一般共生拓扑结构的概念首先是由Császár在他的专著[1]中提出的.它综合了拓扑空间、一致结构和临近空间, 在拓扑学研究中占有重要地位. Katsaras在文[2]中把它推广到了模糊空间中, 并做了大量重要的工作[2-5].
格模糊拓扑空间以及光滑拓扑空间中的诱导理论都有相应的讨论[6, 9-10].本文研究模糊拓扑生成序与其诱导的$I$-fuzzy拓扑生成序的关系.文中首先通过三种Lowen映射得到三种拓扑生成序.其次, 给出弱诱导共生拓扑序空间和满层共生序空间的概念, 并建立诱导共生拓扑序空间的基本理论.最后, 文中讨论诱导$I$-fuzzy拓扑与诱导的I-fuzzy拓扑生成序的从属关系.
称$X$上的二元映射$\tau:X\times X\rightarrow I$为一个fuzzy拓扑生成序, 若$\tau$满足以下条件:
(FTO 1) $\tau(\emptyset, \emptyset)=\tau(X, X)=1$.
(FTO 2) 若$\tau(U, V)>0$, 则$U\subset V$.
(FTO 3) 若$U\subset U_1$, $V_1\subset V$, 则$\tau(U_1, V_1)\leq\tau(U, V)$.
(FTO 4) $\tau(U\cup U_1, V)\geq\tau(U, V)\wedge\tau(U_1, V)$.
(FTO 5) $\tau(U, V\cap V_1)\geq\tau(U, V)\wedge\tau(U, V_1)$.
称Fuzzy拓扑生成序$\tau$为双完全的, 若$\tau$还满足:
(FTO 6) $\tau(\cup_{j\in J}U_j, V)\geq\wedge_{j\in J}\tau(U_j, V)$, $\forall\{U_j, V\subset X: j\in J\}$.
(FTO 7) $\tau(U, \cap_{j\in J}V_j)\geq\wedge_{j\in J}\tau(U, V_j)$, $\forall\{U, V_j\subset X: j\in J\}$.
若$\tau$是fuzzy(双完全)拓扑生成序, 那么称$(X, \tau)$为fuzzy(双完全)拓扑生成序空间.若$\tau_1, \tau_2$都是fuzzy(双完全)拓扑生成序, 那么$\tau_1\vee\tau_2$和$\tau_1\wedge\tau_2$也是.
设$(X, \tau_1), (Y, \tau_2)$是fuzzy拓扑生成序空间, $U, V\subset Y$.称$f:(X, \tau_1)\rightarrow(Y, \tau_2)$为
(1) 连续, 若$\tau_1(f^{-1}(U), f^{-1}(V))\geq\tau_2(U, V)$.
(2) 弱连续, 若$\tau_2(U, V)>0$, 则$\tau_1(f^{-1}(U), f^{-1}(V))>0$.\\称$I^X$上的二元映射$\eta:I^X\times I^X\rightarrow I$为$I$-fuzzy拓扑生成序, 若$\eta$满足:
(I-FTO 1) $\eta(0_X, 0_X)=\eta(1_X, 1_X)=1$.
(I-FTO 2) $\eta(A, B)>0$, 则$A\leq B$.
(I-FTO 3) 若$A\leq A_1$, $B_1\leq B$, 则$\eta(A_1, B_1)\leq\eta(A, B)$.
(I-FTO 4) $\eta(A\vee A_1, B)\geq\eta(A, B)\wedge\eta(A_1, B)$.
(I-FTO 5) $\eta(A, B\wedge B_1)\geq\eta(A, B_1)\wedge\eta(A, B_1)$.
称$I$-fuzzy拓扑生成序$\eta$是双完全的, 若$\eta$还满足:
(I-FTO 6) $\eta(\vee_{j\in J}A_j, B)\geq\wedge_{j\in J}\eta(A_j, B)$, $\forall\{A_j, B\in I^X: j\in J\}$.
