数学杂志  2015, Vol. 35 Issue (3): 499-504   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
QIAO Hu-sheng
ZHENG Qi-lian
THE CHARACTERIZATION OF n-REGULAR MONOIDS BY FLATNESS PROPERTY
QIAO Hu-sheng, ZHENG Qi-lian    
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, we investigate the problem of generalization of principal weak flatness. Using equal systems of tensor products and the method of homological classiflcation, we obtain the characterizations of generally regular monoids, which extends the main results on the characterizations of regular monoids.
Key words: regular monoid     n-regular monoid     principal weak flatness     homological classiflcation    
n-正则幺半群的平坦性刻画
乔虎生, 郑奇莲    
西北师范大学数学系, 甘肃 兰州 730070
摘要:本文研究了主弱平坦性质的推广问题.利用张量积相等的等式组, 以及同调分类方法, 获得了对广义正则的幺半群的刻画结果, 推广了关于正则幺半群刻画的主要的结果.
关键词正则幺半群    n-正则幺半群    主弱平坦性    同调分类    
1 Introduction

Throughout this paper, $S$ always stands for a monoid. A nonempty set $A$ is called a right $S$-act, if there exists a mapping $A\times S\rightarrow A, (a, s)\mapsto as$, satisfying the conditions $(as)t=a(st)$ and $a1=a$, for all $a\in A$ and all $s, t\in S$. Let $S$ be a monoid and $A$ be a right $S$-act. $A$ is called principally weakly flat if the functor $A\otimes-$ preserves embeddings of principal left ideals of $S$ into $S$. In this article, we generalize regular monoids, and define a new class of monoids, which is called $n$-regular monoids. Using a generalization of principal weak flatness, we give some characterizations of these monoids, and some known results are easily obtained.

Definition 1.1 Let $S$ be a monoid and $n$ a positive integer. A right $S$-act $A$ is called principally weakly $n$-flat if for every $s\in S$, $A\otimes Ss^n\rightarrow A\otimes S$ is monic.

Remark 1.2  It is clear that in the above definition, when $n=1$, then a right $S$-act $A$ is principally weakly $n$-flat if and only if $A$ is principally weakly flat. When $n\geq 2$, we will show that there exists a right $S$-act $A$ which is principally weakly $n$-flat but not principally weakly flat.

Suppose $I$ is a proper right ideal of $S$, by [1] the amalgam of two copies of $S$ with the core $I$ is defined as follows. If $x,y$ and $z$ denote elements not belonging to $S$, define $A(I)=(\{x,y\}\times (S-I))\cup (\{z\}\times I),$ and define a right $S$-action on $A(I)$ by

$\begin{eqnarray*} (x,u)s&=&\left\{ \begin{array}{ccc} (x,us), & \mbox{if $us \notin I,$} & \\ (z,us), & \mbox{ if $us \in I$,} & \end{array} \right.\\ (y,u)s&=&\left\{ \begin{array}{ccc} (y,us), & \mbox{if $us \notin I,$} & \\ (z,us), & \mbox{ if $us \in I$, } & \end{array} \right.\\ (z,u)s&=&(z,us). \end{eqnarray*}$

Then $A(I)$ is a right $S$-act.

Lemma 1.3 [3] Let $S$ be a monoid, $a,a^{\prime}\in A_S,b,b^{\prime}\in_{S}\mspace{-6mu}B$. Then $a\otimes b=a^{\prime}\otimes b^{\prime}$ in $A_S\otimes _{S}\!B$ if and only if there exist a positive integer $m$ and elements $a_1,\cdots,a_m\in A_S, b_2,\cdots,b_m\in _{S}\mspace{-6mu}B$, $s_1,t_1,\cdots,s_m,t_m\in S$ such that

$\begin{alignat*}{2} &a=a_1s_1,\ \\ &a_1t_1= a_2s_2, &\hspace{30pt} &s_1b=t_1b_2,\\ &a_2t_2= a_3s_3, & &s_2b_2=t_2b_3,\\ &\ \ \hspace{6.2mm} \vdots & &\ \ \hspace{6.6mm} \vdots\\ &a_mt_m= a^{\prime}, & &s_mb_m=t_mb^{\prime}. \end{alignat*}$

Lemma 1.4  Let $S$ be a monoid, $A$ an $S$-act and $n$ a positive integer. The following conditions are equivalent:

(1) $A$ is principally weakly $n$-flat.

