数学杂志  2015, Vol. 35 Issue (2): 381-388   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
夏雨荷
胡宏昌
广义混合分数布朗运动
夏雨荷, 胡宏昌    
湖北师范学院数学与统计学院, 湖北 黄石 435002
摘要:本文研究了由多个分数布朗运动组合而成的广义混合分数布朗运动的性质.利用分数布朗运动的基本性质, 获得了广义分数布朗运动的混合自相似性、马氏性、增量间的相关性、Hölder连续性和α-可微性, 推广了关于混合分数布朗运动的相应结论.
关键词广义混合分数布朗运动    Hölder连续    α-可微    
GENERALIZED MIXED FRACTIONAL BROWNIAN MOTION
XIA Yu-he, HU Hong-chang    
School of Mathematics and Statistical, Hubei Normal University, Hubei 435002, China
Abstract: In this paper, we study some properties of generalized mixed fractional Brown motion which is composed of a multiple of fractional Brown motion. Using the basic properties of fractional Brown motion, we obtain the mixed-self-similar, Markov property, correlation between incremental, Hölder continuity and α-differentiability and so on, which generalize the corresponding conclusions about mixed fractional Brownian motion.
Key words: generalized mixed fractional Brownian motion     Hölder continuity     α-differentiability    
1 引言

定义1.1 [1]  设$W^{H}=\{W^{H}_{t}\}$为定义在概率空间($\Omega, F$, P)上的带有分形指数$H$的分数布朗运动(fractional Brownian motion), 且其为连续的高斯过程, 其性质如下:

(1) $W^{H}_{0}=0$ a.s. P;

(2) $EW^{H}_{t}=0, EW^{H}_{t}W^{H}_{s}=\frac{1}{2}(t^{2H}+s^{2H}-|s-t|^{2H}), s, t \geq0$;

(3) $W^{H}$具有平稳增量且为自相似过程, 其轨道为几乎处处连续且不可微的.

定义1.2 定义在概率空间($\Omega, F$, P)上的随机过程$Y^{H}=\{Y^{H}_{t}(a_{1}, a_{2}, \cdots, a_{m});t\geq0\} = \left\{ {Y_t^H ;t \ge 0} \right\}$称为参数为$a_{1}, a_{2}, \cdots, a_{m}$$H=(H_{1}, H_{2}, \cdots, H_{m})$的广义混合分数布朗运动(以下简称GMFBM), 若$\forall t\in\mathbb{R}_{+}$, 定义

$\begin{eqnarray} Y^{H}_{t}=a_{1}W^{H_{1}}_{t}+a_{2}W^{H_{2}}_{t}+\cdots+a_{m}W^{H_{m}}_{t}, \end{eqnarray}$ (1.1)

其中$(W^{H_{i}}_{t})_{t\in\mathbb{R}_{+}}$是带有分形指数$H_{i}, i=1, 2, \cdots, m$的相互独立的标准分数布朗运动.

注1.3  当$m=2$时, 定义1.2中的GMFBM就为混合分数布朗运动(见文献[4]).

文献[2, 3]研究了布朗运动与分数布朗运动组合的模型的一系列性质, 文献[4]研究了两个分数布朗运动组合时的各种性质.刘韶跃、Elliot等在文献[7, 8]中分别给出了分数布朗运动环境下欧式未定权益的定价公式, 并推出了一些相关欧式期权的定价公式.文献[9]在此基础上讨论了资产受多个分数布朗运动影响的两类欧式幂期权定价问题, 其中风险证券价格$S(t)$满足下式:

$\begin{eqnarray} dS(t) = S(t)[{( {\mu (t)-\delta (t)} )dt + d\sum\limits_{i = 1}^m {a_i W_t^{H_i } } }], \end{eqnarray}$ (1.2)

其中$W_t^{H_i }$为定义在概率空间($\Omega, F$, P)上的参数为$H_{i}$的分数布朗运动, $\mu (t), \delta (t), a_i$分别为标的资产的瞬时收益率、红利率、波动率.但该文没有研究GMFBM (1.1) 的性质(其他文章也没有研究它的各种性质), 本文将讨论GMFBM的一些性质, 它们是混合分数布朗运动相应性质的推广.

2 基本性质

本小节将讨论GMFBM的基本性质.

