n(2-C_6)$的完美匹配的数目.则

$f(n)=\frac{13+3\sqrt{13}}{26}(\frac{7+\sqrt{13}}{2})^n+\frac{13-3\sqrt{13}}{26}(\frac{7-\sqrt{13}}{2})^n. $
图 1 $2-n(2-C_6)$

 为了求$f(n)$, 先定义1个图$G_1$, 并求其完美匹配的数目.将长为5的路$u_1u_2u_3v_1v_2v_3$的顶点$u_1$, $v_3$与圈$C_{11}$$C_{12}$的顶点$u_{16}$, $v_{16}$分别连接一条边得到的图记为$G_1$, 如图 2所示. $\alpha(n)$表示图$G_1$的完美匹配的数目.

图 2 $G_1$

先求$\alpha(n)$.易知图$G_1$有完美匹配.设图$G_1$的完美匹配集合为$\mathscr{M}$, 图$G_1$含边$u_3u_2$, $u_3v_1$的完美匹配集合分别为$\mathscr{M}_1$, $\mathscr{M}_2$, 则$\mathscr{M}_i\neq\phi(i=1,2)$, $\mathscr{M}_1\cap\mathscr{M}_2=\phi$, 所以$\mathscr{M}=\mathscr{M}_1\cup\mathscr{M}_2$, 故

$\alpha(n)=|\mathscr{M}|=|\mathscr{M}_1|+|\mathscr{M}_2|.$

$|\mathscr{M}_1|$. $\forall{M_1}\in\mathscr{M}_1$, 因为$u_3u_2\in{M_1}$, 所以$v_1v_2,u_1u_{16},v_3v_{16}, u_{11}u_{12},v_{15}v_{14}\in{M_1}$.故由$\alpha(n)$的定义知

$|\mathscr{M}_1|=\alpha(n-1).$

$|\mathscr{M}_2|$.

情形1$\mathscr{M}_{21}\subseteq\mathscr{M}_{2}$, $\forall{M_{21}}\in\mathscr{M}_{21}$, $u_3v_1,u_2v_2,u_1u_{16}$, $v_1v_{16},u_{11}u_{12},v_{15}v_{14}\in{M_{21}}$, 故由$\alpha(n)$的定义知, $|\mathscr{M}_{21}|=\alpha(n-1)$.

情形2$\mathscr{M}_{22}\subseteq\mathscr{M}_{2}$, $\forall{M_{22}}\in\mathscr{M}_{22}$, $u_3v_1,u_1u_2,v_2v_3\in{M_{22}}$, 由$f(n)$的定义知, $|\mathscr{M}_{22}|=f(n)$.

易知$\mathscr{M}_2=\mathscr{M}_{21}{\cup}\mathscr{M}_{22}$, $\mathscr{M}_{21}{\cap}\mathscr{M}_{22}=\phi$, 故$|\mathscr{M}_{2}|=f(n)+\alpha(n-1)$.故

$\alpha(n)=f(n)+2\alpha(n-1).$ (1)

再求$f(n)$.易知图$2-n(2-C_6)$有完美匹配.设图$2-n(2-C_6)$的完美匹配集合为$\mathscr{M}$, 图$2-n(2-C_6)$含边$u_{16}u_{11},u_{16}u_{15}$的完美匹配集合分别为$\mathscr{M}_1, \mathscr{M}_2$, 则$\mathscr{M}_i\neq\phi(i=1,2)$, $\mathscr{M}_1\cap\mathscr{M}_2=\phi$, 所以$\mathscr{M}=\mathscr{M}_1\cup\mathscr{M}_2$.故$f(n)==|\mathscr{M}_1|+|\mathscr{M}_2|$.

$|\mathscr{M}_1|$.

情形1$\mathscr{M}_{11}\subseteq\mathscr{M}_{1}$, $\forall{M_{11}}\in\mathscr{M}_{11}$, $u_{16}u_{11},u_{12}u_{13},u_{15}u_{14},v_{16}v_{11},v_{12}v_{13},v_{15}v_{14}\in{M_{11}}$, 由$f(n)$的定义知, $|\mathscr{M}_{11}|=f(n-1)$.

情形2$\mathscr{M}_{12}\subseteq\mathscr{M}_{1}$, $\forall{M_{12}}\in\mathscr{M}_{12}$, $u_{16}u_{11},u_{12}u_{13},u_{15}u_{14} ,v_{16}v_{15},v_{11}v_{12},v_{14}v_{13}\in{M_{12}}$, 由$f(n)$的定义知, $|\mathscr{M}_{12}|=f(n-1)$.

