3 The Value Function and the Optimal Dividend Strategy
In this section, some basic properties of the value function are given and the corresponding HJB equation is derived and solved.
The next proposition is stated in Lemma 2.37 of Schmidli [11].
Proposition 3.1 The function $V(x)$ is increasing and locally Lipschitz continuous over $[0, \infty]$, and therefore absolutely continuous. For any $x\geq 0$, we have $x+\frac{c}{\lambda+\delta}\leq V(x)\leq x+\frac{c}{\delta}$ and for any $y>x$, we have $V(y)-V(x)\geq y-x$.
The next proposition gives the HJB equation which is proved in Theorem 2.39 of Schmidli [11].
Proposition 3.2 The function $V(x)$ satisfies the HJB equation
$
\begin{equation}
\text{max}\Big{\{}1-V'(x), \mathcal{A}V(x)\Big{\}}=0,
\end{equation}
$ |
(3.1) |
where $\mathcal{A}V(x)=cV'(x)-(\lambda+\delta)V(x)+\lambda\displaystyle\int_{0}^{x}V(x-z)f_{Z}(z)\text{d}z$.
Assume that (3.1) has a concave differentiable solution. The crucial point where the first derivative of the value function becomes smaller than one is denoted by $x_{0}$. For $x>x_{0}$, we have $1-V'(x)=0$, which immediately gives $V_{2}(x)= x+B_{1}$ for some constant $B_{1}$. For $x\leq x_{0}$, we have to solve
$
\begin{equation}
cV'(x)-(\lambda+\delta)V(x)+\lambda\int_{0}^{x}V(x-z)f_{Z}(z)\text{d}z=0.
\end{equation}
$ |
(3.2) |
Plugging $f_{Z}(z)=(1-\theta)\beta e^{-\beta z}+2\theta\beta e^{-2\beta z}$ into (3.2), changing the integration variable, we get
$
\begin{equation}
cV'(x)-(\lambda+\delta)V(x)+ (1-\theta)\lambda\beta e^{-\beta
x}\int_{0}^{x}V(z)e^{\beta z}\text{d}z+\\
2\theta\lambda\beta
e^{-2\beta x}\int_{0}^{x}V(z)e^{2\beta z}\text{d}z=0.
\end{equation}
$ |
(3.3) |
Applying the operator $\big{(}\frac{\text{d}}{\text{d}x}+\beta\big{)}$ to (3.3), we have
$
\begin{equation}
cV''(x)+(\beta
c-\lambda-\delta)V'(x)+\beta(\theta\lambda-\delta)V(x)-2\theta\lambda\beta^{2}
e^{-2\beta x}\int_{0}^{x}V(z)e^{2\beta z}\text{d}z =0.
\end{equation}
$ |
(3.4) |
Applying the operator $\big{(}\frac{\text{d}}{\text{d}x}+2\beta\big{)}$ to (3.4), we have
$
\begin{equation}
cV'''(x)+(3\beta c-\lambda-\delta)V''(x)+\beta(2\beta
c+\theta\lambda-2\lambda-3\delta)V'(x)-2\beta^{2}\delta V(x)=0.
\end{equation}
$ |
(3.5) |
It is well known that the solution of (3.5) is of the form
$
\begin{equation}
V(x)=A_{1}e^{r_{1}x}+A_{2}e^{r_{2}x}+A_{3}e^{r_{3}x}
\end{equation}
$ |
(3.6) |
for some constants $A_1, \ A_2, \ A_3, $ where $r_{1}, \ r_{2}, \ r_3\ (r_{1}>0>r_{2}>r_3)$ are three real roots of the characteristic equation in $\xi$:
$
\begin{equation}
c \xi^{3}+(3\beta c-\lambda-\delta)\xi^{2}+\beta(2\beta
c+\theta\lambda-2\lambda-3\delta)\xi-2\beta^{2}\delta =0.
\end{equation}
$ |
(3.7) |
Remark 3.3 It is easy to see that
$
\begin{align*}
&r_1+r_2+r_3=\frac{\lambda+\delta}{c}-3\beta, \\
&r_1r_2r_3=\frac{2\beta^{2}\delta}{c}, \\
&r_1r_2+r_2r_3+r_3r_1=\frac{\beta(2\beta
c+\theta\lambda-2\lambda-3\delta)}{c}.
