数学杂志  2015, Vol. 35 Issue (3): 519-529   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
FENG Zhi-ming
WANG Lei
SZEGÖ KERNELS ON CERTAIN UNBOUNDED DOMAINS
FENG Zhi-ming1, WANG Lei2    
1. School of Mathematical and Information Sciences, Leshan Normal College, Leshan 614000, China;
2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract: The Szegö kernel of the unbounded domain Dψ which was built on an arbitrary irreducible bounded circled homogeneous domain is considered. Using an explicit expression of certain integral over Cartan domain, we obtain the Szegö kernel on domain Dψ in explicit formula.
Key words: Szegö kernel     Cartan domain     symmetric Jack polynomial     generalized Selberg integral    
一类无界域的Szegö核
冯志明1, 王磊2    
1. 乐山师范学院数学与信息科学学院, 四川 乐山 614000;
2. 武汉大学数学与统计学院, 湖北 武汉 430072
摘要:本文研究了由任意不可约有界齐次圆域构造的一类无界域Dψ的Szegö核.利用Cartan域上一类积分的明显表达式, 获得了无界域Dψ的Szegö核的明显公式.
关键词Szegö核    Cartan域    对称Jack多项式    广义Selberg积分    
1 Introduction

Let $\phi(z)$ be a non-negative function on $\mathbb{C}^d$, and

$\begin{equation}\label{eq1.1} D_{\phi}:=\left\{(z_0,z)\in \mathbb{C}\times\mathbb{C}^d: \textrm{Im} z_0>\phi(z)\right\}. \end{equation}$ (1.1)

The Hardy space $H^2( D_{\phi})$ is defined by

$H^2( D_{\phi}):=\left\{f\in H( D_{\phi}):\sup\limits_{s>0}\int_{\mathbb{R}}\int_{\mathbb{C}^d}|f(z,t+\sqrt{-1}\phi(z)+\sqrt{-1}s)|^2dtdm(z)<+\infty \right\},$

where $H( D_{\phi})$ denotes all holomorphic functions on the domain $ D_{\phi}$, and $dm(z)$ is the Lebesgue measure on $\mathbb{C}^d$. The closed subspace $H^2(\partial D_{\phi})$ of $L^2(\partial D_{\phi})$ consisting of boundary values of holomorphic functions $f\in H^2( D_{\phi})$. The Szegö projection is the orthogonal projection

$S: L^2(\partial D_{\phi})\rightarrow H^2(\partial D_{\phi}),$

and the Szegö kernel $S(z,t;u,s)$ is the distribution kernel on $\partial D_{\phi}\times \partial D_{\phi}$ give by

$\begin{equation}\label{eq1.2} Sf(z,t):=\int_{\partial D_{\phi}}S(z,t;u,s)f(u,s)dm(u)ds, \end{equation}$ (1.2)

where the boundary $\partial D_{\phi}$ of $ D_{\phi}$ be identified with $\mathbb{C}^d\times\mathbb{R}$, the coordinates are $(z,t)$.

Let $d_1, d_2, \cdots, d_n$ be positive integers, $s_1, s_2, \cdots, s_n$ be positive real numbers, $\phi(z)=\sum\limits_{i=1}^n||z_i||^{\frac{2}{s_i}}$ with $z_i=(z_{i1},z_{i2},\cdots,z_{id_i})\in \mathbb{C}^{d_i}$, where $ ||z_i||^2:=\sum\limits_{j=1}^{d_i}|z_{ij}|^2$. In [1], Francsics and Hanges obtained the Szegö kernel of the unbounded domain $ D_{\phi}$. For special $\phi(z)$, the Szegö kernel of $ D_{\phi}$, see also the references of [1].

Let $\Omega_i$ be irreducible bounded symmetric domains (Cartan domains) in $\mathbb{C}^{d_i}$ in its Harish-Chandra realization, $s_i$ be positive real numbers, $1\leq i\leq n$. The following we assume that

$\begin{equation}\label{eq1.3} D_{\psi}:=\left\{(z_0,z)\in \mathbb{C}\times\mathbb{C}^d: \textrm{Im} z_0>\psi(z)\right\}, \end{equation}$ (1.3)

where $\psi(z)=\sum\limits_{i=1}^n\|z_i\|^{\frac{2}{s_i}}$, $z=(z_1,z_2,\cdots,z_n)\in \mathbb{C}^{d_1}\times \mathbb{C}^{d_2}\times \cdots \times \mathbb{C}^{d_n}$, $d=\sum\limits_{j=1}^nd_j$ and $\|z_i\|$ are the spectral norms of $z_i$, see (3.5). If the ranks of $\Omega_i$ equal to 1 for all $1\leq i \leq n$, then here $\psi(z)$ same as the above $\phi(z)$.

For convenience, we list classical domains and corresponding the generic norms $N(z,\overline{z})$ and the spectral norms $\|z\|$ as following (see [2, 3])

$\begin{equation*} \mathfrak{R}_I(m,n)=\{z\in \mathbb{C}^{m\times n}:\|z\|<1\}(m\leq n), N(z,\overline{z})=\det(I-zz^{\dagger}), \|z\|=\sqrt{\sup\limits_{uu^{\dagger}=1}uzz^{\dagger}u^{\dagger}}, \end{equation*}$

where $z^{\dagger}$ denotes the conjugation transposition of $z$. If the rank $m$ of $\mathfrak{R}_I(m,n)$ equal to 1, then $\|z\|=\sqrt{zz^{\dagger}}$.

$\begin{equation*} \mathfrak{R}_{II}(n)=\{z\in \mathbb{C}^{n\times n}:z=z^t,\|z\|<1\}, N(z,\overline{z})=\det(I-zz^{\dagger}),\|z\|=\sqrt{\sup\limits_{uu^{\dagger}=1}uzz^{\dagger}u^{\dagger}}, \end{equation*}$

where $z^t$ denotes the transposition of $z$.