情形3$\mathscr{M}_{13}\subseteq\mathscr{M}_{1}$, $\forall{M_{13}}\in\mathscr{M}_{13}$, $u_{16}u_{11},u_{12}u_{13}$, $u_{15}v_{11},u_{14}v_{12},v_{16}v_{15}$, $v_{14}v_{13}\in{M_{13}}$, $f(n)$的定义知, $|\mathscr{M}_{13}|=f(n-1)$.

易知$\mathscr{M}_1=\mathscr{M}_{11}{\cup}\mathscr{M}_{12}{\cup}\mathscr{M}_{13}$, $\mathscr{M}_{1i}{\cap}\mathscr{M}_{1j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{1}|=3f(n-1)$.

$|\mathscr{M}_2|$.

情形1$\mathscr{M}_{21}\subseteq\mathscr{M}_{2}$, $\forall{M_{21}}\in\mathscr{M}_{21}$, $u_{16}u_{15},u_{11}u_{12},u_{13}u_{14}$, $v_{16}v_{11}$, $v_{15}v_{14}$, $v_{12}v_{13}\in{M_{21}},$$f(n)$的定义知, $|\mathscr{M}_{21}|=f(n-1)$.

情形2$\mathscr{M}_{22}\subseteq\mathscr{M}_{2}$, $\forall{M_{22}}\in\mathscr{M}_{22}$, $u_{16}u_{15},u_{11}u_{12},u_{13}u_{26}$, $u_{14}v_{12},v_{16}v_{11}$, $v_{15}v_{14}$, $v_{13}v_{26}$, $u_{21}u_{22}$, $v_{25}v_{24}\in{M_{22}}$, 由$\alpha(n)$的定义知, $|\mathscr{M}_{22}|=\alpha(n-2)$.

情形3$\mathscr{M}_{23}\subseteq\mathscr{M}_{2}$, $\forall{M_{23}}\in\mathscr{M}_{23}$, $u_{16}u_{15},u_{11}u_{12}, u_{13}u_{14},v_{16}v_{15},v_{11}v_{12}$, $v_{14}v_{13}\in{M_{23}}$, $f(n)$的定义知, $|\mathscr{M}_{23}|=f(n-1)$.

易知$\mathscr{M}_2=\mathscr{M}_{21}{\cup}\mathscr{M}_{22}{\cup}\mathscr{M}_{23}$, $\mathscr{M}_{2i}{\cap}\mathscr{M}_{2j}=\phi(1\leq{i}<j\leq3)$, 故

$|\mathscr{M}_{2}|=2f(n-1)+\alpha(n-2).$

综上所述

$f(n)=5f(n-1)+\alpha(n-2),$ (2)

把 (1) 式代入 (2) 式, 得

$f(n)=5f(n-1)+f(n-2)+2\alpha(n-3),$ (3)

由 (2) 式, 得

$ f(n-1)=5f(n-2)+\alpha(n-3),$ (4)

$(3)-2{\times}(4)$式, 得

$ f(n)=7f(n-1)-9f(n-2).$ (5)

(5) 式的特征方程的根为$x=\frac{7\pm\sqrt{13}}{2}$.易知$f(1)=5$, $f(2)=26$, 所以 (5) 式的通解为

$f(n)=\frac{13+3\sqrt{13}}{26}(\frac{7+\sqrt{13}}{2})^n+\frac{13-3\sqrt{13}}{26}(\frac{7-\sqrt{13}}{2})^n. $
图 3 $3-nZ_4$

定理2$n$个4棱柱$Z_4^i$的顶点集为$V(Z_4^i)=\{u_{i1},u_{i2},u_{i3},u_{i4}, v_{i1}, v_{i2}, v_{i3}, v_{i4}\}$ $(i=1,2,\cdots,n)$, 分别连接4棱柱$Z_4^i$$Z_4^{i+1}$的顶点$v_{i1}$$v_{i+1,1}$, $v_{i2}$$v_{i+1,4}$, $v_{i3}$$v_{i+1,3}$ $(i=1,2,\cdot\cdot\cdot,n-1)$.这样得到的图记为$3-nZ_4$, 如图 5所示. $g(n)$表示图$3-nZ_4$的完美匹配的数目.则$g(n)=9\times11^n$.