\end{align*}
$ |
Let
$
h_1(\xi)=c \xi^{3}+(3\beta c-\lambda-\delta)\xi^{2}+\beta(2\beta c+\theta\lambda-2\lambda-3\delta)\xi-2\beta^{2}\delta,
$ |
then $r_{1}, \ r_{2}, \ r_3$ are three real zeros of $h_1(\xi)$. Because $h_1(-2\beta)<0$, $h_1(-\beta)>0$ and $h_1(0)<0$, we have $-\beta<r_2<0$ and $-2\beta<r_3<-\beta$.
Plugging (3.6) into (3.3) and (3.4), then letting $x$ tend to 0 from the left, we have
$
\begin{equation}
[cr_{1}-\lambda-\delta]A_{1}+[cr_{2}-\lambda-\delta]A_{2}+[cr_{3}-\lambda-\delta]A_{3}=0
\end{equation}
$ |
(3.8) |
and
$
\begin{align}
&\big{[}cr_{1}^{2}-(\lambda+\delta)r_{1}+(1+\theta)\lambda\beta\big{]}A_{1}+\big{[}cr_{2}^{2}-(\lambda+\delta)r_{2}+(1+\theta)\lambda\beta\big{]}A_{2}\notag\\
&+\big{[}cr_{3}^{2}-(\lambda+\delta)r_{3}+(1+\theta)\lambda\beta\big{]}A_{3}=0.
\end{align}
$ |
(3.9) |
Equations (3.8) and (3.9) imply that
$
\begin{equation}
A_2=A_1R_{2}, \ A_3=A_1R_3,
\end{equation}
$ |
(3.10) |
where
$
\begin{align*}
&R_2=\frac{R_{31}}{R_{23}}, ~~~~
R_3=\frac{R_{12}}{R_{23}}, \\
&R_{31}=[cr_{3}-\lambda-\delta][cr_{1}^{2}-(\lambda+\delta)r_{1}+(1+\theta)\lambda\beta]-\\
&[cr_{1}-\lambda-\delta][cr_{3}^{2}-(\lambda+\delta)r_{3}+(1+\theta)\lambda\beta], \\
&R_{12}=[cr_{1}-\lambda-\delta][cr_{2}^{2}-(\lambda+\delta)r_{2}+(1+\theta)\lambda\beta]-\\
&[cr_{2}-\lambda-\delta][cr_{1}^{2}-(\lambda+\delta)r_{1}+(1+\theta)\lambda\beta], \\
&R_{23}=[cr_{2}-\lambda-\delta][cr_{3}^{2}-(\lambda+\delta)r_{3}+(1+\theta)\lambda\beta]-\\
&[cr_{3}-\lambda-\delta][cr_{2}^{2}-(\lambda+\delta)r_{2}+(1+\theta)\lambda\beta].
\end{align*}
$ |
We need to find a differentiable solution, so the differentiability of $V(x)$ over $x=x_{0}$ gives that $B_1=-x_{0}+V_{1}(x_{0})$ and $V'_{1}(x_{0})=1$, hence we have
$
A_{1}=\frac{1}{r_1e^{r_1x_{0}}+R_2r_2e^{r_2x_{0}}+R_3r_3e^{r_3}x_0}.
$ |
Therefore we get the form of $V(x)$ that
$
\begin{equation} V(x)=
\begin{cases}
\displaystyle\frac{g(x)}{g'(x_0)},& x\leq x_0, \\
x-x_{0}+V(x_{0}),& x>x_0, \\
\end{cases}
\end{equation}
$ |
(3.11) |
where $g(t)=e^{r_1t}+R_2e^{r_2t}+R_3e^{r_3t}$.
In order to determine $V(x)$, we are still short of an additional condition to determine $x_0$. Noting that $\{A_1, A_2, A_3\}$ are the functions of the barrier $x_0$, it is easy to see that the optimal barrier $x_0$ can be determined by minimizing $g'(t)=r_1e^{r_1t}+R_2r_2e^{r_2t}+R_3r_3e^{r_3t}$, i.e., if $x_0>0$, then $x_0$ supplies the equation
$
\begin{equation}
g''(t)=r_1^{2}e^{r_1t}+R_2r_2^{2}e^{r_2t}+R_3r_3^{2}e^{r_3t}=0.