(I-FTO 7) $\eta(A, \wedge_{j\in J}B_j)\geq\wedge_{j\in J}\eta(A, B_j)$, $\forall\{A, B_j\in I^X: j\in J\}$.
若$\eta$是fuzzy(双完全)拓扑生成序, 那么称$(I^X, \eta)$为$I$-fuzzy(双完全)拓扑生成序空间.若$\eta_1, \eta_2$都是fuzzy(双完全)拓扑生成序, 那么$\eta_1\vee\eta_2$和$\eta_1\wedge\eta_2$也是[4].
称映射$f^{\rightarrow}:I^X\rightarrow Y$为模糊映射, 若存在$f:X\rightarrow Y$, 使$\forall A\in I^X, y\in Y$,
若$f^{\rightarrow}$是双射.记其逆映射$f^{\leftarrow}:I^Y\rightarrow I^X$为: $\forall B\in I^Y, x\in X$, $f^{\leftarrow}(B)(x)=B(f(x))$.若$A\in I^X$, 记$\sigma_r(A)=\{x:A(x)\geq r\}$, 则以下结论显然成立:
(1) $U\subset X$, $V\subset Y$, $f^{\rightarrow}(1_U)=1_{f(U)}$, $f^{\leftarrow}(1_V)=1_{f^{-1}(V)}$.
(2) $\sigma_r(f^{\rightarrow}(A))=f(\sigma_r(A))$, $\sigma_r(f^{\leftarrow}(B))=f^{-1}(\sigma_r(B))$.
(3) $\sigma_r(\vee_{j\in J}A_j)=\cup_{j\in J}\sigma_r(A_j)$, $\sigma_r(\wedge_{j\in J}A_j)=\cap_{j\in J}\sigma_r(A_j)$.
(4) 若$\underline{\lambda}\in I^X, \underline{\mu}\in I^Y$是常值模糊集, 则$f^{\rightarrow}(\underline{\lambda})\in I^Y$和$f^{\leftarrow}(\underline{\mu})\in I^X$都是常值的.
若$(I^X, \eta_1), (I^Y, \eta_2)$是$I$-fuzzy拓扑生成序空间, $A, B\in I^Y$.称模糊映射$f^{\rightarrow}:I^X\rightarrow I^Y$为
(1) 连续, 若$\eta_1(f^{\leftarrow}(A), f^{\leftarrow}(B))\geq\eta_2(A, B)$.
(2) 弱连续, 若$\eta_2(A, B)>0$, 则$\eta_1(f^{\leftarrow}(A), f^{\leftarrow}(B))>0$.
定理2.1 设$\tau$是$X$上的fuzzy拓扑生成序, $A, B\in I^X$.令
则$\omega(\tau)$是$I^X$上的$I$-fuzzy拓扑成序.称$\omega(\tau)$是由$\tau$生成的$I$-fuzzy拓扑生成序.
证 (I-FTO 1) $\omega(\tau)(0_X, 0_X) =\wedge_{r\in I}\tau(\sigma_r(0_X), \sigma_r(0_X))= \wedge_{r\in I}\tau(\emptyset, \emptyset)=1$,
(I-FTO 2) 若$\omega(\tau)(A, B)>0$, 则$\forall r\in I$, $\tau(\sigma_r(A), \sigma_r(B))>0$, 进而$\sigma_r(A)\subset\sigma_r(B)$.因此
(I-FTO 3) 若$A\leq A_1$, $B_1\leq B$.则$\forall r\in I$, $\tau(\sigma_r(A_1), \sigma_r(B_1))\leq \tau(\sigma_r(A), \sigma_r(B))$.从而
(I-FTO 4)
(I-FTO 5) 类似(I-FTO 4) 可证.因此$\omega(\tau)$是$I$-fuzzy拓扑生成序.若$\tau$是双完全的, 则
(I-FTO 6) 若$\{U_j\subset X:j\in J\}$, 有
(I-FTO 7) 类似(I-FTO 6) 可证.
说明1 称$I$-fuzzy拓扑生成序$\eta$是可生成的, 若存在$X$上的fuzzy拓扑生成序$\tau$使$\eta=\omega(\tau)$.