图 5 $G_3$

 为了求$g(n)$, 先定义2个图$G_2$$G_3$, 并求其完美匹配的数目.将长为1的路$v_1v_2$的端点$v_1$$v_2$分别与图$3-nZ_4$的顶点$v_{14}$$v_{13}$, $v_{11}$$v_{14}$各连接一条边得到的图分别记为$G_2$, $G_3$, 如图 4, 5所示.易知图$G_2$, $G_3$均有完美匹配. $\beta(n)$, $\gamma(n)$分别表示图$G_2$, $G_3$的完美匹配的数目.显然$G_2\cong{G_3}$, 故$\beta(n)=\gamma(n)$.

图 4 $G_2$

先求$\beta(n)$.设图$G_2$的完美匹配的集合为$\mathscr{M}$, $G_2$含边$u_1u_2,u_1u_{15}$的完美匹配集合分别为$\mathscr{M}_1$, $\mathscr{M}_2$.则$\mathscr{M}_i\neq\phi(i=1,2)$, $\mathscr{M}_1\cap\mathscr{M}_2=\phi$, 所以$\mathscr{M}=\mathscr{M}_1\cup\mathscr{M}_2$, $\alpha(n)=|\mathscr{M}_1|+|\mathscr{M}_2|$.

$|\mathscr{M}_1|$. $\forall{M_{1}}\in\mathscr{M}_{1}$, 因为$v_1v_2\in{M_1}$, 所以由$g(n)$的定义知, $|\mathscr{M}_1|=g(n)$.

$|\mathscr{M}_2|$.

情形1$\mathscr{M}_{21}\subseteq\mathscr{M}_{2}$, $\forall{M_{21}}\in\mathscr{M}_{21}$, $v_1v_{14},v_2v_{13},u_{14}u_{11},u_{13}u_{12}\in{M_{21}}$, 故由$\gamma(n)$的定义知, $|\mathscr{M}_{21}|=\gamma(n-1)=\beta(n-1)$.

情形2$\mathscr{M}_{22}\subseteq\mathscr{M}_{2}$, $\forall{M_{22}}\in\mathscr{M}_{22}$, $v_1v_{14},v_2v_{13}, u_{14}u_{13},u_{11}v_{11},u_{12}v_{12}\in{M_{22}}$, 故由$g(n)$的定义知, $|\mathscr{M}_{22}|=g(n-1)$.

情形3$\mathscr{M}_{23}\subseteq\mathscr{M}_{2}$, $\forall{M_{23}}\in\mathscr{M}_{23}$, $v_1v_{14},v_2v_{13},u_{14}u_{13},u_{11}u_{12}\in{M_{23}}$, 故由$\gamma(n)$的定义知, $|\mathscr{M}_{23}|=\gamma(n-1)=\beta(n-1)$.

易知$\mathscr{M}_2=\mathscr{M}_{21}{\cup}\mathscr{M}_{22}{\cup}\mathscr{M}_{23}$, $\mathscr{M}_{2i}{\cap}\mathscr{M}_{2j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{2}|=f(n-1)+2\beta(n-1)$.故

$ \beta(n)=g(n)+g(n-1)+2\beta(n-1).$ (6)

再求$g(n)$.易知图$3-nZ_4$有完美匹配.设图$3-nZ_4$的完美匹配集合为$\mathscr{M}$, 图$3-nZ_4$含边$u_{14}u_{11},u_{14}v_{14},u_{14}u_{13}$的完美匹配集合分别为$\mathscr{M}_1,\mathscr{M}_2,\mathscr{M}_3$, 则$\mathscr{M}_i\neq\phi(i=1,2,3)$, $\mathscr{M}_{i}{\cap}\mathscr{M}_{j}=\phi(1\leq{i}<j\leq3)$, 所以$\mathscr{M}=\mathscr{M}_{1}{\cup}\mathscr{M}_{2}{\cup}\mathscr{M}_{3}$.故$g(n)=|\mathscr{M}_1|+|\mathscr{M}_2|+|\mathscr{M}_3|$, 由图$3-nZ_4$的对称性知, $|\mathscr{M}_1|=|\mathscr{M}_3|$, 故$g(n)=2|\mathscr{M}_1|+|\mathscr{M}_2|$.

$|\mathscr{M}_1|$.

情形1$\mathscr{M}_{11}\subseteq\mathscr{M}_{1}$, $\forall{M_{11}}\in\mathscr{M}_{11}$, $u_{14}u_{11},v_{14}v_{11},u_{13}v_{13},u_{12}v_{12}\in{M_{11}}$, 故由$g(n)$的定义知, $|\mathscr{M}_{11}|=g(n-1)$.