$\begin{eqnarray*} &&\mathfrak{R}_{III}(n)=\{z\in \mathbb{C}^{n\times n}:z=-z^t,\|z\|<1\}, N(z,\overline{z})=\sqrt{\det(I-zz^{\dagger})},\|z\|=\sqrt{\sup\limits_{uu^{\dagger}=1}uzz^{\dagger}u^{\dagger}}, \\ &&\mathfrak{R}_{IV}(n)=\{z\in \mathbb{C}^{n}:\|z\|<1\}, N(z,\overline{z})=1-2zz^{\dagger}+zz^t\overline{zz^t},\|z\|=\sqrt{zz^{\dagger}+\sqrt{(zz^{\dagger})^2-zz^t\overline{zz^t}}}. \end{eqnarray*}$

In this note, by using the method of [1], we will calculate the Szegö kernel of $ D_{\psi}$. In the following Section 2 and Section 3, we collect basic material about the generalized Selberg formula, integrals of Jack polynomials time the certain weight, and integrals of $K_{\lambda}$ over the Cartan domain. In Section 4, we compute the Szegö kernel of $ D_{\psi}$.

2 Integrals of Jack Polynomials

Lemma 2.1 (Generalized Selberg formula [4--6])) For give ${\rm Re}(x)>-1, {\rm Re}(y)>-1, \alpha>0$, let $\lambda$ be any partition of length $\ell(\lambda)\leq n$, $P_{\lambda}^{(\alpha)}$ be the symmetric Jack polynomial, then we have

$\begin{eqnarray} \nonumber & & \int_{[0,1]^n}P_{\lambda}^{(\alpha)}(x_1,x_2,\cdots,x_n)\prod\limits_{i=1}^nx_i^{x}(1-x_i)^{y}\prod\limits_{1\leq j<k \leq n}|x_j-x_k|^{\frac{2}{\alpha}}\prod\limits_{j=1}^ndx_j \\ \label{1-10} &=&{P}_{\lambda}^{(\alpha)}(1_n)\frac{[x+1+\frac{n-1}{\alpha}]_{\lambda}^{(\alpha)}}{[x+y+2+2\frac{n-1}{\alpha}]_{\lambda}^{(\alpha)}}S_n(x,y;\alpha), \end{eqnarray}$ (2.1)

where

$\begin{equation}\label{1-11} S_n(x,y;\alpha)=\prod\limits_{j=0}^{n-1}\frac{\Gamma(x+1+\frac{j}{\alpha})\Gamma(y+1+\frac{j}{\alpha})\Gamma(1+\frac{j+1}{\alpha})}{\Gamma(x+y+2+\frac{n+j-1}{\alpha})\Gamma(1+\frac{1}{\alpha})} \end{equation}$ (2.2)

and

$[s]^{(\alpha)}_{\lambda}:=\prod\limits_{j=1}^{\ell(\lambda)}\left(s-\frac{j-1}{\alpha}\right )_{\lambda_j}, $

${P}_{\lambda}^{(\alpha)}(1_n)$ denotes the value of the function ${P}_{\lambda}^{(\alpha)}(x_1,x_2,\cdots,x_n)$ at $(x_1,x_2,\cdots,x_n)=(1,1,\cdots,1)$.

The following we compute the integral of Jack polynomial times the certain weight using the generalized Selberg formula, to this end, we first give the following results.

Lemma 2.2 Let $\varphi(x_1,x_2,\cdots,x_n)$ and $f(x_1,x_2,\cdots,x_n)$ be continuous real functions such that

(1) $\forall x_i\geq 0, 1\leq i \leq n$, $\varphi(x)\geq 0$. $\varphi(x)=0$ if and only if $x=0$.

(2) $\forall \alpha\in \mathbb{R}, \varphi(\alpha x)=|\alpha|\varphi(x)$.

(3) $\forall t\in \mathbb{R}$, $f(tx)=t^df(x)$. $\forall x_i\geq 0, 1\leq i \leq n$, $f(x)\geq 0$. Then for all positive real numbers $s, s_1, s_2$, we have

(1)

$\begin{equation}\label{e1} \int_{x\geq 0 \atop \varphi(x)<1}f(x)\left (1-\varphi(x)^{\frac{1}{s_2}}\right )^{s_1}dx=\frac{\Gamma(s_1+1)\Gamma(s_2(d+n)+1)}{\Gamma(s_1+s_2(d+n)+1)}\int_{x\geq 0 \atop \varphi(x)<1}f(x)dx, \end{equation}$ (2.3)

where $x=(x_1, x_2, \cdots, x_n)$, $dx:=dx_1dx_2\cdots dx_n$, and $x\geq 0$ mean $\forall i, 1\leq i \leq n, x_i\geq 0$.

(2)

$\begin{equation}\label{e2} \int_{x\geq 0}f(x)\exp\{-\varphi(x)^{\frac{1}{s}}\}dx=\Gamma(s(d+n)+1)\int_{x\geq 0 \atop \varphi(x)<1}f(x)dx. \end{equation}$ (2.4)

Proof (1) Let

$\begin{equation}\label{e4} I=\int_{u+\varphi(x)^{\frac{1}{s_2}}<1\atop u\geq 0, x\geq 0}u^{s_1-1}f(x)dudx. \end{equation}$ (2.5)

On the one hand,

$\begin{eqnarray} \nonumber I &=& \int_0^1 u^{s_1-1}du\int_{\varphi(x)<(1-u)^{s_2}\atop x\geq 0}f(x)dx= \int_0^1 u^{s_1-1} (1-u)^{s_2(d+n)}du\int_{\varphi(x)<1\atop x\geq 0}f(x)dx \\ \label{e5} &=& \frac{\Gamma(s_1)\Gamma(s_2(d+n)+1)}{\Gamma(s_1+s_2(d+n)+1)}\int_{\varphi(x)<1\atop x\geq 0}f(x)dx . \end{eqnarray}$ (2.6)