(2) For every $s\in S$, any $a,a^{\prime}\in A$, $a\otimes s^n=a^{\prime}\otimes s^n$ in $A\otimes S$ implies that there exist $m\in N$, elements $a_1,\cdots,a_m\in A_S$, and $s_1,t_1,\cdots,s_m,t_m\in S$ such that

$\begin{alignat*}{2} &a=a_1s_1,\ \\ &a_1t_1=a_2s_2, &\hspace{30pt} &s_1s^n=t_1s^n,\\ &a_2t_2=a_3s_3, & &s_2s^n=t_2s^n,\\ &\ \ \hspace{6.2mm} \vdots & &\ \ \hspace{6.6mm} \vdots\\ &a_mt_m=a^{\prime}, & &s_ms^n=t_ms^n. \end{alignat*}$

Proof (1)$\Rightarrow$(2) Since $A$ is principally weakly $n$-flat, for every $s\in S$, any $a,a^{\prime}\in A$, $a\otimes s^n=a^{\prime}\otimes s^n$ in $A\otimes S$ implies that $a\otimes s^n=a^{\prime}\otimes s^n$ in $A\otimes Ss^n$. By Lemma 1 there exists a positive integer $m$ and elements $a_1,\cdots,a_m\in A_S, q_2,\cdots,q_m\in Ss^n$, $u_1,v_1,\cdots,u_m,v_m\in S$ such that

$\begin{alignat*}{2} &a=a_1u_1,\ \\ &a_1v_1= a_2u_2, &\hspace{30pt} &u_1s^n=v_1q_2,\\ &a_2v_2= a_3u_3, & &u_2q_2=v_2q_3,\\ &\ \ \hspace{6.2mm} \vdots & &\ \ \hspace{6.6mm} \vdots\\ &a_mv_m= a^{\prime}, & &u_mq_m=v_ms^n. \end{alignat*}$

Since $q_2,q_3,\cdots q_m\in Ss^n$, there exist $c_2,c_3,\cdots,c_m\in S$ such that $q_i=c_is^n(i=2,\cdots,m)$. Hence we have

$\begin{alignat*}{2} &a=a_1u_1,\ \\ &a_1v_1c_2= a_2u_2c_2, &\hspace{30pt} &u_1s^n=v_1c_2s^n,\\ &a_2v_2c_3= a_3u_3c_3, & &u_2c_2s^n=v_2c_3s^n,\\ &\ \ \hspace{6.2mm} \vdots & &\ \ \hspace{6.6mm} \vdots\\ &a_{m-1}v_{m-1}c_m= a_mu_mc_m, & &u_{m-1}c_{m-1}s^n=v_{m-1}c_ms^n,\\ &a_mv_m= a^{\prime}, & &u_mc_ms^n=v_ms^n. \end{alignat*}$

Denote $u_1=s_1, v_m=t_m, u_ic_i=s_i, v_{i-1}c_i=t_{i-1}, i=2,\cdots,m.$ Then the result follows.

(2)$\Rightarrow$(1) For every $s\in S$, any $a,a^{\prime}\in A$, $a\otimes s^n=a^{\prime}\otimes s^n$ in $A\otimes S$. By (2) there exist $m\in N$, elements $a_1,\cdots,a_m\in A_S$, and $s_1,t_1,\cdots,s_m,t_m\in S$ such that

$\begin{alignat*}{2} &a=a_1s_1,\ \\ &a_1t_1=a_2s_2, &\hspace{30pt} &s_1s^n=t_1s^n,\\ &a_2t_2=a_3s_3, & &s_2s^n=t_2s^n,\\ &\ \ \hspace{6.2mm} \vdots & &\ \ \hspace{6.6mm} \vdots\\ &a_mt_m=a^{\prime}, & &s_ms^n=t_ms^n. \end{alignat*}$

Now

$\begin{alignat*}{2} a\otimes s^n&=a_1s_1\otimes s^n=a_1\otimes s_1s^n=a_1\otimes t_1s^n=a_1t_1\otimes s^n\\ &=a_2s_2\otimes s^n=a_2\otimes s_2s^n=a_2\otimes t_2s^n=a_2t_2\otimes s^n=\cdots=a^{\prime}\otimes s^n \end{alignat*}$

in $A\otimes Ss^n$.

2 Main Results

A monoid $S$ is called regular, if for every $s\in S$, there exists $x\in S$ such that $s=sxs$. Now we have the following:

Definition 2.1  Let $n$ be a positive integer. A monoid $S$ is called a $n$-regular monoid, if for every $s\in S$, there exists $x\in S$ such that $s^n=s^nxs^n$.

Lemma 2.2  Let $S$ be a monoid, $I$ a proper right ideal of $S$ and $n$ a positive integer. Then the following conditions are equivalent:

(1) $A(I)$ is principally weakly $n$-flat.

(2) For every $s\in S$, if there exists $r\in S-I$ such that $rs^n\in I$, then there exists $j\in I$ such that $rs^n=js^n$.