定理2.2(1) 若$\tau_1\leq\tau_2$, 则$\omega(\tau_1)\leq\omega(\tau_2)$.
(2) $\forall U, V\subset X$, $\omega(\tau)(1_U, 1_V)=\tau(U, V)$.
(3) 任意$\lambda$$\in I^X$, 有$\omega(\tau)($$\lambda$, $\lambda$$)=1$.
定理2.3 $f^{\rightarrow}:(I^X, \omega(\tau_1)) \rightarrow(I^Y, \omega(\tau_2))$ (弱)连续当且仅当$f:(X, \tau_1) \rightarrow(Y, \tau_2)$(弱)连续.
定理2.4 设$(I^X, \eta)$是$I$-fuzzy(双完全)拓扑生成序, $\forall U,V \subset X$, 记$[\eta](U, V)=\eta(1_U, 1_V)$, 则$[\eta]$是$X$上的fuzzy(双完全)拓扑生成序.
证 (FTO 1) $[\eta](\emptyset, \emptyset)=\eta(0_X, 0_X)=1$. $[\eta](X, X)=\eta(1_X, 1_X)=1$.
(FTO 2) $\forall U, V\subset X$, 若$[\eta](U, V)>0$, 则$\eta(1_U, 1_V)>0$.则$1_U\leq1_V$.于是$U\subset V$.
(FTO 3) 若$U\subset U_1$, $V_1\subset V$, 有$[\eta](U_1, V_1)=\eta(1_{U_1}, 1_{V_1})\leq\eta(1_U, 1_V)=[\eta](U, V)$.
(FTO 4) $[\eta](U\cup U_1, V)=\eta(1_U\vee1_{U_1}, 1_V) \geq\eta(1_U, 1_V)\wedge\eta(1_{U_1}, 1_V) =[\eta](U, V)\wedge[\eta](U_1, V)$.
(FTO 5) $[\eta](U, V\cap V_1)=\eta(1_U, 1_V\wedge1_{V_1}) \geq\eta(1_U, 1_V)\wedge\eta(1_U, 1_{V_1}) =[\eta](U, V)\wedge[\eta](U, V_1)$.
(FTO 6) $[\eta](\cup_{j\in J}U_j, V)=\eta(1_{\cup_{j\in J}U_j}, 1_V) =\eta(\vee_{j\in J}1_{U_j}, 1_V)\geq \wedge_{j\in J}[\eta](U_j, V)$.
(FTO 7) $[\eta](U, \cap_{j\in J}V_j)=\eta(1_U, 1_{\cap_{j\in J}V_j}) =\eta(1_U, \wedge_{j\in J}1_{V_j})\geq \wedge_{j\in J}[\eta](U, V_j)$.
定理2.5 若$f^{\rightarrow}:(I^X, \eta_1)\rightarrow(I^Y, \eta_2)$(弱)连续, 则$f:(X, [\eta_1])\rightarrow(Y, [\eta_2])$也(弱)连续.
定理2.6 设$(I^X, \eta)$是$I$-fuzzy(双完全)拓扑生成序, $\forall U, V\subset X, r\in I$, 记
则$\iota_r(\eta)$是fuzzy(双完全)拓扑生成序.
证 (FTO 1) $\iota_r(\eta)(\emptyset, \emptyset)\geq\eta(0_X, 0_X)=1$, $\iota_r(\eta)(X, X)\geq\eta(1_X, 1_X)=1$.
(FTO 2) 若$0<\iota_r(\eta)(U, V)=\vee\{\eta(A, B):\sigma_r(A, B)=(U, V)\}$.存在$A, B\in I^X$, 使$\sigma_r(A, B)=(U, V)$, 并且$\eta(A, B)>0$.于是$A\leq B$.从而$U=\sigma_r(A)\subset\sigma_r(B)=V$.