定理2.1  GMFBM $\left( {Y_t^H (a_1, a_2, \cdots, a_m )} \right)_{t \in \mathbb{R}_ + }$满足下列性质:

(1) $Y^H$是中心高斯过程;

(2) 对任意$t \in \mathbb{R} +, E((Y_t^H )^2 ) = \sum\limits_{i = 1}^m {a_i^2 t^{2H_i } }$;

(3) 对任意$t \in \mathbb{R} +, {\hbox{Cov}}(Y_t^H, Y_s^H ) = \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 (\left| t \right|^{2H_i } + \left| s \right|^{2H_i } - \left| {t - s} \right|^{2H_i } );}$

(4) $Y_t^H$的增量是平稳的.

该结论的证明类似于文献[4]中引理2.1的证明, 在此略去.

定理2.2  GMFBM $\left( {Y_t^H (a_1, a_2, \cdots, a_m )} \right)_{t \in \mathbb{R} + }$满足混合自相似性, 即对任意$h>0 $, 有

$\begin{equation} \left\{ {Y_{th}^H \left( {a_1, a_2, \cdots a_m } \right)} \right\} \buildrel \Delta \over = \left\{ {Y_t^H \left( {a_1 h^{H_1 }, a_2 h^{H_2 }, \cdots a_m h^{H_m } } \right)} \right\}. \end{equation}$ (2.1)

 因为$Y^H$是中心高斯过程, 故只需证$\left\{ {Y_{th}^H \left( {a_1, a_2, \cdots a_m } \right)} \right\}$

$\left\{ {Y_t^H \left( {a_1 h^{H_1 }, a_2 h^{H_2 }, \cdots a_m h^{H_m } } \right)} \right\}$

有相同的协方差函数.由定理2.1得

$\begin{eqnarray} {\hbox{Cov}}\left( {Y_{th}^H \left( {a_1 \cdots a_m } \right), Y_{sh}^H \left( {a_1 \cdots a_m } \right)} \right) = E\left( {Y_{th}^H \left( {a_1 \cdots a_m } \right)Y_{sh}^H \left( {a_1 \cdots a_m } \right)} \right) \nonumber\\ = \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left( {\left| {th} \right|^{2H_i } + \left| {sh} \right|^{2H_i } -\left| {th - sh} \right|^{2H_i } } \right)} \nonumber\\ =\frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 h^{2H_i } \left( {\left| t \right|^{2H_i } + \left| s \right|^{2H_i }- \left| {t - s} \right|^{2H_i } } \right)} \nonumber\\ = E\left( {Y_t^H \left( {a_1 h^{2H_1 }, \cdots a_m h^{2H_m } } \right)Y_s^H \left( {a_1 h^{2H_1 }, \cdots a_m h^{2H_m } } \right)} \right) \nonumber\\ ={\hbox{ Cov}}\left( {Y_t^H \left( {a_1 h^{2H_1 }, \cdots a_m h^{2H_m } } \right), Y_s^H \left( {a_1 h^{2H_1 }, \cdots a_m h^{2H_m } } \right)} \right). \end{eqnarray}$ (2.2)

即得证.

定理2.3$\forall (a_1, a_2 \cdots a_m ) \in \mathbb{R}^m, (a_1, a_2 \cdots a_m ) \ne (0, 0, \cdots 0)$$H = \left( {H_1, H_2 \cdots H_m } \right) \in (0, 1)^m$, $\left( {Y_t^H (a_1, a_2, \cdots, a_m )} \right)_{t \in \mathbb{R}_ + }$不是马氏过程除非$\left( {H_1, H_2, \cdots H_m } \right) = \left( {\frac{1}{2}, \frac{1}{2}, \cdots \frac{1}{2}} \right).$

 如果$Y^H$是马氏过程, 则对任意的$s < t < u$, 我们有

$\begin{equation} {\hbox{Cov}}\left( {Y_s^H, Y_u^H } \right){\hbox{Cov}}\left( {Y_t^H, Y_t^H } \right) ={\hbox{Cov}}\left( {Y_s^H, Y_t^H } \right){\hbox{Cov}}\left( {Y_t^H, Y_u^H } \right). \end{equation}$ (2.3)

又因为

$\begin{eqnarray} {\hbox{ Cov}}\left( {Y_s^H, Y_u^H } \right)Cov\left( {Y_t^H, Y_t^H } \right) = \frac{1}{2} \sum\limits_{i = 1}^m {a_i^2 \left( {s^{2H_i } + u^{2H_i } - \left| {s - u} \right|^{2H_i } } \right)} \cdot \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left( {2t^{2H_i } } \right)} \nonumber\\ = \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left( {s^{2H_i } + u^{2H_i } - \left| {s - u} \right|^{2H_i } } \right)} \cdot \sum\limits_{i = 1}^m {a_i^2 t^{2H_i } }, \end{eqnarray}$ (2.4)

