Let $\phi(z)$ be a non-negative function on $\mathbb{C}^d$, and
The Hardy space $H^2( D_{\phi})$ is defined by
where $H( D_{\phi})$ denotes all holomorphic functions on the domain $ D_{\phi}$, and $dm(z)$ is the Lebesgue measure on $\mathbb{C}^d$. The closed subspace $H^2(\partial D_{\phi})$ of $L^2(\partial D_{\phi})$ consisting of boundary values of holomorphic functions $f\in H^2( D_{\phi})$. The Szegö projection is the orthogonal projection
and the Szegö kernel $S(z,t;u,s)$ is the distribution kernel on $\partial D_{\phi}\times \partial D_{\phi}$ give by
where the boundary $\partial D_{\phi}$ of $ D_{\phi}$ be identified with $\mathbb{C}^d\times\mathbb{R}$, the coordinates are $(z,t)$.
Let $d_1, d_2, \cdots, d_n$ be positive integers, $s_1, s_2, \cdots, s_n$ be positive real numbers, $\phi(z)=\sum\limits_{i=1}^n||z_i||^{\frac{2}{s_i}}$ with $z_i=(z_{i1},z_{i2},\cdots,z_{id_i})\in \mathbb{C}^{d_i}$, where $ ||z_i||^2:=\sum\limits_{j=1}^{d_i}|z_{ij}|^2$. In [1], Francsics and Hanges obtained the Szegö kernel of the unbounded domain $ D_{\phi}$. For special $\phi(z)$, the Szegö kernel of $ D_{\phi}$, see also the references of [1].
Let $\Omega_i$ be irreducible bounded symmetric domains (Cartan domains) in $\mathbb{C}^{d_i}$ in its Harish-Chandra realization, $s_i$ be positive real numbers, $1\leq i\leq n$. The following we assume that
where $\psi(z)=\sum\limits_{i=1}^n\|z_i\|^{\frac{2}{s_i}}$, $z=(z_1,z_2,\cdots,z_n)\in \mathbb{C}^{d_1}\times \mathbb{C}^{d_2}\times \cdots \times \mathbb{C}^{d_n}$, $d=\sum\limits_{j=1}^nd_j$ and $\|z_i\|$ are the spectral norms of $z_i$, see (3.5). If the ranks of $\Omega_i$ equal to 1 for all $1\leq i \leq n$, then here $\psi(z)$ same as the above $\phi(z)$.
For convenience, we list classical domains and corresponding the generic norms $N(z,\overline{z})$ and the spectral norms $\|z\|$ as following (see [2, 3])
where $z^{\dagger}$ denotes the conjugation transposition of $z$. If the rank $m$ of $\mathfrak{R}_I(m,n)$ equal to 1, then $\|z\|=\sqrt{zz^{\dagger}}$.
where $z^t$ denotes the transposition of $z$.
In this note, by using the method of [1], we will calculate the Szegö kernel of $ D_{\psi}$. In the following Section 2 and Section 3, we collect basic material about the generalized Selberg formula, integrals of Jack polynomials time the certain weight, and integrals of $K_{\lambda}$ over the Cartan domain. In Section 4, we compute the Szegö kernel of $ D_{\psi}$.
Lemma 2.1 (Generalized Selberg formula [4--6])) For give ${\rm Re}(x)>-1, {\rm Re}(y)>-1, \alpha>0$, let $\lambda$ be any partition of length $\ell(\lambda)\leq n$, $P_{\lambda}^{(\alpha)}$ be the symmetric Jack polynomial, then we have
where
and
${P}_{\lambda}^{(\alpha)}(1_n)$ denotes the value of the function ${P}_{\lambda}^{(\alpha)}(x_1,x_2,\cdots,x_n)$ at $(x_1,x_2,\cdots,x_n)=(1,1,\cdots,1)$.
The following we compute the integral of Jack polynomial times the certain weight using the generalized Selberg formula, to this end, we first give the following results.
Lemma 2.2 Let $\varphi(x_1,x_2,\cdots,x_n)$ and $f(x_1,x_2,\cdots,x_n)$ be continuous real functions such that
(1) $\forall x_i\geq 0, 1\leq i \leq n$, $\varphi(x)\geq 0$. $\varphi(x)=0$ if and only if $x=0$.
(2) $\forall \alpha\in \mathbb{R}, \varphi(\alpha x)=|\alpha|\varphi(x)$.
(3) $\forall t\in \mathbb{R}$, $f(tx)=t^df(x)$. $\forall x_i\geq 0, 1\leq i \leq n$, $f(x)\geq 0$. Then for all positive real numbers $s, s_1, s_2$, we have
(1)
where $x=(x_1, x_2, \cdots, x_n)$, $dx:=dx_1dx_2\cdots dx_n$, and $x\geq 0$ mean $\forall i, 1\leq i \leq n, x_i\geq 0$.
(2)
Proof (1) Let
On the one hand,
On the other hand,
By (2.6) and (2.7), we obtain (2.3).