(FTO 3) 若$U\subset U_1$, $V_1\subset V$, 有
(FTO 4) $\forall U, U_1, V\subset X, \varepsilon>0$, 存在$A, A_1, B, D\in I^X$, 使
且$\iota_r(\eta)(U, V)-\varepsilon<\eta(A, B)$, $\iota_r(\eta)(U_1, V)-\varepsilon<\eta(A_1, D)$.因
则
由$\varepsilon$的任意性, 得
从而
(FTO 5) 类似(FTO 4) 可证.另外, 若$\eta$双完全, $\forall U_j\subset X, j\in J$, 有
(FTO 6) $U_j, V\subset X, j\in J, \varepsilon>0$, 存在$A_j, B\in I^X$, 使$\iota_r(\eta)(U_j, V)-\varepsilon\leq\eta(A_j, B)$.于是
由$\varepsilon$的任意性可知$\iota_r(\eta)(\cup_{j\in J}U_j, V)\geq \wedge_{j\in J}\iota_r(\eta)(U_j, V)$.类似可证(FTO 7).
定理2.7 设$(I^X, \eta)$是$I$-fuzzy(双完全)生成序空间.则$\iota(\eta)=\vee_{r\in I}\iota_r(\eta)$是fuzzy(双完全)生成序.
定理2.8 设$f^{\rightarrow}:(I^X, \eta_1)\rightarrow(I^Y, \eta_2)$ (弱)连续, 则$f:(X, \iota(\eta_1))\rightarrow(Y, \iota(\eta_2))$也(弱)连续.
定理2.9 设$\tau$是$X$上的fuzzy拓扑生成序, $\eta$是$I^X$上的$I$-fuzzy扑生成序.则以下结论成立:
(1) $[\omega(\tau)]=\tau$, $[\eta]\leq\iota(\eta)$.
(2) $\omega([\eta])(1_U, 1_V)=\eta(1_U, 1_V)$.
(3) $\wedge_{r\in I}\eta(1_{\sigma_r(A)}, 1_{\sigma_r(B)}) =\omega([\eta])(A, B)$.
(4) $\omega(\iota(\eta))\geq\eta$, $\iota(\omega(\tau))=\tau$.
(5) $\omega([\eta_1\wedge\eta_2])=\omega([\eta_1])\wedge\omega([\eta_2])$, $\omega([\eta_1\vee\eta_2])=\omega([\eta_1])\vee\omega([\eta_2])$.
(6) $\omega(\iota(\eta_1\wedge\eta_2))=\omega(\iota(\eta_1))\wedge\omega(\iota(\eta_2))$, $\omega(\iota(\eta_1\vee\eta_2))=\omega(\iota(\eta_1))\vee\omega(\iota(\eta_2))$.
(7) $\omega([\omega([\eta])])=\omega([\eta])$, $\omega(\iota(\omega(\iota(\eta))))=\omega(\iota(\eta))$.
(8) $\omega([\omega(\iota(\eta))])=\omega(\iota(\eta))$, $\omega(\iota(\omega([\eta])))=\omega([\eta])$.
说明2 由定理2.9(7) 和(8) 知, 对给定的$\eta$实施$\omega, \iota$和$[ ]$运算, 至多可得四个拓扑生成序, 分别是$[\eta], \iota(\eta), \omega([\eta])$和$\omega(\iota(\eta))$.
定理2.10 设$f:X\rightarrow Y$为满射, $(X, \tau)$是fuzzy (双完全)拓扑生成序空间, 则$\tau/f=\tau\circ f^{-1}$是$Y$上的fuzzy(双完全)拓扑生成序, 并且$\omega(\tau/f)=\omega(\tau)/f^{\rightarrow}$, 这里$\omega(\tau)/f^{\rightarrow}=\omega(\tau)\circ f^{\leftarrow}$.
证 由定义易证$\tau/f=\tau\circ f^{-1}$是$Y$上的fuzzy(双完全)拓扑生成序.另外, $\forall A\in I^Y$, 有
定理2.11 设$f:X\rightarrow Y$是双射, $(Y, \tau)$ fuzzy(双完全)拓扑生成序空间, 则$f^{-1}(\tau)=\tau\circ f$是$X$上的fuzzy(双完全)拓扑生成序, 且$f^{\leftarrow}(\omega(\tau))=\omega(f^{-1}(\tau))$, 这里$f^{\leftarrow}(\omega(\tau))=\omega(\tau)\circ f^{\rightarrow}$.