情形2$\mathscr{M}_{12}\subseteq\mathscr{M}_{1}$, $\forall{M_{12}}\in\mathscr{M}_{12}$, $u_{14}u_{11},v_{14}v_{11},u_{13}u_{12}\in{M_{12}}$, 由$\beta(n)$的定义知, $|\mathscr{M}_{12}|=\beta(n-1)$.

情形3$\mathscr{M}_{13}\subseteq\mathscr{M}_{1}$, $\forall{M_{13}}\in\mathscr{M}_{13}$, $u_{14}u_{11},v_{14}v_{13},u_{13}u_{12}\in{M_{13}}$, 由$\gamma(n)$的定义知, $|\mathscr{M}_{13}|=\gamma(n-1)=\beta(n-1)$.

易知$\mathscr{M}_1=\mathscr{M}_{11}{\cup}\mathscr{M}_{12}{\cup}\mathscr{M}_{13}$, $\mathscr{M}_{1i}{\cap}\mathscr{M}_{1j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{1}|=g(n-1)+2\beta(n-1)$.

$|\mathscr{M}_2|$.

情形1$\mathscr{M}_{21}\subseteq\mathscr{M}_{2}$, $\forall{M_{21}}\in\mathscr{M}_{21}$, $u_{14}v_{14},u_{11}v_{11},u_{12}v_{12}$, $u_{13}v_{13}\in{M_{21}}$, 故由$g(n)$的定义知, $|\mathscr{M}_{21}|=g(n-1)$.

情形2$\mathscr{M}_{22}\subseteq\mathscr{M}_{2}$, $\forall{M_{22}}\in\mathscr{M}_{22}$, $u_{14}v_{14},u_{11}v_{11},u_{13}u_{12}\in{M_{22}}$, 由$\beta(n)$的定义知, $|\mathscr{M}_{22}|=\beta(n-1)$.

情形3$\mathscr{M}_{23}\subseteq\mathscr{M}_{2}$, $\forall{M_{23}}\in\mathscr{M}_{23}$, $u_{14}v_{14},u_{13}v_{13},u_{11}u_{12}\in{M_{23}}$, 由$\gamma(n)$的定义知, $|\mathscr{M}_{23}|=\gamma(n-1)=\beta(n-1)$.

易知$\mathscr{M}_2=\mathscr{M}_{21}{\cup}\mathscr{M}_{22}{\cup}\mathscr{M}_{23}$, $\mathscr{M}_{2i}{\cap}\mathscr{M}_{2j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{1}|=g(n-1)+2\beta(n-1)$.故

$g(n)=3g(n-1)+6\beta(n-1),$ (7)

把 (6) 式代入 (7) 式, 得

$g(n)=9g(n-1)+6g(n-2)+12\beta(n-2),$ (8)

由 (7) 式, 得

$g(n-1)=3g(n-2)+6\alpha(n-2),$ (9)

$(8)-2\times(9)$式, 得$g(n)=11g(n-1)=11^{n-1}g(1)$, 易知$g(1)=9$.故$g(n)=9\times11^{n-1}$.

定理3 4个顶点的完全图分别为$K_4^{i1}$$K_4^{i2}$, 其中$V(K_4^{i1})=\{u_{i1},u_{i2},u_{i3},u_{i4}\}$, $V(K_4^{i2})=\{v_{i1},v_{i2},v_{i3},v_{i4}\}$ $(i=1,2,\cdots,n)$.分别连接圈$K_4^{i1}$$K_4^{i2}$的顶点$u_{i2}$$v_{i2}$, $u_{i3}$$v_{i3}$; 再分别连接$K_4^{i1}$$K_4^{i+1,1}$, $K_4^{i2}$$K_4^{i+1,2}$的顶点$u_{i2}$$u_{i+1,3}$, $v_{i2}$$v_{i+1,3}$ $(i=1,2,\cdots,n-1)$, 这样所得的图记为$2-n(2-K_4)$, 如图 6所示. $\sigma(n)$表示图$2-n(2-K_4)$的完美匹配的数目.则

$\sigma(n)=\frac{85+9\sqrt{85}}{170}(\frac{11+\sqrt{85}}{2})^n+\frac{85-9\sqrt{85}}{170}(\frac{11-\sqrt{85}}{2})^n. $
图 6 $2-n(2-K_4)$

 为了求$\sigma(n)$, 先定义1个图$G_4$, 并求其完美匹配的数目.将长为1的路$uv$的端点$u$$v$分别与图$2-n(2-K_4)$的顶点$u_{13}$$v_{13}$各连接一条边, 得到的图记为$G_4$, 如图 7所示.易知图$G_4$有完美匹配. $\gamma(n)$表示图$G_4$的完美匹配的数目.