Proof (1)$\Rightarrow$(2) Since $A(I)$ is principally weakly $n$-flat, for every $s\in S$, if there exists $r\in S-I$ such that $rs^n\in I$, then $(x,r)\otimes s^n=(y,r)\otimes s^n$ in $A(I)\otimes S$. By Lemma 1.4 there exist $m\in N$, $p_1,\cdots,p_m\in S$, $s_1,t_1,\cdots,s_m,t_m\in S,$ and $w_1,\cdots,w_m\in \{x,y,z\}$ such that

$\begin{alignat*}{2} (x,r)&=(w_1,p_1)s_1,\ \\ (w_1,p_1)t_1&=(w_2,p_2)s_2, &\hspace{45pt} s_1s^n&=t_1s^n,\\ &\ \ \vdots & &\ \ \vdots\\ (w_{m-1},p_{m-1})t_{m-1}&=(w_m,p_m)s_m, & s_{m-1}s^n&=t_{m-1}s^n,\\ (w_m,p_m)t_m&=(y,r), &s_ms^n&=t_ms^n. \end{alignat*}$

There exists $k\in \{1,\cdots,m-1\}$ such that $w_k\neq w_{k+1}$, and so, there exists $j\in I$ such that $p_kt_k=p_{k+1}s_{k+1}=j$. So we have

$rs^n=p_1s_1s^n=p_1t_1s^n=p_2s_2s^n=\cdots=p_kt_ks^n= js^n.$

(2)$\Rightarrow$(1) Let for every $s\in S$, any $a,a^{\prime}\in A(I)$, $a\otimes s^n=a^{\prime}\otimes s^n$ in $A(I)\otimes S$. Since $(x,1)S\cong S\cong (y,1)S$(a free hence principally weakly $n$-flat $S$-act), without loss of generality we may restrict ourselves to the case in which $a=(x,r_1), a^{\prime}=(y,r_2), r_1,r_2\in S-I$. Since $(x,r_1)\otimes s^n=(y,r_2)\otimes s^n$, then $r_1s^n=r_2s^n\in I.$ By (2) there exists $j\in I$ such that $r_1s^n=js^n=r_2s^n$. Hence

$(x,r_1)\otimes s^n=(x,1)\otimes r_1s^n=(x,1)\otimes js^n=(y,1)\otimes js^n=(y,r_2)\otimes s^n$

in $A(I)\otimes Ss^n.$

Corollary 2.3  [3] Let $S$ be a monoid and $I$ be a proper right ideal of $S$. Then the following conditions are equivalent:

(1) $A(I)$ is principally weakly flat.

(2) For every $i\in I$, there exists $j\in I$ such that $i=ji$.

Proposition 2.4  Let $S$ be a monoid, $I$ a proper right ideal of $S$ and $n$ a positive integer. Then the following conditions are equivalent:

(1) $S/I$ is principally weakly $n$-flat.

(2) For every $s\in S$, if there exists $r\in S-I$ such that $rs^n\in I$, then there exist $j\in I$ such that $rs^n=js^n$.

Proof (1)$\Rightarrow$(2) Since $S/I$ is principally weakly $n$-flat, for every $s\in S$, if there exists $r\in S-I$ such that $rs^n\in I$, then for every $j^{\prime}\in I$, we have $[r]\otimes s^n=[j^{\prime}]\otimes s^n$ in $S/I\otimes S$. By Lemma 1.4 there exist $m\in N$, $u_1,\cdots,u_m\in S$, and $s_1,t_1,\cdots,s_m,t_m\in S$ such that

$\begin{alignat*}{2} [r]&=[u_1]s_1,\ \\ [u_1]t_1&=[u_2]s_2, &\hspace{45pt} s_1s^n&=t_1s^n,\\ &\ \ \vdots & &\ \ \vdots\tag{$*$}\\ [u_{m-1}]t_{m-1}&=[u_m]s_m, & s_{m-1}s^n&=t_{m-1}s^n,\\ [u_m]t_m&=[j^{\prime}], &s_ms^n&=t_ms^n. \end{alignat*}$

Since $j^{\prime}\in I$, we have $u_mt_m\in I$. Let $k$ be the least number such that $k\in \{1,2,\cdots,m\}$ and $u_kt_k\in I$. If $j=u_kt_k$, then $u_{k-1}t_{k-1}\in S-I$. Since $[u_{k-1}]t_{k-1}=[u_k]s_k$, we have $u_{k-1}t_{k-1}=u_ks_k$ and so

$rs^n=u_1s_1s^n=u_1t_1s^n=u_2s_2s^n=u_2t_2s^n=\cdots=\\ u_{k-1}t_{k-1}s^n=u_ks_ks^n=u_kt_ks^n= js^n.$

(2)$\Rightarrow$(1) For every $s\in S$, any $u,u^{\prime}\in S$, if $[u]\otimes s^n=[u^{\prime}]\otimes s^n$ in $S/I\otimes S$, we have the following four cases to consider:

Case 1 $u,u^{\prime}\in I$. Then it is clear that $[u]\otimes s^n=[u^{\prime}]\otimes s^n$ in $S/I\otimes Ss^n$.