证 $\forall A, B\in I^X$,
定理2.12 设$f^{\rightarrow}:I^X\rightarrow I^Y$满射, $(I^X, \eta)$是$I$-fuzzy(双完全)拓扑生成序空间.则$\eta/f^{\rightarrow}=\eta\circ f^{\leftarrow}$是$I^Y$上$I$-fuzzy(双完全)拓扑生成序空间.
推论2.1 设$f^{\rightarrow}:I^X\rightarrow I^Y$为满射, $(I^X, \eta)$是$I$-fuzzy拓扑生成序.则
(1) $[\eta/f^{\rightarrow}]=[\eta]/f$.
(2) $\iota(\eta/f^{\rightarrow})=\iota(\eta)/f$.
(3) $\omega([\eta/f^{\rightarrow}])=\omega([\eta])/f^{\rightarrow}$.
(4) $\omega(\iota(\eta/f))=\omega(\iota(\eta))/f^{\rightarrow}$.
定理2.13 设$f^{\rightarrow}:I^X\rightarrow I^Y$为双射, $(I^Y, \eta)$为$I$-fuzzy(双完全)拓扑生成序空间.则$f^{\leftarrow}(\eta)=\eta\circ f^{\rightarrow}$是$I^X$上的$I$-fuzzy(双完全)拓扑生成序.
推论2.2 设$f^{\rightarrow}:I^X\rightarrow I^Y$为双射, $(I^Y, \eta)$为$I$-fuzzy拓扑生成序空间.则
(1) $f^{-1}([\eta])=[f^{\leftarrow}(\eta)]$.
(2) $f^{-1}(\iota(\eta))=\iota(f^{\leftarrow}(\eta))$.
(3) $\omega([f^{\leftarrow}(\eta)])=f^{\leftarrow}(\omega([\eta]))$.
(4) $\omega(\iota(f^{\leftarrow}(\eta)))=f^{\leftarrow}(\omega(\iota(\eta)))$.
定义3.1 称$I$-fuzzy拓扑生成序空间$(I^X, \eta)$是诱导的, 若$A, B\in I^X$,
称$(I^X, \eta)$为弱诱导的, 若$\wedge_{r\in I}\eta(1_{\sigma_r(A)}, 1_{\sigma_r(B)})\geq\eta(A, B)$.
定理3.1 $I$-fuzzy拓扑生成序空间$(I^X, \eta)$是诱导的当且仅当它是可生成的.
证 必要性 设$\tau=[\eta]$.对于任意$A, B\in I^X$,
充分性 设$\eta=\omega(\tau)$. $\forall A, B\in I^X$, 则
故$\eta$是诱导的.
定理3.2 $I$-fuzzy拓扑生成序空间$(I^X, \eta)$是弱诱导的当且仅当$\omega([\eta])\geq\eta$.
定理3.3 $I$-fuzzy拓扑生成序$(I^X, \eta)$是弱诱导的当且仅当$[\eta]=\iota(\eta)$.
证 必要性 只要证$[\eta]\geq\iota(\eta)$.事实上, $\forall U, V\subset X$, 有
充分性 $\forall A, B\in I^X$,
定理3.4 设$f^{\rightarrow}:I^X\rightarrow I^Y$是满射, $(I^X, \eta)$为(弱)诱导的, 则$\eta/f^{\rightarrow}$是(弱)诱导的.
定理3.5 设$f^{\rightarrow}:I^X\rightarrow I^Y$是双射, $(I^Y, \eta)$为(弱)诱导的, 则$f^{\leftarrow}(\eta)$也是(弱)诱导的.