图 7 $G_4$

$\gamma(n)$.设图$G_4$的完美匹配的集合为$\mathscr{M}$, $G_4$含边$uv$, $uu_{13}$的完美匹配集合分别为$\mathscr{M}_1,\mathscr{M}_2$.则$\mathscr{M}_i\neq\phi(i=1,2)$, $\mathscr{M}_{1}{\cap}\mathscr{M}_{2}=\phi$, 所以$\mathscr{M}=\mathscr{M}_{1}{\cup}\mathscr{M}_{2}$, $\gamma(n)==|\mathscr{M}_{1}|+|\mathscr{M}_{2}|$.

$|\mathscr{M}_1|$. $\forall{M_{1}}\in\mathscr{M}_{1}$, 由于$uv\in{M_{1}}$, 所以由$\sigma(n)$的定义知, $|\mathscr{M}_{1}|=\sigma(n)$.

$|\mathscr{M}_2|$. $\forall{M_{2}}\in\mathscr{M}_{2}$, $uu_{13},vv_{13},u_{11}u_{14},v_{11}v_{14}\in{M_{2}}$, 由$\gamma(n)$的定义知, $|\mathscr{M}_{2}|=\gamma(n-1)$.故

$\gamma(n)=\sigma(n)+\gamma(n-1).$ (10)

再求$\sigma(n)$.易知图$2-n(2-K_4)$有完美匹配.设图$2-n(2-K_4)$的完美匹配的集合为$\mathscr{M}$, 图$2-n(2-K_4)$含边$u_{11}u_{13},u_{11}u_{14},u_{11}u_{12}$的完美匹配的集合分别为$\mathscr{M}_1,\mathscr{M}_2,\mathscr{M}_3$, 则$\mathscr{M}_i\neq\phi(i=1,2,3)$, $\mathscr{M}_{i}{\cap}\mathscr{M}_{j}=\phi(1\leq{i}<j\leq3)$, 所以$\mathscr{M}=\mathscr{M}_{1}{\cup}\mathscr{M}_{2}{\cup}\mathscr{M}_{3}$.故$\sigma(n)==|\mathscr{M}_1|+|\mathscr{M}_2|+|\mathscr{M}_3|$.

$|\mathscr{M}_1|$.

情形1$\mathscr{M}_{11}\subseteq\mathscr{M}_{1}$, $\forall{M_{11}}\in\mathscr{M}_{11}$, $u_{11}u_{13},u_{14}u_{12},v_{13}v_{12},v_{14}v_{11}\in{M_{11}}$, 故由$\sigma(n)$的定义知, $|\mathscr{M}_{11}|=\sigma(n-1)$.

情形2$\mathscr{M}_{12}\subseteq\mathscr{M}_{1}$, $\forall{M_{12}}\in\mathscr{M}_{12}$, $u_{11}u_{13}, u_{14}u_{12},v_{13}v_{14},v_{12}v_{11}\in{M_{12}}$, 由$\sigma(n)$的定义知, $|\mathscr{M}_{12}|=\sigma(n-1)$.

情形3$\mathscr{M}_{13}\subseteq\mathscr{M}_{1}$, $\forall{M_{13}}\in\mathscr{M}_{13}$, $u_{11}u_{13},u_{14}u_{12},v_{13}v_{11},v_{14}v_{12}\in{M_{13}}$, 由$\sigma(n)$的定义知, $|\mathscr{M}_{13}|=\sigma(n-1)$.

显然, $\mathscr{M}_1=\mathscr{M}_{11}{\cup}\mathscr{M}_{12}{\cup}\mathscr{M}_{13}$, $\mathscr{M}_{1i}{\cap}\mathscr{M}_{1j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{1}|=3\sigma(n-1)$.

$|\mathscr{M}_2|$.

情形1$\mathscr{M}_{21}\subseteq\mathscr{M}_{2}$, $\forall{M_{21}}\in\mathscr{M}_{21}$, $u_{11}u_{14},u_{13}u_{12},v_{13}v_{12},v_{14}v_{11}\in{M_{21}}$, 故由$\sigma(n)$的定义知, $|\mathscr{M}_{21}|=\sigma(n-1)$.