\end{equation}
$ |
(3.12) |
In the following we show that the equation $g''(t)=0$ has a unique root if $x_0>0$.
Lemma 3.4 $R_{31}>0$, $R_{12}>0$ and $R_{23}<0$, and therefore $R_2<0$ and $R_3<0$.
Proof Because
$
\begin{align}
R_{31}=&c^{2}r_1r_3(r_1-r_3)+c(1+\theta)\lambda\beta(r_3-r_1)\notag\\
&+(\lambda+\delta)\big{[}c(r_3-r_1)(r_3+r_1)+(\lambda+\delta)(r_1-r_3)\big{]}\notag\\
=&(r_1-r_3)\big{[}c^{2}r_1r_3-c(\lambda+\delta)(r_1+r_3)-c(1+\theta)\lambda\beta+(\lambda+\delta)^{2}\big{]}\notag\\
=&\frac{c(r_1-r_3)}{r_2}\Big{[}2\beta^{2}\delta+(\lambda+\delta)r_2^{2}+\beta[3(\lambda+\delta)-(1+\theta)\lambda]r_2\Big{]}\\
=&\frac{c(r_1-r_3)}{r_2}\big{[}cr_2^{3}+3\beta cr_{2}^{2}+\beta[2\beta c+\theta\lambda-2\lambda-3\delta]r_2\notag+\beta[3(\lambda+\delta)-\\
&(1+\theta)\lambda]r_2\Big{]}\notag\\
=&c^{2}(r_1-r_3)(r_2+\beta)(r_2+2\beta),
\end{align}
$ |
(3.13) |
$
\begin{align}
R_{12}=&\frac{c(r_2-r_1)}{r_3}\Big{[}2\beta^{2}\delta+(\lambda+\delta)r_3^{2}+\beta[3(\lambda+\delta)-(1+\theta)\lambda]r_3\Big{]}\\
=&c^{2}(r_2-r_1)(r_3+\beta)(r_3+2\beta),
\end{align}
$ |
(3.14) |
$
\begin{align}
R_{23}=&\frac{c(r_3-r_2)}{r_1}\Big{[}2\beta^{2}\delta+(\lambda+\delta)r_1^{2}+\beta[3(\lambda+\delta)-(1+\theta)\lambda]r_1\Big{]}\\
=&c^{2}(r_3-r_2)(r_1+\beta)(r_1+2\beta),
\end{align}
$ |
(3.15) |
we have $R_{31}>0$, $R_{12}>0$ and $R_{23}<0$, and therefore $R_2<0$ and $R_3<0$.
Lemma 3.5 $g'''(t)>0$ for any $t\geq 0$.
Proof As
$
g'''(t)=r_1^{3}e^{r_1t}+R_2r_2^{3}e^{r_2t}+R_3r_3^{3}e^{r_3t},
$ |
we know that $g'''(t)>0$ for any $t\geq 0$ by Lemma 3.4.
Lemma 3.6 If
$
(\lambda+\delta)^{2}\geq (1+\theta)\lambda\beta c,
$ |
then the equation $g''(t)=0$ has no positive root.
If
$
(\lambda+\delta)^{2}<(1+\theta)\lambda\beta c,
$ |
then the equation $g''(t)=0$ has a unique positive root.