$\begin{eqnarray} {\hbox{Cov}}\left( {Y_s^H, Y_t^H } \right){\hbox{Cov}}\left( {Y_t^H, Y_u^H } \right) = \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left( {s^{2H_i } + t^{2H_i } - \left| {s - t} \right|^{2H_i } } \right)} \nonumber \\ \cdot \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left( {u^{2H_i } + t^{2H_i } - \left| {u - t} \right|^{2H_i } } \right)}. \end{eqnarray}$ (2.5)

$s = 1/2, t = 1, u = 3/2$, 代入既得

${\hbox{Cov}}\left( {Y_{1/2}^H, Y_{3/2}^H } \right){\hbox{Cov}}\left( {Y_1^H, Y_1^H } \right) ={\hbox{Cov}}\left( {Y_{1/2}^H, Y_1^H } \right){\hbox{Cov}}\left( {Y_1^H, Y_{3/2}^H } \right), $

等价于

$ \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left[{\left( {\frac{1}{2}} \right)^{2H_i } + \left( {\frac{3}{2}} \right)^{2H_i }-1} \right]} \sum\limits_{i = 1}^m {a_i^2 = } \frac{1}{4}\sum\limits_{i = 1}^m {a_i^2 } \left[{\left( {\frac{3}{2}} \right)^{2H_i } + 1-\left( {\frac{1}{2}} \right)^{2H_i } } \right]\sum\limits_{i = 1}^m {a_i^2 } \\ \Leftrightarrow 2\left[{\left( {\frac{1}{2}} \right)^{2H_i } + \left( {\frac{3}{2}} \right)^{2H_i }-1} \right] = \left( {\frac{3}{2}} \right)^{2H_i } + 1 - \left( {\frac{1}{2}} \right)^{2H_i }, {\rm{ }} i = 1, 2 \cdots m \\ \Leftrightarrow {\rm{3 + 3}}^{2H_i } {\rm{ - 3}} \cdot 2^{2H_i } = 0, {\rm{ }} i = 1, 2 \cdots m{\rm{ }}. $

可以看出对所有的$(H_1, H_2, \cdots H_m ) \ne \left( {\frac{1}{2}, \frac{1}{2}, \cdots \frac{1}{2}} \right)$

${\rm{3 + 3}}^{2H_i } {\rm{ - 3}} \cdot 2^{2H_i } \ne 0{\rm{ }} i = 1, 2 \cdots m{\rm{ }}, $

从而证明了$Y^H$不是马氏过程.

3 增量间的相关性

对于GMFBM增量间的的相关性, 有以下结论成立:

定理3.1$\forall {\rm{ }}s, t, h \in\mathbb{R} _ +, 0 < h \le t - s, $

$\begin{equation} \rho \left( {Y_{t + h}^H - Y_t^H, Y_{s + h}^H - Y_s^H } \right) = \frac{{\sum\limits_{i = 1}^m {a_i^2 \left[{(t-s + h)^{2H_i } + (t-s-h)^{2H_i } - 2(t - s)^{2H_i } } \right]} }}{{2\sum\limits_{i = 1}^m {a_i^2 h^{2H_i } } }}. \end{equation}$ (3.1)

 由相关系数的定义可得

$\begin{equation} \rho \left( {Y_{t + h}^H - Y_t^H, Y_{s + h}^H - Y_s^H } \right) = \frac{{{\hbox{Cov}}\left( {Y_{t + h}^H - Y_t^H, Y_{s + h}^H - Y_s^H } \right)}}{{\sqrt {{\hbox{Var}}\left( {Y_{t + h}^H - Y_t^H } \right)} \sqrt {Var\left( {Y_{s + h}^H - Y_s^H } \right)} }}, \end{equation}$ (3.2)

其中

$ {\hbox{Var}}\left( {Y_{t + h}^H - Y_t^H } \right) = E\left( {Y_{t + h}^H - Y_t^H } \right)^2 = E\left( {\left( {Y_{t + h}^H } \right)^2 + \left( {Y_t^H } \right)^2 - 2Y_{t + h}^H Y_t^H } \right) \\ = \sum\limits_{i = 1}^m {a_i^2 \left( {\left( {t + h} \right)^{2H_i } + t^{2H_i } } \right) - } \sum\limits_{i = 1}^m {a_i^2 \left( {\left( {t + h} \right)^{2H_i } + t^{2H_i } - h^{2H_i } } \right)} \\ = \sum\limits_{i = 1}^m {a_i^2 h^{2H_i } }. $