情形2$\mathscr{M}_{22}\subseteq\mathscr{M}_{2}$, $\forall{M_{22}}\in\mathscr{M}_{22}$, $u_{11}u_{14},u_{13}u_{12},v_{13}v_{14},v_{12}v_{11}\in{M_{22}}$, 由$\sigma(n)$的定义知, $|\mathscr{M}_{22}|=\sigma(n-1)$.

情形3$\mathscr{M}_{23}\subseteq\mathscr{M}_{2}$, $\forall{M_{23}}\in\mathscr{M}_{23}$, $u_{11}u_{14},u_{13}u_{12},v_{13}v_{11},v_{14}v_{12}\in{M_{23}}$, 由$\sigma(n)$的定义知, $|\mathscr{M}_{23}|=\sigma(n-1)$.

情形4$\mathscr{M}_{24}\subseteq\mathscr{M}_{2}$, $\forall{M_{24}}\in\mathscr{M}_{24}$, $u_{11}u_{14},u_{13}v_{13},v_{14}v_{11}\in{M_{24}}$, 由$\gamma(n)$的定义知, $|\mathscr{M}_{24}|=\gamma(n-1)$.

显然, $\mathscr{M}_2=\mathscr{M}_{21}{\cup}\mathscr{M}_{22}{\cup}\mathscr{M}_{23}{\cup}\mathscr{M}_{24}$, $\mathscr{M}_{2i}{\cap}\mathscr{M}_{2j}=\phi(1\leq{i}<j\leq4)$, 故$|\mathscr{M}_{2}|=3\sigma(n-1)+\gamma(n-1)$.

$|\mathscr{M}_3|$.

情形1$\mathscr{M}_{31}\subseteq\mathscr{M}_{3}$, $\forall{M_{31}}\in\mathscr{M}_{31}$, $u_{13}u_{14},u_{11}u_{12},v_{13}v_{12},v_{14}v_{11}\in{M_{31}}$, 故由$\sigma(n)$的定义知, $|\mathscr{M}_{31}|=\sigma(n-1)$.

情形2$\mathscr{M}_{32}\subseteq\mathscr{M}_{3}$, $\forall{M_{32}}\in\mathscr{M}_{32}$, $u_{13}u_{14},u_{11}u_{12},v_{13}v_{14},v_{12}v_{11}\in{M_{32}}$, 由$\sigma(n)$的定义知, $|\mathscr{M}_{32}|=\sigma(n-1)$.

情形3$\mathscr{M}_{33}\subseteq\mathscr{M}_{3}$, $\forall{M_{33}}\in\mathscr{M}_{33}$, $u_{13}u_{14},u_{11}u_{12},v_{13}v_{11},v_{14}v_{12}\in{M_{33}}$, 由$\sigma(n)$的定义知, $|\mathscr{M}_{33}|=\sigma(n-1)$.

显然, $\mathscr{M}_3=\mathscr{M}_{31}{\cup}\mathscr{M}_{32}{\cup}\mathscr{M}_{33}$, $\mathscr{M}_{3i}{\cap}\mathscr{M}_{3j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{3}|=3\sigma(n-1)$.

综上所述

$\sigma(n)=9\sigma(n-1)+\gamma(n-1).$ (11)

把 (10) 式代入 (11) 式, 得

$\sigma(n)=10\sigma(n-1)+\gamma(n-2),$ (12)

再由 (11) 式, 得

$\sigma(n-1)=9\sigma(n-2)+\gamma(n-2),$ (13)

$(12)-(13)$式, 得

$\sigma(n)=11\sigma(n-1)-9\sigma(n-2).$ (14)

(14) 式的特征方程的根为$x=\frac{11\pm\sqrt{85}}{2}$.易知$\sigma(1)=10$, $\gamma(1)=11$.故由 (11) 式得$\sigma(2)=101$.所以 (14) 式的通解为

$\sigma(n)=\frac{85+9\sqrt{85}}{170}(\frac{11+\sqrt{85}}{2})^n+\frac{85-9\sqrt{85}}{170}(\frac{11-\sqrt{85}}{2})^n. $

定理4$n$个6圈$C^i_6:\ u_{i1}u_{i2}\cdot\cdot\cdot{u_{i6}}u_{i1}$和4圈$C^i_4:\ v_{i1}v_{i2}v_{i3}v_{i4}v_{i1}$, 分别连接$C^i_6$$C^i_4$的顶点$u_{i1}$$v_{i1}$, $u_{i2}$$v_{i2}$, $u_{i4}$$v_{i3}$, $u_{i5}$$v_{i4}(i=1,2,\cdots, {n})$; 再分别连接$C^i_6$$C^{i+1}_6$的顶点$u_{i2}$$u_{i+1,1}$, $u_{i3}$$u_{i+1,6}$, $u_{i4}$$u_{i+1,5}(i=1,2,\cdots, {n-1})$, 这样得到的图记为$3-n(C_4-C_6)$, 如图 8所示. $\psi(n)$表示图$3-n(C_4-C_6)$的完美匹配的数目.则$\psi(n)=6\times9^{n-1}$.