(2) In (2.3), we set $s_1=m^{\frac{1}{s}}, s_2=s$, by the change of variables $x=\frac{y}{m}, m>0$, we have
When $m\rightarrow +\infty$, limit of L.H.S. of (2.8) is $\displaystyle \int_{y\geq 0}f(y)\exp\{-\varphi(y)^{\frac{1}{s}}\}dy,$ and limit of R.H.S. of (2.8) is
Here we use $\frac{\Gamma(x+a)}{\Gamma(x+b)}\sim x^{a-b}(x\rightarrow +\infty).$ So we obtain (2.4). The proof is completed.
For $s>0, x=(x_1,x_2,\cdots,x_n)$, setting $\|x\|_s:=(\sum\limits_{i=1}^n|x_i|^s)^{\frac{1}{s}}$. It is easy to see $\|x\|_1:=\sum\limits_{i=1}^n|x_i|$ and $\|x\|_{\infty}=\max\limits_{1\leq i\leq n}\{|x_i|\}$. Let
Since homogeneous the function $P(\lambda,\alpha,b,n,x)$ of degree $d=|\lambda|+nb+\frac{n(n-1)}{\alpha}$ satisfies Lemma 2.2. By Lemma 2.2, we have the following Corollary 2.3.
Corollary 2.3 For all positive real numbers $s, t$, we have
As a consequence of Lemma 2.1, we have
From Corollary 2.3 and (2.10) we get
Corollary 2.4 For all positive real numbers $s$, we have
Let $\Omega\subset \mathbb{C}^{d}$ be Cartan domain, we denote by $r, a, b, d, p $ and $N(z,\overline{w})$ the rank, the characteristic multiplicities, the dimension, the genus, and the generic norm of $\Omega$, respectively. Let $\mathcal{G}$ stand for the identity connected component of the group of biholomorphic self-maps of $\Omega$, and $\mathcal{K}$ {for the stabilizer} of the origin in $\mathcal{G}$.
Under the action $f\mapsto f\circ k (k\in \mathcal{K})$ of $\mathcal{K}$, the space $\mathcal{P}$ of holomorphic polynomials on $\mathbb{C}^d$ admits the Peter-Weyl decomposition
where the spaces $\mathcal{P}_{\lambda}$ are $\mathcal{K}$-invariant and irreducible.
Let
where $dm(z)$ denotes the Lebesgue measure on $\mathbb{C}^d$.
For every partition $\lambda$, let $K_{\lambda}(z_1,\overline{z_2})$ be the reproducing kernel of $\mathcal{P}_{\lambda}$ with respect to (3.1). The kernels $K_{\lambda}(z_1,\overline{z_2})$ are related to the generic norm $N(z_1,\overline{z_2})$ by the Faraut-{Korányi} formula
where $(s)_{\lambda}$ denotes the generalized Pochhammer symbol
Here $(s)_m$ denotes the raising factorial
Let $e_1,e_2,\cdots, e_r\in\mathbb{C}^d$ be a Jordan frame. Then each $z\in \mathbb{C}^d$ has the polar decomposition
The numbers $t_1,t_2,\cdots, t_r$ are called the singular values of $z$. the spectral norm of $z$ is defined by
It is known that
For the proofs of above facts and additional details, we refer e.g. to [7].
Lemma 3.1 For give a positive real number $s$, we have
where $V(\Omega)$ is the volume with respect to the Euclidean measure of $\Omega$.
Proof We recall the formula for integration in polar coordinates (see [7])
where $c$ is a constant. By using (3.8), (3.5) and (3.6), we have
For each partition $\lambda$, since the polynomial $K_{\lambda}(\sum\limits_{j=1}^rt_je_j,\overline{e})$ in $t_1,t_2,\cdots,t_r$ is proportional to the Jack polynomial $P_{\lambda}^{(\frac{2}{a})}(t_1,t_2,\cdots,t_r)$, by (2.11) for (3.9), we get
where we have used $d=rb+\frac{a}{2}r(r-1)+r, p=(r-1)a+b+2, (s)_{\lambda}=[s]^{(\frac{2}{a})}_{\lambda}$.
It is well known that (see [8])
Applying (3.8) we obtain
Substituting (3.11), (3.12) into (3.10), we have (3.7). The proof is completed.