故可得(3.2) 式右边项分母为

$\begin{equation} \sqrt {{\hbox{Var}}\left( {Y_{t + h}^H - Y_t^H } \right)} \sqrt {{\hbox{Var}}\left( {Y_{s + h}^H - Y_s^H } \right)} = \sum\limits_{i = 1}^m {a_i^2 h^{2H_i } }, \end{equation}$ (3.3)

(3.2) 式右边项分子为

$\begin{eqnarray} {\hbox{Cov}}\left( {Y_{t + h}^H - Y_t^H, Y_{s + h}^H - Y_s^H } \right) = E\left( {Y_{t + h}^H - Y_t^H } \right)\left( {Y_{s + h}^H - Y_s^H } \right)\nonumber \\ = E\left( {Y_{t + h}^H Y_{s + h}^H - Y_{t + h}^H Y_s^H - Y_t^H Y_{s + h}^H + Y_t^H Y_s^H } \right)\nonumber \\ = \frac{1}{2}\sum\limits_{i = 1}^m {a_i^2 \left[{(t-s + h)^{2H_i } + (t-s-h)^{2H_i } - 2(t - s)^{2H_i } } \right]}. \end{eqnarray}$ (3.4)

综合(3.3), (3.4) 式可得(3.1) 式.

定理3.2$\forall (a_1, a_2, \cdots, a_m ) \in \mathbb{R}^m, (a_1, a_2, \cdots, a_m ) \ne (0, 0, \cdots, 0)$, 如果$1/2 < H_1, H_2, \cdots, $ $H_m < 1$, 则过程$\left( {Y_t^H (a_1, a_2, \cdots, a_m )} \right)_{t \in \mathbb{R}_ + }$的增量是正相关的; 如果$ 0< H_1, H_2, \cdots, H_m <1/2$, 则是负相关的.

 我们知道, $\forall {\rm{ }}x \in \mathbb{R}_ +, \forall {\rm{ }}h > 0, $$H > 1/2( < 1/2)$时, \begin{equation} (x + h)^{2H} -2x^{2H} + (x -h)^{2H} > 0(< 0). \end{equation}由定理3.1可得, 当${\rm{ }}H_i > 1/2 ({\hbox{resp.}}, = 1/2, < 1/2), i = 1, 2, \cdots, m$时,

$ \rho (Y_{t + h}^H - Y_t^H, Y_{s + h}^H - Y_s^H ) > 0( = 0, < 0).$ (3.5)

注3.3  由上述定理3.1, 定理3.2可得

(1) 当$H_1, H_2, \cdots, H_m > 1/2$ (resp., $H_1, H_2, \cdots, H_m < 1/2$$a_i \ne 0, i = 1, \cdots, r - 1, r + 1, \cdots, m, a_{r_1 }, a_{r_2 }$为常数, $|a_{r_1 } | \le |a_{r_2 } |\left( {|a_{r_1 } | \ge |a_{r_2 } |} \right)$时, $\forall s, t, h \in \mathbb{R}_ +, 0 < h \le t - s$有当$H_1, H_2 \cdots H_m > 1/2$ (resp., $H_1, H_2, \cdots, H_m < 1/2), r = 1, 2, \cdots, m$时, 对于较小的$|a_r |$, 其$Y^H$增量间的相关性较小.

(2) 当$m$$H$中有$k$个等于$1/2 (k = 1, 2, \cdots, m - 1 ), m-k$个小于$1/2$ (大于$1/2$)时, 不失一般性, 不妨假设前$k$个为$1/2$, 后$m-k$个为小于$1/2$ (大于$1/2$), 即$H_1 = \cdots = H_k =1/2, H_{k + 1}, \cdots H_m > 1/2( < 1/2)$则对于较小的(较大的) $|a_r |$, 其$Y^H$增量间的相关性较小.

(3) 其他情况下, 增量间的相关性不显著.

注3.4  在实际的模型中, 我们可以挑选满足上面条件的$H_1, \cdots, H_m, a_1, \cdots, a_m$, 使$\left\{ {Y_t^H \left( {a_1, a_2 \cdots a_m } \right);t \ge 0} \right\}$或为一个“好”模型.