On the other hand,

$\begin{eqnarray} \nonumber I &=& \int_{\varphi(x)<1\atop x\geq 0}f(x)dx \int_{0\leq u<1-\varphi(x)^{\frac{1}{s_2}}} u^{s_1-1}du=\int_{\varphi(x)<1\atop x\geq 0}f(x)(1-\varphi(x)^{\frac{1}{s_2}})^{s_1}dx \int_0^1 u^{s_1-1} du\\ \label{e6} &=& \frac{1}{s_1} \int_{\varphi(x)<1\atop x\geq 0}f(x)(1-\varphi(x)^{\frac{1}{s_2}})^{s_1}dx. \end{eqnarray}$ (2.7)

By (2.6) and (2.7), we obtain (2.3).

(2) In (2.3), we set $s_1=m^{\frac{1}{s}}, s_2=s$, by the change of variables $x=\frac{y}{m}, m>0$, we have

$\begin{equation}\label{e7} \int_{y\geq 0 \atop \varphi(y)<m}f(y)\left (1-\frac{1}{m^{\frac{1}{s}}}\varphi(y)^{\frac{1}{s}}\right )^{m^{\frac{1}{s}}}dy=m^{d+n}\frac{\Gamma(m^{\frac{1}{s}}+1)\Gamma(s(d+n)+1)}{\Gamma(m^{\frac{1}{s}}+s(d+n)+1)}\int_{x\geq 0 \atop \varphi(x)<1}f(x)dx. \end{equation}$ (2.8)

When $m\rightarrow +\infty$, limit of L.H.S. of (2.8) is $\displaystyle \int_{y\geq 0}f(y)\exp\{-\varphi(y)^{\frac{1}{s}}\}dy,$ and limit of R.H.S. of (2.8) is

$\Gamma(s(d+n)+1)\int_{x\geq 0 \atop \varphi(x)<1}f(x)dx.$

Here we use $\frac{\Gamma(x+a)}{\Gamma(x+b)}\sim x^{a-b}(x\rightarrow +\infty).$ So we obtain (2.4). The proof is completed.

For $s>0, x=(x_1,x_2,\cdots,x_n)$, setting $\|x\|_s:=(\sum\limits_{i=1}^n|x_i|^s)^{\frac{1}{s}}$. It is easy to see $\|x\|_1:=\sum\limits_{i=1}^n|x_i|$ and $\|x\|_{\infty}=\max\limits_{1\leq i\leq n}\{|x_i|\}$. Let

$P(\lambda,\alpha,b,n,x):=P_{\lambda}^{(\alpha)}(x_1,x_2,\cdots,x_n)\prod\limits_{i=1}^nx_i^{b}\prod\limits_{1\leq j<k \leq n}|x_j-x_k|^{\frac{2}{\alpha}}.$

Since homogeneous the function $P(\lambda,\alpha,b,n,x)$ of degree $d=|\lambda|+nb+\frac{n(n-1)}{\alpha}$ satisfies Lemma 2.2. By Lemma 2.2, we have the following Corollary 2.3.

Corollary 2.3 For all positive real numbers $s, t$, we have

$\begin{eqnarray} \nonumber & & \int_{x\geq 0}P(\lambda,\alpha,b,n,x)\exp\{-\|x\|_s^{\frac{1}{t}}\}dx \\ \label{e11} &=& \Gamma(t(|\lambda|+nb+\frac{n(n-1)}{\alpha}+n)+1)\int_{x\geq 0 \atop \|x\|_s<1}P(\lambda,\alpha,b,n,x)dx. \end{eqnarray}$ (2.9)

As a consequence of Lemma 2.1, we have

$\begin{eqnarray} \nonumber & & \int_{x\geq 0\atop \|x\|_{\infty}\leq 1}P(\lambda,\alpha,b,n,x)\\ \label{e13} &=& P_{\lambda}^{(\alpha)}(1_n)\frac{[b+1+\frac{n-1}{\alpha}]_{\lambda}^{(\alpha)}}{[b+2+2\frac{n-1}{\alpha}]_{\lambda}^{(\alpha)}} \prod\limits_{j=0}^{n-1}\frac{\Gamma(b+1+\frac{j}{\alpha})\Gamma(1+\frac{j}{\alpha})\Gamma(1+\frac{j+1}{\alpha})}{\Gamma(b+2+\frac{n+j-1}{\alpha})\Gamma(1+\frac{1}{\alpha})}. \end{eqnarray}$ (2.10)

From Corollary 2.3 and (2.10) we get

Corollary 2.4 For all positive real numbers $s$, we have

$\begin{eqnarray} \nonumber & & \int_{x\geq 0}P(\lambda,\alpha,b,n,x)\exp\{-\|x\|_{\infty}^{\frac{1}{s}}\}dx \\ \label{e15} &=& \Gamma(s(|\lambda|+nb+\frac{n(n-1)}{\alpha}+n)+1)P_{\lambda}^{(\alpha)}(1_n)\frac{[b+1+\frac{n-1}{\alpha}]_{\lambda}^{(\alpha)}}{[b+2+2\frac{n-1}{\alpha}]_{\lambda}^{(\alpha)}}S_n(b,0;\alpha). \end{eqnarray}$ (2.11)
3 Integrals of $K_{\lambda}$ over the Cartan Domain

Let $\Omega\subset \mathbb{C}^{d}$ be Cartan domain, we denote by $r, a, b, d, p $ and $N(z,\overline{w})$ the rank, the characteristic multiplicities, the dimension, the genus, and the generic norm of $\Omega$, respectively. Let $\mathcal{G}$ stand for the identity connected component of the group of biholomorphic self-maps of $\Omega$, and $\mathcal{K}$ {for the stabilizer} of the origin in $\mathcal{G}$.