Case 2 $u\in I$. $u^{\prime}\in S-I$. By assumption there exists $j\in I$ such that $u^{\prime}s^n=js^n$. Then

$[u]\otimes s^n=[j]\otimes s^n=[1]\otimes js^n=[1]\otimes u^{\prime}s^n=[u^{\prime}]\otimes s^n$

in $S/I\otimes Ss^n$.

Case 3 $u\in S-I$. $u^{\prime}\in I$. It is similar to Case 2.

Case 4 $u,u^{\prime}\in S-I$. By $[u]\otimes s^n=[u^{\prime}]\otimes s^n$ in $S/I\otimes S$, we have $us^n=u^{\prime}s^n$ or $us^n,u^{\prime}s^n\in I$. If $us^n=u^{\prime}s^n$, the result follows. Otherwise by assumption there exists $j_1,j_2\in I$ such that $us^n=j_1s^n$ and $u^{\prime}s^n=j_2s^n$. So

$[u]\otimes s^n=[1]\otimes us^n=[1]\otimes j_1s^n=[j_1]\otimes s^n=[j_2]\otimes s^n=[1]\otimes j_2s^n=[1]\otimes u^{\prime}s^n=[u^{\prime}]\otimes s^n$

in $S/I\otimes Ss^n$.

Corollary 2.5 [4] Let $S$ be a monoid and $I$ be a proper right ideal of $S$. Then the following conditions are equivalent:

(1) $S/I$ is principally weakly flat.

(2) For every $i\in I$, there exists $j\in I$ such that $i=ji$.

Theorem 2.6 Let $n$ be a positive integer. The following conditions on a monoid $S$ are equivalent:

(1) All right $S$-acts are principally weakly $n$-flat.

(2) All finitely generated right $S$-acts are principally weakly $n$-flat.

(3) $S$ is a $n$-regular monoid.

Proof (1)$\Rightarrow$(2) is clear.

(2)$\Rightarrow$(3) Let $s\in S$. If $s^nS=S$, it is clear that there exists $x\in S$ such that $s^n=s^nxs^n$. Otherwise $s^nS$ is a proper right ideal of $S$. Denote $I=s^nS$, then $A(I)$ is a finitely generated $S$-act, by assumption $A(I)$ is principally weakly $n$-flat. Since $s^n\in I$ and by Lemma 2.2 there exists $j\in I$ such that $s^n=js^n$. Hence there exists $x\in S$ such that $j=s^nx$, that is $s^n=s^nxs^n$.

(3)$\Rightarrow$(1) Suppose $A$ is a right $S$-act. Since $S$ is $n$-regular, for every $s\in S$, there exists $x\in S$ such that $s^n=s^nxs^n$. For any $a,a^{\prime}\in A$, if $a\otimes s^n=a^{\prime}\otimes s^n$ in $A\otimes S$. Then

$a\otimes s^n=a\otimes s^nxs^n=as^n\otimes xs^n=a^{\prime}s^n\otimes xs^n=a^{\prime}\otimes s^nxs^n=a^{\prime}\otimes s^n$

in $A\otimes Ss^n.$

Corollary 2.7 [5] The following conditions on a monoid $S$ are equivalent:

(1) All right $S$-acts are principally weakly flat.

(2) All finitely generated right $S$-acts are principally weakly flat.

(3) $S$ is a regular monoid.

Theorem 2.8  Let $n$ be a positive integer. The following conditions on a monoid $S$ are equivalent:

(1) All cyclic right $S$-acts are principally weakly $n$-flat.

(2) All Rees factor right $S$-acts are principally weakly $n$-flat.

(3) $S$ is a $n$-regular monoid.

Proof (1)$\Rightarrow$(2) is clear.

(2)$\Rightarrow$(3) By Proposition 2.4, the proof is similar to Theorem 2.6.

(3)$\Rightarrow$(1) By Theorem 2.6, it is clear.

References
[1] Bulman-Fleming S. Flat and strongly flat S-systems[J]. Comm. Algebra, 1992, 20: 2553–2567. DOI:10.1080/00927879208824478
[2] Howie M. Fundamentals of semigroup theory[M]. Oxford: Oxford Science Publications, 1995.
[3] Kilp M, Knauer U, Mikhalev A. Characterization of monoids by properties of their left Rees factors(in Russian)[J]. Tartu Ul Toimetised, 1983, 640: 29–37.
[4] Kilp M, Knauer U, Mikhalev A. Monoids, acts and categories[M]. Berlin: Walter de Gruyter, 2000.
[5] Laan V. Pullbacks and flatness properties of acts. Part I[J]. Comm. Algebra, 2001, 29: 829–850. DOI:10.1081/AGB-100001547