Proof By (3.13), (3.14) and (3.15), we have
$
\begin{align*}
g''(0)=&r_1^{2}+R_2r_2^{2}+R_3r_3^{2}\notag\\
=&\frac{1}{R_{23}}(R_{23}r_1^{2}+R_{31}r_2^{2}+R_{12}r_3^{2})\notag\\
=&\frac{c}{R_{23}}\Big{[}r_1(r_3-r_2)\Big{[}2\beta^{2}\delta+(\lambda+\delta)r_1^{2}+\beta[3(\lambda+\delta)-(1+\theta)\lambda]r_1\Big{]}\Big{]}\notag\\
&+\Big{[}r_2(r_1-r_3)\Big{[}2\beta^{2}\delta+(\lambda+\delta)r_2^{2}+\beta[3(\lambda+\delta)-(1+\theta)\lambda]r_2\Big{]}\Big{]}\notag\\
&+\Big{[}r_3(r_2-r_1)\Big{[}2\beta^{2}\delta+(\lambda+\delta)r_3^{2}+\beta[3(\lambda+\delta)-(1+\theta)\lambda]r_3\Big{]}\Big{]}\notag\\
=&\frac{c}{R_{23}}\Big{[}(\lambda+\delta)\big{[}r_1r_2(r_2-r_1)(r_2+r_1)+\\
&r_1r_3(r_1-r_3)(r_1+r_3)+r_2r_3(r_3-r_2)(r_3+r_2)\big{]}\\
&+\beta[3(\lambda+\delta)-(1+\theta)\lambda](r_1-r_2)(r_2-r_3)(r_3-r_1)\Big{]}\\
=&\frac{c}{R_{23}}\Big{[}(\lambda+\delta)\big{[}r_1r_2(r_2-r_1)(-\frac{3\beta c-\lambda-\delta}{c}-r_3)\\
&+r_1r_3(r_1-r_3)(-\frac{3\beta c-\lambda-\delta}{c}-r_2)+r_2r_3(r_3-r_2)(-\frac{3\beta c-\lambda-\delta}{c}-r_1)\big{]}\\
&+\beta[3(\lambda+\delta)-(1+\theta)\lambda](r_1-r_2)(r_2-r_3)(r_3-r_1)\Big{]}\\
=&\frac{1}{R_{23}}[(\lambda+\delta)^{2}-(1+\theta)\lambda\beta
c](r_1-r_2)(r_2-r_3)(r_3-r_1).
\end{align*}
$ |
If $(\lambda+\delta)^{2}\geq (1+\theta)\lambda\beta c, $ we have $g''(0)\geq 0, $ we know that the equation $g''(t)=0$ has no positive root by Lemma 3.5. If $(\lambda+\delta)^{2}<(1+\theta)\lambda\beta c, $ we have $g''(0)<0, $ which together with the fact $\lim\limits_{t\rightarrow \infty}g''(t)=\infty$, implies that the equation $g''(t)=0$ has a unique root.
Lemma 3.7 If $(\lambda+\delta)^{2}\geq (1+\theta)\lambda\beta c, $ then for any $x\geq0$, we have
$
\begin{align}
I(x)=&\lambda(1-\theta)\Big{(}\frac{1}{\beta}-\frac{c}{\lambda+\delta}\Big{)}e^{-\beta
x}+\lambda\theta\Big{(}\frac{1}{2\beta}-\frac{c}{\lambda+\delta}\Big{)}e^{-2\beta
x}-\delta x+\\
&\frac{\lambda
c}{\lambda+\delta}+\frac{\lambda\theta}{2\beta}-\frac{\lambda}{\beta}\leq
0.
\end{align}
$ |
(3.16) |
Proof It is easy to see that $I(0)=0$ and
$
I'(x)=-\lambda (1-\theta)(1-\frac{\beta c}{\lambda+\delta})e^{-\beta x}-\lambda\theta(1-\frac{2\beta c}{\lambda+\delta})e^{-2\beta x}-\delta.
$ |
If $\beta c\geq \lambda+\delta$, we have
$
\begin{align*}
&I(x)\leq\lambda(1-\theta)\Big{(}\frac{1}{\beta}-\frac{c}{\lambda+\delta}\Big{)}(1-\beta x)+\lambda\theta\Big{(}\frac{1}{2\beta}-\frac{c}{\lambda+\delta}\Big{)}(1-2\beta x)-\delta x+\frac{\lambda c}{\lambda+\delta}+\\
&\frac{\lambda\theta}{2\beta}-\frac{\lambda}{\beta}\\
&=\Big{[}(1+\theta)\frac{\lambda\beta
c}{\lambda+\delta}-(\lambda+\delta)\Big{]}x\leq 0.