Under the action $f\mapsto f\circ k (k\in \mathcal{K})$ of $\mathcal{K}$, the space $\mathcal{P}$ of holomorphic polynomials on $\mathbb{C}^d$ admits the Peter-Weyl decomposition

$\mathcal{P}=\bigoplus_{\lambda}\mathcal{P}_{\lambda},$

where the spaces $\mathcal{P}_{\lambda}$ are $\mathcal{K}$-invariant and irreducible.

Let

$\begin{equation}\label{1.4} {\langle}f,g {\rangle}_{\mathcal{F}}:=\frac{1}{\pi^d}\int_{\mathbb{C}^d}f(z)\overline{g(z)}e^{-|z|^2}dm(z), \end{equation}$ (3.1)

where $dm(z)$ denotes the Lebesgue measure on $\mathbb{C}^d$.

For every partition $\lambda$, let $K_{\lambda}(z_1,\overline{z_2})$ be the reproducing kernel of $\mathcal{P}_{\lambda}$ with respect to (3.1). The kernels $K_{\lambda}(z_1,\overline{z_2})$ are related to the generic norm $N(z_1,\overline{z_2})$ by the Faraut-{Korányi} formula

$\begin{equation}\label{1.7} N(z_1,\overline{z_2})^{-s}=\sum\limits_{\lambda}(s)_{\lambda}K_{\lambda}(z_1,\overline{z_2}), \end{equation}$ (3.2)

where $(s)_{\lambda}$ denotes the generalized Pochhammer symbol

$\begin{equation}\label{1.8} (s)_{\lambda}:=\prod\limits_{j=1}^r\left(s-\frac{j-1}{2}a\right )_{\lambda_j}. \end{equation}$ (3.3)

Here $(s)_m$ denotes the raising factorial

$ {(s)_m:=\frac{\Gamma(s+m)}{\Gamma(s)}=s(s+1)\cdots (s+m-1)}.$

Let $e_1,e_2,\cdots, e_r\in\mathbb{C}^d$ be a Jordan frame. Then each $z\in \mathbb{C}^d$ has the polar decomposition

$\begin{equation}\label{1.9} z=k\cdot(t_1e_1+t_2e_2+\cdots+t_re_r),\quad k\in \mathcal{K}, t_1\geq t_2\geq \cdots \geq t_r\geq 0. \end{equation}$ (3.4)

The numbers $t_1,t_2,\cdots, t_r$ are called the singular values of $z$. the spectral norm of $z$ is defined by

$\begin{equation}\label{1.10} \|z\|:=\max\{t_1,t_2,\cdots, t_r\}. \end{equation}$ (3.5)

It is known that

$\begin{equation}\label{1.11} K_{\lambda}(z,\overline{z})= K_{\lambda}(\sum\limits_{j=1}^rt_j^2e_j,\overline{e}), \end{equation}$ (3.6)

For the proofs of above facts and additional details, we refer e.g. to [7].

Lemma 3.1 For give a positive real number $s$, we have

$\begin{equation}\label{e18} \int_{\mathbb{C}^d}K_{\lambda}(z,\overline{z})\exp\{-\|z\|^{\frac{2}{s}}\}dm(z)=\Gamma(s(|\lambda|+d)+1) \frac{\dim \mathcal{P}_{\lambda}}{(p)_{\lambda}}V(\Omega), \end{equation}$ (3.7)

where $V(\Omega)$ is the volume with respect to the Euclidean measure of $\Omega$.

Proof We recall the formula for integration in polar coordinates (see [7])

$\begin{equation}\label{e20} \int_{\mathbb{C}^d}f(z)dm(z)=c\int_{[0,+\infty)^r}2^r\prod\limits_{j=1}^rt_j^{2b+1}\prod\limits_{1\leq j<k \leq r}|t_j^2-t_k^2|^a\prod\limits_{j=1}^rdt_j\int_{\mathcal{K}}f(k\cdot\sum\limits_{j=1}^rt_je_j)dk, \end{equation}$ (3.8)

where $c$ is a constant. By using (3.8), (3.5) and (3.6), we have

$\begin{equation}\label{e22} \text{L.H.S. of (3.7)}=c\int_{[0,+\infty)^r}K_{\lambda}(\sum\limits_{j=1}^rt_je_j,\overline{e})\exp\{-\|t\|_{\infty}^{\frac{1}{s}}\}\prod\limits_{j=1}^rt_j^b\prod\limits_{1\leq j<k\leq r}|t_j-t_k|^a\prod\limits_{j=1}^rdt_j. \end{equation}$ (3.9)

For each partition $\lambda$, since the polynomial $K_{\lambda}(\sum\limits_{j=1}^rt_je_j,\overline{e})$ in $t_1,t_2,\cdots,t_r$ is proportional to the Jack polynomial $P_{\lambda}^{(\frac{2}{a})}(t_1,t_2,\cdots,t_r)$, by (2.11) for (3.9), we get

$\begin{equation}\label{e25} \text{L.H.S. of (3.7)}=\Gamma(s(|\lambda|+d)+1) cS_r(b,0;{2}/{a})\frac{K_\lambda(e,\overline{e})(\frac{d}{r})_\lambda}{(p)_\lambda}, \end{equation}$ (3.10)

where we have used $d=rb+\frac{a}{2}r(r-1)+r, p=(r-1)a+b+2, (s)_{\lambda}=[s]^{(\frac{2}{a})}_{\lambda}$.