定义3.5 [6]  设$\{ X_t, t \in \mathbb{R}_ + \}$为有平稳轨道的过程, $(r(n))_{n \in\mathbb{N}^ + }$定义为$r(n) = {\rm E}(X_{n + 1} X_n ), $ $\forall {\rm{ }}n \in\mathbb{N} ^ +$, 则过程$X$称为长(程)相依的充分必要条件为$\sum\limits_{n \in \mathbb{N}^ + } {r(n)} = + \infty$.因为$\{ X_t, t \in \mathbb{R}_ + \}$为有平稳轨道的过程, 则

$\begin{equation} r(n) = {\rm E}(X_{n + s} X_s ), \forall {\rm{s}} \in\mathbb{R} _ +, \forall {\rm{ }}n \in \mathbb{N}^ +. \end{equation}$ (3.6)

定理3.6  (1) 对任意的$a_i \in \mathbb{R}\backslash \{ 0\} {\rm{ }}, i = 1, 2, \cdots, m$, 过程$ \left( {Y_t^H (a_1, a_2, \cdots, a_m )} \right)_{t \in \mathbb{R}_ + }$的增量是长相依的充分必要条件为:其中至少有一个$j \in \{ 1, 2, \cdots, m\}$, 使$H_j > 1/2$.

(2) 不失一般性, 假设前$k$$a$为0, 即$a_i = 0, i = 1, \cdots, k; a_{i + 1}, \cdots, a_m \in \mathbb{R}\backslash \{ 0\}$, 则过程$\left( {Y_t^H (a_1, a_2, \cdots, a_m )} \right)_{t \in \mathbb{R}_ + }$的增量是长相依的充分必要条件为:至少有一个$j \in \{ 1, 2, \cdots, m\}$, 使$H_j > 1/2$.

 对任意的$n \in \mathbb{N}^ +$,

$\begin{eqnarray} r(n) = {\rm E}((Y_{n + 1}^H - Y_n^H )Y_1^H ) = {\rm E}(Y_{n + 1}^H Y_1^H - Y_n^H Y_1^H )\nonumber \\ =\sum\limits_{i = 1}^m {a_i^2 [(n + 1)^{2H_i }-2n^{2H_i } + (n-1)^{2H_i }]} \nonumber \\ = \sum\limits_{i = 1}^m {a_i^2 H_i (2H_i - 1)2n^{2H_i - 2} + } n^{2H_i - 2} \gamma _i (n), \end{eqnarray}$ (3.7)

其中$\mathop {\lim }\limits_{n \to \infty } \gamma _i (n) = 0{\rm{ }}, {\rm{ }}i = 1, 2, \cdots, m$.从而可得$\sum\limits_{n \in \mathbb{N}^ + } {r(n)} = + \infty$的充分必要条件为$2H_1 - 2 > - 1$$2H_2 - 2 > - 1$$ \cdots {\rm{ }}2H_m - 2 > - 1$, 即$H_1 > 1/2$$ \cdots H_m > 1/2$.

4 Hölder连续性

定理4.1  对任意的$T > 0$$\gamma < \min \{ H_1, H_2, \cdots, H_m \}$, GMFBM在区间$[0, T]$上有一个样本轨道为H\"{o}lder连续的修正.

 由高斯马尔科夫关于正则性的定理, 即要证$\forall \alpha > 0, \exists C_\alpha, \forall (s, t) \in [0, T]^2, $

$\begin{equation} E\left( {\left| {Y_t^H - Y_s^H } \right|} \right) \le C_\alpha \left| {t - s} \right|^{\alpha h} . \end{equation}$ (4.1)

不失一般性, 令$\alpha > 0, s, t \in [0, T]^2, s < t.$利用过程$Y^H$的平稳性和混合自相似性, 有

$E\left( {\left| {Y_t^H - Y_s^H } \right|^\alpha } \right) = E\left( {\left| {Y_{t - s}^H } \right|^\alpha } \right) = E\left( {\left| {Y_1^H (a_1 (t - s)^{H_1 }, \cdots, a_m (t - s)^{H_m } )} \right|^\alpha } \right) .$

(1) 当$H_1 \le \min \left\{ {H_2, \cdots, H_m } \right\}$时, 设有依赖于$\alpha$$m$个正实数$C_1^1, C_2^1, \cdots, C_m^1$, 有