\end{align*}
$ |
If $\beta c\leq \frac{\lambda+\delta}{2}, $ we have $I'(x)\leq 0, $ hence
If $\frac{\lambda+\delta}{2}<\beta c<\lambda+\delta, $ setting $t=e^{-\beta x}, $ we have
$
I'(x):=J(t)=\lambda\theta\Big{(}\frac{2\beta c}{\lambda+\delta}-1\Big{)}t^{2}-\lambda (1-\theta)\Big{(}1-\frac{\beta c}{\lambda+\delta}\Big{)}t-\delta.
$ |
For any $0\leq t\leq 1, $ we have $J(t)\leq \text{max}\{J(0), J(1)\}.$ Since $J(0)=-\delta\leq 0$ and
$
\begin{align*}
J(1)=\lambda\theta\Big{(}\frac{2\beta
c}{\lambda+\delta}-1\Big{)}-\lambda (1-\theta)\Big{(}1-\frac{\beta
c}{\lambda+\delta}\Big{)}-\delta=\Big{[}(1+\theta)\frac{\lambda\beta
c}{\lambda+\delta}-(\lambda+\delta)\Big{]}\leq0,
\end{align*}
$ |
we get $I'(x)\leq 0$ for any $x\geq 0, $ hence we have $I(x)\leq I(0)=0.$
Theorem 3.8 If
$
(\lambda+\delta)^{2}\geq (1+\theta)\lambda\beta c,
$ |
then $V(x)=x+\frac{c}{\lambda+\delta}$ is a solution to (3.1). If
$
(\lambda+\delta)^{2}<(1+\theta)\lambda\beta c,
$ |
then $V(x)$ defined by (3.11) is a twice continuously differentiable concave solution to (3.1), where $x_0$ is the unique root of the equation (3.12).
Proof Let's first consider the case $(\lambda+\delta)^{2}\geq (1+\theta)\lambda\beta c$. It is obvious that $V(x)=x+\displaystyle\frac{c}{\lambda+\delta}$ solves $1-V'(x)=0$. Thus we have to show that
$
\begin{equation}
cV'(x)-(\lambda+\delta)V(x)+ (1-\theta)\lambda\beta e^{-\beta
x}\int_{0}^{x}V(z)e^{\beta z}\text{d}z+2\theta\lambda\beta
e^{-2\beta x}\int_{0}^{x}V(z)e^{2\beta z}\text{d}z\leq 0.
\end{equation}
$ |
(3.17) |
Plugging $V(x)=x+\frac{c}{\lambda+\delta}$ into the left of (3.17), by Lemma 3.7, we have
$
\begin{align*}
I(x)=&cV'(x)-(\lambda+\delta)V(x)+(1-\theta)\lambda\beta e^{-\beta
x}\int_{0}^{x}V(z)e^{\beta z}\text{d}z\\
&+2\theta\lambda\beta e^{-2\beta x}\int_{0}^{x}V(z)e^{2\beta
z}\text{d}z\leq 0.
\end{align*}
$ |
If $(\lambda+\delta)^{2}<(1+\theta)\lambda\beta c$. The facts $I(0)=0$ and $I'(0)=\Big{[}(1+\theta)\frac{\lambda\beta c}{\lambda+\delta}-(\lambda+\delta)\Big{]}>0$ imply that there exists some $x_1>0$ such that $I(x_1)>0$, so the second part in the maximum of (3.1) is positive, hence $V(x)=x+\frac{c}{\lambda+\delta}$ does not solve (3.1).
As $V''(x)=\frac{g''(x)}{g'(x_0)}<0$ for $x<x_0$, $V''(x_{0}-)=V''(x_{0}+)=\frac{g''(x_{0}-)}{g'(x_0)}=0$, $V'(x_{0}-)=1$ and $V''(x)=0$ for $x>x_0$, we know that (3.11) is a twice continuously differentiable concave solution to (3.1).
In the end, by Theorem 3.8, we give a verification theorem which tells that the function $V(x)$ defined by (3.11) is the value function. We omit its proof because it is quite similar to Proposition 5 of Thonhauser and Albrecher [6].
Theorem 3.9 For every admissible dividend strategy $L$, $V(x)\geq V(x, L)$, where the function $V(x)$ is defined by (3.11). Let $L_{0}$ be the barrier strategy given by the barrier $x_0$, then $V(x)=V(x, L_{0})$.