It is well known that (see [8])

$\begin{equation}\label{e27} \dim \mathcal{P}_{\lambda}=K_\lambda(e,\overline{e})(\frac{d}{r})_\lambda. \end{equation}$ (3.11)

Applying (3.8) we obtain

$\begin{equation}\label{e28} V(\Omega):= \int_{\Omega}dm(z)=cS_r(b,0;{2}/{a}). \end{equation}$ (3.12)

Substituting (3.11), (3.12) into (3.10), we have (3.7). The proof is completed.

4 The Szegö Kernel of $D_{\psi}$

Let $\|z_i\|$ be the spectral norms of Carta domains $\Omega_i(1\leq i \leq n)$, in this section, we will calculate the Szegö kernel of a domain $ D_{\psi}$

$\begin{equation*} D_{\psi}:=\left\{(z_0,z)\in \mathbb{C}\times\mathbb{C}^d: \textrm{Im} z_0>\psi(z)\right\}, \end{equation*}$

where

$\begin{equation*} \psi(z):=\sum\limits_{i=1}^n\|z_i\|^{\frac{2}{s_i}},z=(z_1,z_2,\cdots,z_n),d=\sum\limits_{j=1}^n\dim\Omega_j. \end{equation*}$

Theorem 4.1 Let $r_i, a_i, b_i, d_i, p_i, (s)_\lambda^{(i)}$, $V(\Omega_i)$ and $N_i$ be ranks, characteristic multiplicities, dimensions, genuses, generalized Pochhammer symbols, volumes and generic norms of Cartan domains $\Omega_i$, $1\leq i \leq n$, respectively. The Szegö kernel of $ D_{\psi}$ is

$\begin{eqnarray} \nonumber & & S(z_0,t_1z_1,\cdots,t_nz_n;\overline{u_0},\overline{u_1},\cdots,\overline{u_n}) \\ \label{e4.1} &=& \frac{1}{4\pi}\prod\limits_{i=1}^n\frac{1}{V(\Omega_i)} \frac{1}{A^{1+\sum\limits_{i=1}^ns_id_i}}\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n}) \prod\limits_{i=1}^n \left\{ \frac{1}{N_i(\frac{t_iz_i}{A^{s_i}},\overline{u_i})}\right\}^{p_i}, \end{eqnarray}$ (4.1)

where $\forall 1\leq i\leq n, t_i\in [0,1]$, the function $\varphi(t_1,\cdots,t_n)$ is given

$\begin{equation}\label{e4.2} \varphi(t_1,\cdots,t_n)=\frac{\Gamma(\sum\limits_{i=1}^ns_i(d_i+t_i)+1)}{\prod\limits_{i=1}^n\Gamma(s_i(d_i+t_i)+1)}, \end{equation}$ (4.2)

$\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n})$ is defined by

$\begin{equation}\label{e4.2.1} \varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n})t_1^{i_1}\cdots t_n^{i_n}:=\varphi(i_1,\cdots,i_n)t_1^{i_1}\cdots t_n^{i_n}, \end{equation}$ (4.3)

here $i_1,\cdots,i_n\in \mathbb{N}$, and

$\begin{equation}\label{e4.3} A=-\frac{\sqrt{-1}}{2}(z_0-\overline{u_0})=\frac{1}{2}\left(\sum\limits_{i=1}^n\left(\|z_i\|^{\frac{2}{s_i}}+\|u_i\|^{\frac{2}{s_i}}\right)-\sqrt{-1}\textrm{Re}(z_0-u_0)\right). \end{equation}$ (4.4)

In particular for $n=1$, the Szegö kernel of $ D_{\psi}$ is

$\begin{equation}\label{e4.1.1} S(z_0,z_1;\overline{u_0},\overline{u_1})= \frac{1}{4\pi V(\Omega_1)A^{1+s_1d_1}} \left\{ \frac{1}{N_1(\frac{z_1}{A^{s_1}},\overline{u_1})}\right\}^{p_1}. \end{equation}$ (4.5)

Proof By [1], the Szegö kernel of $ D_{\psi}$ is written as

$\begin{equation}\label{e4.4} S(z_0,z;\overline{u_o},\overline{u})=\int_0^{+\infty}\exp\{-4\pi tA\} K_t(z,\overline{u})dt, \end{equation}$ (4.6)

where $K_t(z,\overline{u})$ is the reproducing kernels of the Hilbert spaces $L_a^2(\mathbb{C}^d,\rho_t)$, here

$L_a^2(\mathbb{C}^d,\rho_t):=\{f\in H(\mathbb{C}^d)|(f,f)<+\infty\},\quad \rho_t(z):=\exp\{-4\pi t\phi(z)\}, $

where $H(\mathbb{C}^d)$ denotes the space of holomorphic functions on $\mathbb{C}^d$, and the inner product $(\cdot,\cdot)$ is defined by

$(f,g):=\int_{\mathbb{C}^d}f(z)\overline{g(z)}\rho_t(z)dm(z).$

Let $\mathcal{G}_i$ stand for the identity connected components of groups of biholomorphic self-maps of $\Omega_i \subset \mathbb{C}^{d_i}$, and $\mathcal{K}_i$ for stabilizers of the origin in $\mathcal{G}_i$, $1\leq i \leq n$, respectively. For any $k=(k_1,\cdots, k_n)\in \mathcal{K}:= \mathcal{K}_1\times\cdots\times\mathcal{K}_n$, we define the action

$ \pi(k)f(z_1,\cdots,z_n)\equiv f\circ k(z_1,\cdots,z_n):=f(k_1\circ z_1,\cdots,k_n\circ z_n)$

of $\mathcal{K}$, then the space $\mathcal{P}$ of holomorphic polynomials on $\mathbb{C}^{d_1}\times\cdots\times\mathbb{C}^{d_n}$ admits the decomposition

$\mathcal{P}=\bigoplus_{{\ell(\lambda^i)\leq r_i\atop 1\leq i\leq n}}\mathcal{P}^{(1)}_{\lambda^1}\otimes\cdots\otimes \mathcal{P}^{(n)}_{\lambda^n},$

where spaces $\mathcal{P}^{(i)}_{\lambda^i}$ are $\mathcal{K}_i$-invariant and irreducible subspaces of spaces of holomorphic polynomials on $\mathbb{C}^{d_i}(1\leq i \leq n)$.