$ E\left( {\left| {Y_t^H - Y_s^H } \right|^\alpha } \right) = E\left( {\left| {a_1 (t - s)^{H_1 } W_1^{H_1 } + a_2 (t - s)^{H_2 } W_1^{H_2 } + \cdots + a_m (t - s)^{H_m } W_1^{H_m } } \right|^\alpha } \right) \\ \le (t - s{\rm{)}}^{\alpha H_1 } E\left( {\left| {a_1 W_1^{H_1 } + a_2 (t - s)^{H_2 - H_1 } W_1^{H_2 } + \cdots + a_m (t - s)^{H_m - H_1 } W_1^{H_m } } \right|^\alpha } \right) \\ \le (t - s{\rm{)}}^{\alpha H_1 } \left[{C_1^1 \left| {a_1 } \right|^\alpha E\left( {\left| {W_1^{H_1 } } \right|^\alpha } \right) + C_2^1 \left| {a_2 } \right|^\alpha (t-s)^{\alpha (H_2-H_1 )} E\left( {\left| {W_1^{H_2 } } \right|^\alpha } \right) + } \right. \\ \left. { \cdots + C_m^1 \left| {a_m } \right|^\alpha (t-s)^{\alpha (H_m - H_1 )} E\left( {\left| {W_1^{H_m } } \right|^\alpha } \right)} \right] \\ \le C_\alpha (t - s{\rm{)}}^{\alpha H_1 }, $

其中

$ C_\alpha = C_1^1 \left| {a_1 } \right|^\alpha E\left( {\left| {W_1^{H_1 } } \right|^\alpha } \right) + C_2^1 \left| {a_2 } \right|^\alpha T^{\alpha (H_2 - H_1 )} E\left( {\left| {W_1^{H_2 } } \right|^\alpha } \right) + \\ \cdots + C_m^1 \left| {a_m } \right|^\alpha T^{\alpha (H_m - H_1 )} E\left( {\left| {W_1^{H_m } } \right|^\alpha } \right) . $

(2) 当$H_i \le \min \left\{ {H_1, \cdots, H_{i - 1}, H_{i + 1}, \cdots, H_m } \right\}$时, 设有依赖于$\alpha$$m$个正实数$C_1^i, C_2^i, \cdots, C_m^i, i = 2, 3, \cdots, m $, 有

$ E\left( {\left| {Y_t^H - Y_s^H } \right|^\alpha } \right) = E\left( {\left| {a_1 (t - s)^{H_1 } W_1^{H_1 } + \cdots + a_i (t - s)^{H_i } W_1^{H_i } + \cdots + a_m (t - s)^{H_m } W_1^{H_m } } \right|^\alpha } \right) \\ \le (t - s{\rm{)}}^{\alpha H_i } E\left( {\left| {a_1 (t - s)^{H_1 - H_i } W_1^{H_1 } + \cdots a_i W_1^{H_i } + \cdots + a_m (t - s)^{H_m - H_i } W_1^{H_m } } \right|^\alpha } \right) \\ \le (t - s{\rm{)}}^{\alpha H_i } \left[{C_1^i \left| {a_1 } \right|^\alpha (t-s)^{H_1-H_i } E\left( {\left| {W_1^{H_1 } } \right|^\alpha } \right) + \cdots + C_i^i \left| {a_i } \right|^\alpha E\left( {\left| {W_1^{H_i } } \right|^\alpha } \right) + } \right. \\ \left. {{\rm{ }} \cdots + C_m^i \left| {a_m } \right|^\alpha (t-s)^{\alpha (H_m - H_i )} E\left( {\left| {W_1^{H_m } } \right|^\alpha } \right)} \right] \\ \le C_\alpha (t - s{\rm{)}}^{\alpha H_i }, $

其中

$ C_\alpha = C_1^i \left| {a_1 } \right|^\alpha T^{H_1 - H_i } E(\left| {W_1^{H_1 } } \right|^\alpha ) + \cdots + C_i^i \left| {a_i } \right|^\alpha E(\left| {W_1^{H_i } } \right|^\alpha ) + \\ \cdots + C_m^i \left| {a_m } \right|^\alpha T^{\alpha (H_m - H_i )} E(\left| {W_1^{H_m } } \right|^\alpha ). $
5 GMFBM的$\alpha$ -可微性

定义5.1 [5]  令$f$为定义在$[a, b]$上的连续函数.称$f$在点$t_0 \in [a, b]$右(左)分式$\alpha$ -可微(其中$\alpha \in (0, 1)$), 定义为

$\begin{equation} d_\sigma ^\alpha f(t_0 ) = \Gamma (1 + \alpha )\mathop {\lim }\limits_{t \to t_0^\sigma } \frac{{\sigma (f(t) - f(t_0 ))}}{{\left| {t - t_0 } \right|^\alpha }}, \end{equation}$ (5.1)

$\sigma = +$ (resp., $\sigma = - )$, $\Gamma$为欧拉函数.