Let $\|z_i\|$ be the spectral norms of Carta domains $\Omega_i(1\leq i \leq n)$, in this section, we will calculate the Szegö kernel of a domain $ D_{\psi}$
Theorem 4.1 Let $r_i, a_i, b_i, d_i, p_i, (s)_\lambda^{(i)}$, $V(\Omega_i)$ and $N_i$ be ranks, characteristic multiplicities, dimensions, genuses, generalized Pochhammer symbols, volumes and generic norms of Cartan domains $\Omega_i$, $1\leq i \leq n$, respectively. The Szegö kernel of $ D_{\psi}$ is
where $\forall 1\leq i\leq n, t_i\in [0,1]$, the function $\varphi(t_1,\cdots,t_n)$ is given
$\varphi(t_1\frac{d}{dt_1},\cdots,t_n\frac{d}{dt_n})$ is defined by
here $i_1,\cdots,i_n\in \mathbb{N}$, and
In particular for $n=1$, the Szegö kernel of $ D_{\psi}$ is
Proof By [1], the Szegö kernel of $ D_{\psi}$ is written as
where $K_t(z,\overline{u})$ is the reproducing kernels of the Hilbert spaces $L_a^2(\mathbb{C}^d,\rho_t)$, here
where $H(\mathbb{C}^d)$ denotes the space of holomorphic functions on $\mathbb{C}^d$, and the inner product $(\cdot,\cdot)$ is defined by
Let $\mathcal{G}_i$ stand for the identity connected components of groups of biholomorphic self-maps of $\Omega_i \subset \mathbb{C}^{d_i}$, and $\mathcal{K}_i$ for stabilizers of the origin in $\mathcal{G}_i$, $1\leq i \leq n$, respectively. For any $k=(k_1,\cdots, k_n)\in \mathcal{K}:= \mathcal{K}_1\times\cdots\times\mathcal{K}_n$, we define the action
of $\mathcal{K}$, then the space $\mathcal{P}$ of holomorphic polynomials on $\mathbb{C}^{d_1}\times\cdots\times\mathbb{C}^{d_n}$ admits the decomposition
where spaces $\mathcal{P}^{(i)}_{\lambda^i}$ are $\mathcal{K}_i$-invariant and irreducible subspaces of spaces of holomorphic polynomials on $\mathbb{C}^{d_i}(1\leq i \leq n)$.
Since $\mathbb{C}^d=\mathbb{C}^{d_1}\times\cdots\times\mathbb{C}^{d_n}$ invariant under the action of $\mathcal{K}_1\times\cdots\times\mathcal{K}_n$, $L_a^2(\mathbb{C}^d,\rho_t)$ admits an irreducible decomposition (see ref. [9])
where $\widehat{\bigoplus}$ denotes the orthogonal direct sum.
For every partition $\lambda^i$ of length less than or equal to $r_i$, let $K^{(i)}_{\lambda^i}(z_i,\overline{u_i})$ be the reproducing kernels of $\mathcal{P}^{(i)}_{\lambda^i}$ with respect to (3.1). By Schur's lemma, there exist positive constants $c_{\lambda^1\cdots\lambda^n}$ such that $c_{\lambda^1\cdots\lambda^n}\prod\limits_{i=1}^nK^{(i)}_{\lambda^i}(z_i,\overline{u_i})$ is reproducing kernels of $\mathcal{P}^{(1)}_{\lambda^1}\otimes\cdots\otimes \mathcal{P}^{(n)}_{\lambda^n}$ with respect to the above inner product $(\cdot,\cdot)$. According to the definition of reproducing kernel, we have
Therefore, the reproducing kernels of $L_a^2(\mathbb{C}^d,\rho_t)$ can be written as
where $<f>$ denotes integral
From (3.7), we have
It follows from (4.7) and (4.8) that
Now substituting (4.9) into (4.6), by
and (3.2), we get
where $ 0\leq t_i\leq 1$, this proves Theorem 4.1.
To provide a concrete expression of (4.1), we need Lemma 4.2 below.
Lemma 4.2 If $n>1$, $s_i \in \mathbb{N}_{+}$ and $N_i(z_i,\overline{u_i})=1-z_iu_i^{\dagger}$ for $1\leq i \leq n-1$, $\varphi$ same as (4.2), let $\partial_x=\frac{1}{\prod\limits_{i=1}^{n-1}s_id_i!}\frac{\partial^{d_1+\cdots+d_{n-1}}}{\partial x_1^{d_1}\cdots\partial x_n^{d_{n-1}}}$, then we have
where $x_i=z_iu_i^{\dagger}$, $\omega_i=\exp\{\frac{2\pi\sqrt{-1}}{s_i}\}$ and symbols $u_i^{\dagger}$ denote the conjugation transposition of the row vectors $u_i$.
Proof For Cartan domains $\Omega_i (1\leq i \leq n-1)$, its ranks $r_i=1$, genuses $p_i=d_1+1$, and the reproducing kernels $K_{k}^{(i)}=\frac{(z_iu_i^{\dagger})^k}{k!}$ of $\mathcal{P}^{(i)}_{k}$ with respect to (3.1), we have
where $x_i=z_iu_i^{\dagger}$.
using (3.2), we obtain
It completes the proof of Lemma 4.2.
By Lemma 4.2, we give the Szegö kernel of $ D_{\psi}$ in explicit form.
Corollary 4.3 For $s_i, n \in \mathbb{N}_{+}$, $n>1$, and ranks of Cartan domains $\Omega_i$ equal to $1$ $(1\leq i \leq n-1)$, the Szegö kernel of $ D_{\psi}$ may be written as
where $ A=-\frac{\sqrt{-1}}{2}(z_0-\overline{u_0})$, $x_i=\frac{z_iu_i^{\dagger}}{A^{s_i}}$, $\omega_i=\exp\{\frac{2\pi\sqrt{-1}}{s_i}\}$ and symbols $u_i^{\dagger}$ denote the conjugation transposition of the row vectors $u_i$.