Since $\mathbb{C}^d=\mathbb{C}^{d_1}\times\cdots\times\mathbb{C}^{d_n}$ invariant under the action of $\mathcal{K}_1\times\cdots\times\mathcal{K}_n$, $L_a^2(\mathbb{C}^d,\rho_t)$ admits an irreducible decomposition (see ref. [9])

$L_a^2(\mathbb{C}^d,\rho_t)=\widehat{\bigoplus_{{\ell(\lambda^i)\leq r_i\atop 1\leq i\leq n}}}\mathcal{P}^{(1)}_{\lambda^1}\otimes\cdots\otimes \mathcal{P}^{(n)}_{\lambda^n},$

where $\widehat{\bigoplus}$ denotes the orthogonal direct sum.

For every partition $\lambda^i$ of length less than or equal to $r_i$, let $K^{(i)}_{\lambda^i}(z_i,\overline{u_i})$ be the reproducing kernels of $\mathcal{P}^{(i)}_{\lambda^i}$ with respect to (3.1). By Schur's lemma, there exist positive constants $c_{\lambda^1\cdots\lambda^n}$ such that $c_{\lambda^1\cdots\lambda^n}\prod\limits_{i=1}^nK^{(i)}_{\lambda^i}(z_i,\overline{u_i})$ is reproducing kernels of $\mathcal{P}^{(1)}_{\lambda^1}\otimes\cdots\otimes \mathcal{P}^{(n)}_{\lambda^n}$ with respect to the above inner product $(\cdot,\cdot)$. According to the definition of reproducing kernel, we have

$\int_{\mathbb{C}^d}c_{\lambda^1\cdots\lambda^n}\prod\limits_{i=1}^nK^{(i)}_{\lambda^i}(z_i,\overline{z_i})\rho_t(z_1,\cdots,z_n)\prod\limits_{i=1}^ndm(z_i)=\prod\limits_{i=1}^n\dim\mathcal{P}^{(i)}_{\lambda^i}.$

Therefore, the reproducing kernels of $L_a^2(\mathbb{C}^d,\rho_t)$ can be written as

$\begin{equation}\label{e4.5} K_t(z_1,\cdots,z_n;\overline{u_1},\cdots,\overline{u_n})=\sum\limits_{{\ell(\lambda^i)\leq r_i\atop 1\leq i\leq n}}\frac{\prod\limits_{i=1}^n\dim\mathcal{P}^{(i)}_{\lambda^i}}{<\prod\limits_{i=1}^nK^{(i)}_{\lambda^i}(z_i,\overline{z_i})>}\prod\limits_{i=1}^nK^{(i)}_{\lambda}(z_i,\overline{u_i}), \end{equation}$ (4.7)

where $<f>$ denotes integral

$\int_{\mathbb{C}^d}f(z_1,\cdots,z_n)\rho_t(z_1,\cdots,z_n)\prod\limits_{i=1}^ndm(z_i).$

From (3.7), we have

$\begin{eqnarray} \nonumber & & \int_{\mathbb{C}^d}\prod\limits_{i=1}^nK^{(i)}_{\lambda^i}(z_i,\overline{z_i})\rho_t(z_1,\cdots,z_n)\prod\limits_{i=1}^ndm(z_i) \\ \label{e4.6} &=& \prod\limits_{i=1}^n(4\pi t)^{-s_i(|\lambda^i|+d_i)}\Gamma(s_i(|\lambda^i|+d_i)+1)\frac{\dim \mathcal{P}^{(i)}_{\lambda^i}}{(p_i)^{(i)}_{\lambda^i}}V(\Omega_i). \end{eqnarray}$ (4.8)

It follows from (4.7) and (4.8) that

$\begin{eqnarray} \nonumber & & K_t(z_1,\cdots,z_n;\overline{u_1},\cdots,\overline{u_n}) \\ \label{e4.7} &=& \sum\limits_{{\ell(\lambda^i)\leq r_i\atop 1\leq i\leq n}}(4\pi t)^{\sum\limits_{i=1}^ns_i(|\lambda^i|+d_i)} \prod\limits_{i=1}^n\frac{1}{\Gamma(s_i(|\lambda^i|+d_i)+1)V(\Omega_i)} \prod\limits_{i=1}^n(p_i)^{(i)}_{\lambda^i}K^{(i)}_{\lambda}(z_i,\overline{u_i}). \end{eqnarray}$ (4.9)

Now substituting (4.9) into (4.6), by

$\begin{equation}\label{e4.8} \int_0^{+\infty}\exp\{-4\pi tA\}(4\pi t)^{\sum\limits_{i=1}^ns_i(|\lambda^i|+d_i)}dt=\frac{1}{4\pi}A^{-\sum\limits_{i=1}^ns_i(|\lambda^i|+d_i)-1}\Gamma(\sum\limits_{i=1}^ns_i(|\lambda^i|+d_i)+1), \end{equation}$ (4.10)