定义5.2 [5]  令$f$为定义在$[a, b]$上的连续函数, $\alpha \in (0, 1)$.$f$为在$t_0 \in [a, b]$$\alpha$ -可微的函数当且仅当$d_ + ^\alpha f(t_0 )$$d_ - ^\alpha f(t_0 )$存在且相等时, $d ^\alpha f(t_0 )$$f$$t_0$$\alpha $ -可微.

定理5.3  对任意$\alpha \in (0, h), h = \min \left\{ {H_1, H_2, \cdots H_m } \right\}$, GMFBM的样本轨道对所有的$t_0 \ge 0$为几乎处处$\alpha$ -可微, 且

$ \forall {\rm{ }}t_0 \ge 0, {\rm P}(d^\alpha Y_{t_0 }^H = 0) = 1.$

 以下我们只用证明$\sigma = +$的情形,$\sigma = - $的证明同理可得.利用过程$Y^H$的平稳性和混合自相似性, 对所有的$0 \le t_0 < t$, 有

$ \begin{array}{l} \frac{{Y_t^H - Y_{t_0 }^H }}{{\left( {t - t_0 } \right)^\alpha }} \buildrel \Delta \over = \frac{{Y_{t - t_0 }^H }}{{\left( {t - t_0 } \right)^\alpha }} \buildrel \Delta \over = \left( {t - t_0 } \right)^{ - \alpha } Y_1^H (a_1 (t - t_0 )^{H_1 }, \cdots, a_m (t - t_0 )^{H_m } ) \\ \buildrel \Delta \over = \left( {t - t_0 } \right)^{ - \alpha } \left[{a_1 (t-t_0 )^{H_1 } W_1^{H_1 } + \cdots + a_m (t-t_0 )^{H_m } W_1^{H_m } } \right] \\ \buildrel \Delta \over = a_1 (t - t_0 )^{H_1 - \alpha } W_1^{H_1 } + \cdots + a_m (t - t_0 )^{H_m - \alpha } W_1^{H_m } \\ \end{array}$

即得; 如果$\alpha \in (0, h), h = \min \left\{ {H_1, H_2, \cdots H_m } \right\}$

$\begin{equation} \begin{array}{l} {\rm P}(d^\alpha Y_{t_0 }^H = 0) = {\rm P}(\mathop {\lim }\limits_{t \to t_0 } \left( {t - t_0 } \right)^{ - \alpha } \left( {Y_t^H - Y_{t_0 }^H } \right) = 0) \\ = {\rm P}(\mathop {\lim }\limits_{t \to t_0 } a_1 (t - t_0 )^{H_1 - \alpha } W_1^{H_1 } + \cdots + a_m (t - t_0 )^{H_m - \alpha } W_1^{H_m } = 0) = 1. \\ \end{array} \end{equation}$ (5.2)

定理5.4  对任意的$\alpha \in (h, 1), h = \min \left\{ {H_1, H_2, \cdots H_m } \right\}$, GMFBM的样本轨道对所有的$t_0 \ge 0$几乎处处不$\alpha$ -可微.

 对任意$r > 0$, 定义以下事件:

$\begin{equation} A(t) = \left\{ {\mathop {\sup }\limits_{0 \le s \le t} \left| {\frac{{Y_s^H (a_1, \cdots, a_m )}}{{s^\alpha }}} \right| > r} \right\}, \end{equation}$ (5.3)

对任意的递减序列$t_n \to 0$, 我们$A(t_{n + 1} ) \subset A(t_n )$, 即

$ {\rm P}\left( {\mathop {\lim }\limits_{n \to \infty } A(t_n )} \right) = \mathop {\lim }\limits_{n \to \infty } {\rm P}\left( {A(t_n )} \right), $

利用$Y^H$的混合自相似性(2.1), 有

${\rm P}\left( {A\left( {t_n } \right)} \right) \ge {\rm P}\left( {\left| {\frac{{Y_{t_n }^H (a_1, \cdots, a_m )}}{{t_n^\alpha }}} \right| > r} \right) = {\rm P}\left( {\left| {a_1 t^{H_1 - \alpha } W_1^{H_1 } + \cdots + a_m t^{H_m - \alpha } W_1^{H_m } } \right| > r} \right).$