图 8 $3-n(C_4-C_6)$

 为了求$\psi(n)$, 先定义1个图$G_5$, 并求其完美匹配的数目.将长为1的路$u_1u_2$的端点$u_1$$u_2$分别与图$3-n(C_4-C_6)$的顶点$u_{11}$$u_{16}$各连接一条边, 得到的图记为$G_5$, 如图 9所示.易知图$G_5$有完美匹配. $\delta(n)$表示图$G_5$的完美匹配的数目.

图 9 $G_5$

$\delta(n)$.设图$G_5$的完美匹配的集合为$\mathscr{M}$, $G_5$含边$u_1u_2$, $u_1u_{11}$的完美匹配集合分别为$\mathscr{M}_1$, $\mathscr{M}_2$, 则$\mathscr{M}_1\cap\mathscr{M}_2=\phi$.所以$\mathscr{M}=\mathscr{M}_1\cup\mathscr{M}_2$, $\delta(n)==|\mathscr{M}_{1}|+|\mathscr{M}_{2}|$.

$|\mathscr{M}_{1}|$. $\forall{M_1}\in\mathscr{M}_1$, 因为$u_1u_2\in{M_1}$, 所以由$\psi(n)$的定义知, $|\mathscr{M}_{1}|=\psi(n)$.

$|\mathscr{M}_2|$.

情形1$\mathscr{M}_{21}\subseteq\mathscr{M}_{2}$, $\forall{M_{21}}\in\mathscr{M}_{21}$, $u_1u_{11},u_2u_{16},u_{15}v_{14},v_{11}v_{12}$, $v_{13}u_{14}\in{M_{21}}$, 故由$\delta(n)$的定义知, $|\mathscr{M}_{21}|=\delta(n-1)$.

情形2$\mathscr{M}_{22}\subseteq\mathscr{M}_{2}$, $\forall{M_{22}}\in\mathscr{M}_{22}$, $u_1u_{11},u_2u_{16},u_{15}u_{14},v_{11}v_{12},v_{13}u_{14}\in{M_{22}}$, 由$\delta(n)$的定义知, $|\mathscr{M}_{22}|=\delta(n-1)$.

情形3$\mathscr{M}_{23}\subseteq\mathscr{M}_{2}$, $\forall{M_{23}}\in\mathscr{M}_{23}$, $u_1u_{11},u_2u_{16},u_{15}u_{14},v_{11}v_{14},v_{12}u_{13}\in{M_{23}}$, 由$\delta(n)$的定义知, $|\mathscr{M}_{23}|=\delta(n-1)$.

因为$\mathscr{M}_2=\mathscr{M}_{21}{\cup}\mathscr{M}_{22}{\cup}\mathscr{M}_{23}$, $\mathscr{M}_{2i}{\cap}\mathscr{M}_{2j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{2}|=3\delta(n-1)$.

综上所述

$\delta(n)=\psi(n)+3\delta(n-1).$ (15)

$\psi(n)$.易知图$3-n(C_4-C_6)$有完美匹配.设图$3-n(C_4-C_6)$的完美匹配的集合为$\mathscr{M}$, $3-n(C_4-C_6)$含边$u_{16}u_{11}$, $u_{16}u_{15}$的完美匹配集合分别为$\mathscr{M}_1$, $\mathscr{M}_2$, 所以$\mathscr{M}=\mathscr{M}_1\cup\mathscr{M}_2$, $\psi(n)==|\mathscr{M}_{1}|+|\mathscr{M}_{2}|$.由图$3-n(C_4-C_6)$的对称性可知, $|\mathscr{M}_{1}|=|\mathscr{M}_{2}|$, 故$\psi(n)=2|\mathscr{M}_{1}|$.

$|\mathscr{M}_1|$.

情形1$\mathscr{M}_{11}\subseteq\mathscr{M}_{1}$, $\forall{M_{11}}\in\mathscr{M}_{11}$, $u_{16}u_{11},u_{15}v_{14},v_{11}v_{12},v_{13}u_{14}\in{M_{11}}$, 故由$\delta(n)$的定义知, $|\mathscr{M}_{11}|=\delta(n-1)$.