and (3.2), we get

$\begin{eqnarray} \nonumber & & S(z_0,t_1z_1,\cdots,t_n z_n;\overline{u_o},\overline{u_1},\cdots,\overline{u_n})\\ \nonumber &=& \frac{1}{4\pi}\prod\limits_{i=1}^n\frac{1}{V(\Omega_i)} \frac{1}{A^{1+\sum\limits_{i=1}^ns_id_i}} \sum\limits_{{\ell(\lambda^i)\leq r_i\atop 1\leq i\leq n}}\varphi(|\lambda^1|,\cdots,|\lambda^n|) \prod\limits_{i=1}^n(p_i)^{(i)}_{\lambda^i}t_i^{|\lambda^i|}K^{(i)}_{\lambda}( \frac{z_i}{A^{s_i}},\overline{u_i})\\ \nonumber &=& \frac{1}{4\pi}\prod\limits_{i=1}^n\frac{1}{V(\Omega_i)} \frac{1}{A^{1+\sum\limits_{i=1}^ns_id_i}} \sum\limits_{{\ell(\lambda^i)\leq r_i\atop 1\leq i\leq n}}\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n}) \prod\limits_{i=1}^n(p_i)^{(i)}_{\lambda^i}t_i^{|\lambda^i|}K^{(i)}_{\lambda}( \frac{z_i}{A^{s_i}},\overline{u_i})\\ \nonumber &=& \frac{1}{4\pi}\prod\limits_{i=1}^n\frac{1}{V(\Omega_i)} \frac{1}{A^{1+\sum\limits_{i=1}^ns_id_i}} \varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n}) \prod\limits_{i=1}^n \left\{ \frac{1}{N_i(\frac{t_iz_i}{A^{s_i}},\overline{u_i})}\right\}^{p_i}, \end{eqnarray}$

where $ 0\leq t_i\leq 1$, this proves Theorem 4.1.

To provide a concrete expression of (4.1), we need Lemma 4.2 below.

Lemma 4.2 If $n>1$, $s_i \in \mathbb{N}_{+}$ and $N_i(z_i,\overline{u_i})=1-z_iu_i^{\dagger}$ for $1\leq i \leq n-1$, $\varphi$ same as (4.2), let $\partial_x=\frac{1}{\prod\limits_{i=1}^{n-1}s_id_i!}\frac{\partial^{d_1+\cdots+d_{n-1}}}{\partial x_1^{d_1}\cdots\partial x_n^{d_{n-1}}}$, then we have

$\begin{eqnarray} \nonumber & & \left.\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n})\left\{\prod\limits_{i=1}^n\frac{1}{N_i(t_iz_i,\overline{u_i})^{p_i}}\right\}\right|_{t_1=\cdots=t_n=1}\\ \nonumber &=&tial_x\sum\limits_{j_1=0}^{s_1-1}\cdots\sum\limits_{j_{n-1}=0}^{s_{n-1}-1}\frac{1}{\left(1-\sum\limits_{i=1}^{n-1}\omega_i^{j_i}x_i^{{1}/{s_i}}\right)^{s_nd_n+1}}\left\{\frac{1}{N_n\left(\frac{z_n}{\left(1-\sum\limits_{i=1}^{n-1}\omega_i^{j_i}x_i^{{1}/{s_i}}\right)^{s_n}},\overline{u_n}\right)}\right\}^{p_n}, \end{eqnarray}$

where $x_i=z_iu_i^{\dagger}$, $\omega_i=\exp\{\frac{2\pi\sqrt{-1}}{s_i}\}$ and symbols $u_i^{\dagger}$ denote the conjugation transposition of the row vectors $u_i$.

Proof For Cartan domains $\Omega_i (1\leq i \leq n-1)$, its ranks $r_i=1$, genuses $p_i=d_1+1$, and the reproducing kernels $K_{k}^{(i)}=\frac{(z_iu_i^{\dagger})^k}{k!}$ of $\mathcal{P}^{(i)}_{k}$ with respect to (3.1), we have

$\begin{eqnarray} \nonumber & & \left.\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n})\left\{\prod\limits_{i=1}^n\frac{1}{N_i(t_iz_i,\overline{u_i})^{p_i}}\right\}\right|_{t_1=\cdots=t_n=1} \\ \nonumber &=& \sum\limits_{\ell(\lambda)\leq r_n}\sum\limits_{k_i=0 \atop 1\leq i \leq n-1}^{+\infty} \varphi(k_1,\cdots,k_{n-1},|\lambda|)\prod\limits_{i=1}^{n-1}\frac{(k_i+1)_{d_i}(z_iu_i^{\dagger})^{k_i}}{d_i!}(p_n)_{\lambda}^{(n)}K^{(n)}_{\lambda}(z_n,\overline{u_n})\\ \nonumber &=&{\prod\limits_{i=1}^{n-1}s_i}\sum\limits_{\ell(\lambda)\leq r_n}\partial_x \sum\limits_{k_i=0 \atop 1\leq i \leq n-1 }^{+\infty} \varphi(k_1,\cdots,k_{n-1},|\lambda|)\prod\limits_{i=1}^{n-1}x_i^{k_i+d_i}(p_n)_{\lambda}^{(n)}K^{(n)}_{\lambda}(z_n,\overline{u_n})\\ \nonumber &=&{\prod\limits_{i=1}^{n-1}s_i}\partial_x\sum\limits_{\ell(\lambda)\leq r_n}\sum\limits_{k_i=0 \atop 1\leq i \leq n-1 }^{+\infty} \frac{\Gamma(\sum\limits_{i=1}^{n-1}s_ik_i+s_n(d_n+|\lambda|)+1)}{\prod\limits_{i=1}^{n-1}\Gamma(s_ik_i+1)\Gamma(s_n(d_n+|\lambda|)+1)}\prod\limits_{i=1}^{n-1}x_i^{k_i} (p_n)_{\lambda}^{(n)}K^{(n)}_{\lambda}(z_n,\overline{u_n}), \end{eqnarray}$

where $x_i=z_iu_i^{\dagger}$.