(1) 如果$ H_i < \min \left\{ {H_1, \cdots, H_{i - 1}, H_{i + 1}, \cdots, H_m } \right\}\left( {\alpha > H_i } \right)$, 则

${\rm P}\left( {A(t_n )} \right) \ge {\rm P}\left( {\left( {a_1 t_n ^{H_1 - H_i } W_1^{H_1 } + \cdots a_i W_1^{H_i } + \cdots + a_m t_n ^{H_m - H_i } W_1^{H_m } } \right) > rt_n^{\alpha - H_i } } \right), $

于是有

$ \begin{equation} \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } {\rm P}\left( {\left( {a_1 t_n ^{H_1 - H_i } W_1^{H_1 } + \cdots a_i W_1^{H_i } + \cdots + a_m t_n ^{H_m - H_i } W_1^{H_m } } \right) > rt_n^{\alpha - H_i } } \right) \\ = {\rm P}\left( {\left| {a_i W_1^{H_i } } \right| \ge 0} \right) = 1. \end{array} \end{equation}$ (5.4)

(2) 不失一般性, 假设前$k$$H$为0, 即$H_i = 0, i = 1, \cdots, k;H_{k + 1}, \cdots, H_m \in \mathbb{R}\backslash \{ 0\}$, 则

$ \begin{array}{l} {\rm P}\left( {A(t_n )} \right) \ge {\rm P}\left( {\left( {a_1 W_1^{H_1 } + \cdots + a_k W_1^{H_k } + a_{k + 1} t_n ^{H_{k + 1} - H_1 } W_1^{H_{k + 1} } + \cdots } \right.} \right.\\ \left. {+ a_m t_n ^{H_m - H_1 } W_1^{H_m } } \right)\left. { > rt_n^{\alpha - H_1 } } \right). \end{array} $

$\begin{equation} \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } {\rm P}\left( {\left( {a_1 W_1^{H_1 } + \cdots + a_k W_1^{H_k } + a_{k + 1} t_n ^{H_{k + 1} - H_1 } W_1^{H_{k + 1} } + } \right.} \right. \left. { \cdots + a_m t_n ^{H_m - H_1 } W_1^{H_m } } \right)\\ \left. { > rt_n^{\alpha - H_1 } } \right) \\ {\rm{ }} = {\rm P}\left( {\left| {a_1 W_1^{H_1 } + \cdots + a_k W_1^{H_k } } \right| \ge 0} \right) = 1. \end{array} \end{equation}$ (5.5)

由以上的结论我们得出对任意$\alpha \in (h, 1), t_0 \ge 0$, 有

$\begin{equation} {\rm P}\left( {\mathop {\lim \sup }\limits_{t \to t_o^ + } \left| {\frac{{Y_t^H (a_1, \cdots, a_m ) - Y_{t_0 }^H (a_1, \cdots, a_m )}}{{\left( {t - t_0 } \right)^\alpha }}} \right| = + \infty } \right) = 1. \end{equation}$ (5.6)

即得证.

以上结论中, 令$m=2$, 容易得到混合分数布朗运动的相应结论, 具体讨论参见文献[4].

参考文献
[1] Prakasa Rao B L S. Statistical inference for fractional difiusion processes[M]. New York: Wiley, 2010.
[2] Mounir Zili. On the mixed fractional Brownian motion[J]. Journal of Applied Mathematics andStochastic Analysis, 2006: 32435.
[3] Cheridito P. Mixed fractional Brownian motion[J]. Bernoulli, 2001, 7(6): 913–934. DOI:10.2307/3318626
[4] Yu Miao, Weiyin Ren, Zongxiu Ren. On the fractional mixed fractional Brownian motion[J]. Appl.Mathematical Sciences, 2008, 2(35): 1729–1738.
[5] Ben Adda F, Cresson J. About non-difierentiable functions[J]. Journal of Mathematical Analysisand Applications, 2001, 263(2): 721–737. DOI:10.1006/jmaa.2001.7656
[6] Bernt ; ksendal. Stochastic difierential equations: an introduction with applications (6th ed[M]. .
[7] 刘韶跃, 杨向群. 分数布朗运动环境中欧式未定权益的定价[J]. 应用概率统计, 2004, 20(4): 429–434.
[8] Elliot R J, John Van Der Hoek. A general fractional white noise theory and applications to flnance[J]. Mathematical Finance, 2003, 13(2): 301–330. DOI:10.1111/mafi.2003.13.issue-2
[9] 赵佃立. 分数布朗运动环境下欧式幂期权的定价[J]. 经济数学, 2007, 24(1): 22–26.