定理3.6 设$(I^X, \eta)$为$I$-fuzzy拓扑生成序空间.记$\eta_*=\eta\wedge\omega([\eta])$, 则$\eta_*$是满足$\eta_*\leq\eta$最大的弱诱导的$I$-fuzzy拓扑生成序.
推论3.1 设$(I^X, \eta)$是弱诱导的$I$-fuzzy空间.则$\eta_*=\eta$.
定理3.7 设$(I^X, \eta)$为$I$-fuzzy拓扑生成序空间.则$\eta^*=\omega(\iota(\eta))$是满足$\eta^*\geq\eta$最小的诱导的$I$-fuzzy拓扑生成序.
证 由定理2.9知, $\eta^*$是诱导的, 且$\eta\leq\eta^*$.若$\delta$是诱导的$I$-fuzzy拓扑生成序, 且$\eta\leq\delta$.则
推论3.2 $I$-fuzzy拓扑生成序空间$(I^X, \eta)$是诱导的当且仅当$\eta^*=\eta$.
定理3.8 设$\eta_1, \eta_2$和$\eta$都是$I^X$上的$I$-fuzzy拓扑生成序空间.则
(1) $(\eta_1\wedge\eta_2)_*=\eta_{1*}\wedge\eta_{2*}$, $(\eta_1\vee\eta_2)_*\geq\eta_{1*}\vee\eta_{2*}$.
(2) $(\eta_1\wedge\eta_2)^*=\eta_1^*\wedge\eta_2^*$, $(\eta_1\vee\eta_2)^*=\eta_1^*\vee\eta_2^*$.
(3) $\omega([\eta])_*=\omega([\eta_*])=\omega([\eta])^* =\omega(\iota(\eta_*))=\omega([\eta])$.
(4) $\omega(\iota(\eta))_*=\omega(\iota(\eta))^*= \omega(\iota(\eta^*))=\omega([\eta^*])=\omega(\iota(\eta))$.
(5) $\eta^{**}=\eta^*$, $\eta_{**}=\eta_*$.
(6) $(\eta^*)_*=((\eta^*)_*)^*=(((\eta^*)_*)^*)_*= \cdot\cdot\cdot=\omega(\iota(\eta))$,
说明2 由定理3.8 (5) 和(6) 知, 给定$I$-fuzzy拓扑生成序$\eta$.如果对$\eta$实施$_*$和$^*$运算, 则至多可以得到四种不同的$I$-fuzzy拓扑生成序, 它们分别是$\eta_*, \eta^*, \omega([\eta])$和$\omega(\iota(\eta))$.
定理3.9 设$f^{\rightarrow}:I^X\rightarrow I^Y$为满射, $(I^X, \eta)$是$I$-fuzzy拓扑生成序空间.则
(1) $(\eta/f^{\rightarrow})_*=\eta_*/f^{\rightarrow}$.
(2) $(\eta/f^{\rightarrow})^*=\eta^*/f^{\rightarrow}$.
定理3.10 设$f^{\rightarrow}:I^X\rightarrow I^Y$为双射, $(I^Y, \eta)$是$I$-fuzzy拓扑生成序空间.则
(1) $f^{\leftarrow}(\eta)_*=f^{\leftarrow}(\eta_*)$.
(2) $f^{\leftarrow}(\eta)^*=f^{\leftarrow}(\eta^*)$.
定理3.11 设$f^{\rightarrow}:(I^X, \eta)\rightarrow(I^Y, \delta)$. $(I^Y, \delta)$是弱诱导的.则$f^{\rightarrow}:(I^X, \eta)\rightarrow(I^Y, \delta)$(弱)连续当且仅当$f^{\rightarrow}:(I^X, \eta_*)\rightarrow(I^Y, \delta_*)$(弱)连续.
定理3.12 若$f^{\rightarrow}:(I^X, \eta)\rightarrow(I^Y, \delta)$ (弱)连续, 则$f^{\rightarrow}:(I^X, \eta^*)\rightarrow(I^Y, \delta^*)$(弱)连续.并且, 若$\delta$是弱诱导的, $\eta$是诱导的, 则逆定理也成立.