情形2$\mathscr{M}_{12}\subseteq\mathscr{M}_{1}$, $\forall{M_{12}}\in\mathscr{M}_{12}$, $u_{16}u_{11},u_{15}u_{14},v_{14}u_{13},v_{11}v_{12}\in{M_{12}}$, 故由$\delta(n)$的定义知, $|\mathscr{M}_{12}|=\delta(n-1)$.

情形3$\mathscr{M}_{13}\subseteq\mathscr{M}_{1}$, $\forall{M_{13}}\in\mathscr{M}_{13}$, $u_{16}u_{11},u_{15}u_{14},v_{11}v_{14},v_{12}v_{13}\in{M_{13}}$, 故由$\delta(n)$的定义知, $|\mathscr{M}_{13}|=\delta(n-1)$.

因为$\mathscr{M}_1=\mathscr{M}_{11}{\cup}\mathscr{M}_{12}{\cup}\mathscr{M}_{13}$, $\mathscr{M}_{1i}{\cap}\mathscr{M}_{1j}=\phi(1\leq{i}<j\leq3)$, 故$|\mathscr{M}_{1}|=3\delta(n-1)$.

综上所述

$\psi(n)=6\delta(n-1),$ (16)

把 (15) 式代入 (16) 式, 得

$\psi(n)=6\psi(n-1)+18\delta(n-2),$ (17)

再由 (16) 式, 得

$\psi(n-1)=6\delta(n-2),$ (18)

$(17)-3\times(18)$式, 得$\psi(n)=9\psi(n-1)=9^{n-1}\psi(1)$, 易知$\psi(1)=6$.故$\psi(n)=6\times9^{n-1}$.

参考文献
[1] Kasteleyn P W. Dimmer statistics and phase transition[J]. Math Phys, 1963, 4: 287–293. DOI:10.1063/1.1703953
[2] Valiant L G. The complexity of computing the permanent[J]. Theoretical Compute Science, 1979, 8(2): 189–201. DOI:10.1016/0304-3975(79)90044-6
[3] Cyvin S J, Gutman I. Kekulé structures in Benzennoid hydrocarbons[M]. Berlin: Springer Press, 1988.
[4] Fournrei J C. Combinatorics of perfect matchings in planar bipartite graphs and application to tilings[J]. Theoretical Computer Science, 2003, 303: 333–351. DOI:10.1016/S0304-3975(02)00496-6
[5] Zhang Heping. The connectivity of Z-transformation graphs of perfect matchings of polyominoes[J]. Discrete Mathematics, 1996, 158: 257–272. DOI:10.1016/0012-365X(95)00048-2
[6] Zhang Heping, Zhang Fuji. Perfect matchings of polyomino graphs[J]. Graphs and Combinatorics, 1997, 13: 259–304.
[7] Yan Weigen, Zhang Fuji. Enumeration of perfect matchings of a type of Cartesian products of graphs[J]. Discrete Applied Mathematics, 2006, 154: 145–157. DOI:10.1016/j.dam.2005.07.001
[8] 唐保祥, 任韩. 几类图完美匹配的数目[J]. 南京师大学报(自然科学版), 2010, 33(3): 1–6.
[9] 唐保祥, 李刚, 任韩. 3类图完美匹配的数目[J]. 浙江大学学报(理学版), 2011, 38(4): 16–19.
[10] 唐保祥, 任韩. 2类图完美匹配的数目[J]. 西南师范大学学报(自然科学版), 2011, 36(5): 16–21.
[11] 唐保祥, 任韩. 3类图完美匹配的计数[J]. 南京师大学报(自然科学版), 2012, 35(1): 16–21.
[12] 唐保祥, 任韩. 6类图完美匹配的数目[J]. 中山大学学报(自然科学版), 2012, 51(2): 40–44.
[13] 唐保祥, 任韩. 四类图完美匹配的计数公式[J]. 福州大学学报(自然科学版), 2012, 40(4): 437–440. DOI:10.7631/issn.1000-2243.2012.04.0437
[14] 唐保祥, 任韩. 5类图完美匹配的数目[J]. 中山大学学报(自然科学版), 2012, 51(4): 31–37.
[15] 唐保祥, 任韩. 2类偶图完美匹配的数目[J]. 西南大学学报(自然科学版), 2012, 34(10): 91–95.
[16] 唐保祥, 任韩. 4类图完美匹配的计数[J]. 武汉大学学报(理学版), 2012, 58(5): 441–446.