Let

$\omega_i:=\exp\{\frac{2\pi\sqrt{-1}}{s_i}\}(1\leq i\leq n-1),$

using (3.2), we obtain

$\begin{eqnarray} \nonumber & & \left.\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n})\{\prod\limits_{i=1}^n\frac{1}{N_i(t_iz_i,\overline{u_i})^{p_i}}\}\right|_{t_1=\cdots=t_n=1} \\ \nonumber &=&\partial_x\sum\limits_{j_1=0}^{s_1-1}\cdots\sum\limits_{j_{n-1}=0}^{s_{n-1}-1} \sum\limits_{\ell(\lambda)\leq r_n}\sum\limits_{k_i=0\atop 1\leq i \leq n-1}^{+\infty} \frac{\Gamma(\sum\limits_{i=1}^{n-1}k_i+s_n(d_n+|\lambda|)+1)}{\prod\limits_{i=1}^{n-1}\Gamma(k_i+1)\Gamma(s_n(d_n+|\lambda|)+1)}\\ \nonumber & &\times \prod\limits_{i=1}^{n-1}(\omega_i^{j_i}x_i^{\frac{1}{s_i}})^{k_i} (p_n)_{\lambda}^{(n)}K^{(n)}_{\lambda}(z_n,\overline{u_n})\\ \nonumber &=&\partial_x\sum\limits_{j_1=0}^{s_1-1}\cdots\sum\limits_{j_{n-1}=0}^{s_{n-1}-1} \sum\limits_{\ell(\lambda)\leq r_n}\frac{1} {(1-\sum\limits_{i=1}^{n-1}\omega_i^{j_i}x_i^{{1}/{s_i}})^{s_n(d_n+|\lambda|)+1}}(p_n)_{\lambda}^{(n)}K^{(n)}_{\lambda}(z_n,\overline{u_n})\\ \nonumber &=&\partial_x\sum\limits_{j_1=0}^{s_1-1}\cdots\sum\limits_{j_{n-1}=0}^{s_{n-1}-1}\frac{1}{(1-\sum\limits_{i=1}^{n-1} \omega_i^{j_i}x_i^{{1}/{s_i}})^{s_nd_n+1}}\{\frac{1}{N_n(\frac{z_n}{(1 -\sum\limits_{i=1}^{n-1}\omega_i^{j_i}x_i^{{1}/{s_i}})^{s_n}},\overline{u_n})}\}^{p_n}. \end{eqnarray}$

It completes the proof of Lemma 4.2.

By Lemma 4.2, we give the Szegö kernel of $ D_{\psi}$ in explicit form.

Corollary 4.3 For $s_i, n \in \mathbb{N}_{+}$, $n>1$, and ranks of Cartan domains $\Omega_i$ equal to $1$ $(1\leq i \leq n-1)$, the Szegö kernel of $ D_{\psi}$ may be written as

$\begin{eqnarray} \nonumber & & S(z_0,z_1,\cdots,z_n;\overline{u_0},\overline{u_1},\cdots,\overline{u_n}) \\ \nonumber &=& \frac{1}{4\pi}\prod\limits_{i=1}^n\frac{1}{V(\Omega_i)} \frac{1}{A^{1+\sum\limits_{i=1}^ns_id_i}}\prod\limits_{i=1}^{n-1} \frac{1}{s_id_i!} \frac{\partial^{d_1+\cdots+d_{n-1}}}{\partial x_1^{d_1}\cdots\partial x_n^{d_{n-1}}} \\ \nonumber & & \sum\limits_{j_1=0}^{s_1-1}\cdots\sum\limits_{j_{n-1}=0}^{s_{n-1}-1}\frac{1}{(1-\sum\limits_{i=1}^{n-1}\omega_i^{j_i}x_i^{{1}/{s_i}})^{s_nd_n+1}}\{\frac{1}{N_n(\frac{z_n}{A^{s_n}(1-\sum\limits_{i=1}^{n-1}\omega_i^{j_i}x_i^{{1}/{s_i}})^{s_n}},\overline{u_n})}\}^{p_n}, \end{eqnarray}$

where $ A=-\frac{\sqrt{-1}}{2}(z_0-\overline{u_0})$, $x_i=\frac{z_iu_i^{\dagger}}{A^{s_i}}$, $\omega_i=\exp\{\frac{2\pi\sqrt{-1}}{s_i}\}$ and symbols $u_i^{\dagger}$ denote the conjugation transposition of the row vectors $u_i$.

References
[1] Francsics G, Hanges N. Explict formulas for the Szegö kernel on certain weakly pseudoconvex domains[J]. Proceedings of the American Mathematical Society, 1995, 123(10): 3161–3168.
[2] Hua L K. Harmonic analysis of functions of several complex variables in the classical domains[M]. Providence, RI: Amer. Math. Soc., 1963.
[3] Lu Q K. New results of the classical manifolds and classical domains (in Chinese)[M]. Shanghai: Sci. Tech. Press, 1997.
[4] Macdonald I G. Macdonald I G. Symmetric functions and hall polynomials (2nd Edi.)[M]. New York: Oxford University Press, 1995.
[5] Kadell K W J. The Selberg-Jack symmetric functions[J]. Adv. Math., 1997, 130(1): 33–102. DOI:10.1006/aima.1997.1642
[6] Kanedo J. Selberg integrals and hypergeometric functions associated with Jack polynomials[J]. SIAM J. Math. Anal., 1993, 24: 1086–1110. DOI:10.1137/0524064
[7] Faraut J, Kaneyuki S, Korányi A, Lu Q K, Roos G. Analysis and geometry on complex homogeneous domains[M]. Progress in Mathematics, Vol. 185, Boston: Birkhäuser, 2000.
[8] Feng Z M, Song J P. Integrals over the circular ensembles relating to classical domains[J]. J. Phys. A: Math. Theor., 2009, 42: 325204. DOI:10.1088/1751-8113/42/32/325204
[9] Faraut J, Thomas E G F. Invariant Hilbert spaces of holomorphic functions[J]. J. Lie Theory, 1999, 9: 383–402.