证 只证连续的情况. $\forall A, B\in I^Y$, 有
反之, $\delta(A, B)\leq\omega([\delta])(A, B) =\omega(\iota(\delta))(A, B)\leq\omega(\iota(\eta)) (f^{\leftarrow}(A), f^{\leftarrow}(B))= \eta(f^{\leftarrow}(A), f^{\leftarrow}(B))$.
定义3.2 称$I$-fuzzy拓扑生成序空间$(I^X, \eta)$是满层的, 若任意$\underline{\lambda}\in I^X$, $\eta(\underline{\lambda}, \underline{\lambda})=1$.
定理3.13 $I$-fuzzy双完全拓扑生成序空间$(I^X, \eta)$是满层的当且仅当$\omega([\eta])\leq\eta$.
证 必要性 $\forall A, B\in I^X$,
充分性 $\forall\underline{\lambda}\in I^X$, $\omega([\eta])(\underline{\lambda}, \underline{\lambda})= \wedge_{r\leq\lambda}[\eta](X, X)\wedge\wedge_{r>\lambda} [\eta](\emptyset, \emptyset)=1$.因此$\eta(\underline{\lambda}, \underline{\lambda})\geq \omega([\eta])(\underline{\lambda}, \underline{\lambda})=1$.从而$(I^X, \eta)$是满层的.
定理3.14 $I$-fuzzy双完全拓扑生成序空间$(I^X, \eta)$是诱导的当且仅当它满层且是弱诱导的.
推论3.3 $I$-fuzzy双完全拓扑生成序空间$(I^X, \eta)$是可生成的当且仅当$\omega([\eta])=\eta$.
问题 如果$\eta$不是双完全的, 那么定理3.13的必要性任然成立吗?
定理3.15 设$f^{\rightarrow}:I^X\rightarrow I^Y$为双射, $(I^X, \eta)$是$I$-fuzzy拓扑生成序空间.则$(I^X, \eta)$满层当且仅当$(I^Y, \eta/f^{\rightarrow})$满层.
定理3.16 设$f^{\rightarrow}:I^X\rightarrow I^Y$为双射, $(I^Y, \eta)$是$I$-fuzzy拓扑生成序空间.则$(I^Y, \eta)$满层当且仅当$(I^X, f^{\leftarrow}(\eta))$满层.
本节中$I$-fuzzy拓扑生成序都为双完全的.文献[8-9]中定义了fuzzifying和$I$-fuzzy拓扑定义如下:
称映射$\varrho:X\rightarrow I$为$X$上的一个fuzzifying拓扑, 若$\varrho$满足
(FT1) $\varrho(\emptyset)=\varrho(X)=1$.
(FT2) $\forall U, V\subset X$, $\varrho(U\cup V)\geq\varrho(U)\wedge\varrho(V)$.
(FT3) $\forall j\in J, U_j\subset X$, $\varrho(\wedge_{j\in J}U_j)\geq\wedge_{j\in J}\varrho(U_j)$.
这时称$(X, \varrho)$一个fuzzifying拓扑空间[8].
称映射$\zeta:I^X\rightarrow I$为$I^X$上的一个$I$-fuzzy拓扑, 若$\zeta$满足
(IFT1) $\zeta(\underline{0})=\zeta(\underline{1})=1$.
(IFT2) $\forall A, B\in I^X$, $\zeta(A\vee B)\geq\zeta(A)\wedge\zeta(B)$.
(IFT3) $\forall A_j\in I^X, j\in J$, $\zeta(\wedge_{j\in J}A_j)\geq\wedge_{j\in J}\zeta(A_j)$.
这时称$(X, \zeta)$一个$I$-fuzzy拓扑空间.有关诱导的$I$-fuzzy拓扑等相关概念参见文献[9].
定理4.1 设$\tau$是$X$上的fuzzy双完全拓扑生成序.定义$T(\tau):X\rightarrow I$为:任意$U\subset X$, $T(\tau)(U)=\tau(U, U)$.则$T(\tau)$为$X$上的fuzzifying拓扑.并且$\omega(T(\tau))=T(\omega(\tau))$.另外, 若$\tau_1\leq\tau_2$都是$X$上的fuzzy双完全拓扑生成序, 则$T(\tau_1)\leq T(\tau_2)$.
证 (FT1) $T(\tau)(\emptyset)=\tau(\emptyset, \emptyset)=1$, $T(\tau)(X)=\tau(X, X)=1$.
(FT2) $\forall U, V\subset X$,
(FT3) $\forall U_j\subset X, j\in J$,
因此$T(\tau)$是fuzzifying拓扑.另外, 任意$A\in I^X$, 有
故$\omega(T(\tau))=T(\omega(\tau))$.其余的证明显然.
定理4.2 设$\eta$是$I^X$上的I-fuzzy双完全拓扑生成序.定义$T(\eta):I^X\rightarrow I$为:任意$A\subset X$, $T(\eta)(A)=\tau(A, A)$.则$T(\eta)$为$I^X$上的$I$-fuzzy拓扑.并且
(1) $T([\eta])=[T(\eta)]$.
(2) $T(\iota(\eta))\geq\iota(T(\eta))$.
若$\eta_1\leq\eta_2$都是$I^X$上的I-fuzzy双完全拓扑生成序, 则$T(\eta_1)\leq T(\eta_2)$.
证 只证(1) 和(2), 其余类似于定理4.1可证.任意$U\subset X$,
(1) $T([\eta])(U)=[\eta](U, U)=\eta(1_U, 1_U)=T(\eta)(1_U)=[T(\eta)](U)$.故$T([\eta])=[T(\eta)]$.
(2)
定理4.3 若$(I^X, \eta)$是弱诱导的, 则$I$-fuzzy拓扑空间$(I^X, T(\eta))$是弱诱导的.
定理4.4 若$(I^X, \eta)$满层, 则$I$-fuzzy拓扑空间$(I^X, T(\eta))$满层.
推论4.1 若$(I^X, \eta)$是诱导的, 则$I$-fuzzy拓扑空间$(I^X, T(\eta))$也是诱导的.
定理4.5 设$f:X\rightarrow Y$为满射, $(X, \tau)$双完全, 则$T(\tau/f)=T(\tau)/f$, 且
证 由定理2.11和定理4.1知, $T(\tau/f)$为$Y$上的fuzzifying拓扑.任意$U\subset Y$,
从而$T(\tau/f)=T(\tau)/f$.
最后, 对于任意$A\in I^Y$,
得证.
定理4.6 设$f:X\rightarrow Y$为双射, $(Y, \tau)$双完全, 则$T(f^{-1}(\tau))=f^{-1}(T(\tau))$, 且$T(f^{\leftarrow}(\omega(\tau)))=\omega(f^{-1}(T(\tau)))$.
证 由定理2.12和定理4.1知, $T(f^{-1}(\tau))$是$X$上的fuzzifying拓扑.另外, 任意$U\subset X$,
最后, 对于任意$A\in I^X$,
定理4.7 设$f^{\rightarrow}:I^X\rightarrow I^Y$满射, $(I^X, \eta)$是$I$-fuzzy双完全拓扑生成序空间.则$T(\eta/f^{\rightarrow})=T(\eta)/f^{\rightarrow}$是$I^Y$上$I$-fuzzy拓扑.
定理4.8 设$f^{\rightarrow}:I^X\rightarrow I^Y$双射, $(I^Y, \eta)$为$I$-fuzzy双完全拓扑生成序空间.则$T(f^{\leftarrow}(\eta))=f^{\leftarrow}(T(\eta))$是$I^X$上的$I$-fuzzy拓扑.
定理4.9 若$f^{\rightarrow}:\hskip-1mm(I^X, \eta_1)\rightarrow(I^Y, \eta_2)$(弱)连续, 则$f^{\rightarrow}:\hskip-1mm(I^X, T(\eta_1))\rightarrow(I^Y, T(\eta_2))$(弱)连续.