数学杂志  2015, Vol. 35 Issue (2): 368-374   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
宋明珠
吴永锋
马氏双链函数的强大数定律及其应用
宋明珠, 吴永锋    
铜陵学院数学与计算机学院, 安徽 铜陵 244000
摘要:本文研究了马氏随机环境中马氏双链函数的强大数定律.利用将双链函数进行分段研究的方法, 获得了马氏环境中马氏双链函数强大数定律成立的一个充分条件.运用该定律, 推导出马氏双链从一个状态到另一个状态转移概率的极限性质, 进而推广了马氏双链的极限性质.
关键词单无限随机环境中的马氏链    马氏双链    强大数定律    极限性质    
A STRONG LAW OF LARGE NUMBERS FOR FUNCTION OF DOUBLE MARKOV CHAINS AND ITS APPLICATION
SONG Ming-zhu, WU Yong-feng    
Dept. of Math. and Computing, Tongling University, Tongling 244000, China
Abstract: In this paper, a strong law of large numbers for function of double Markov chains in Markovian environments is considered. Using the method of piecewise functions, we obtain a sufficient for the strong law of large numbers for function of double Markov chains in Markovian environments. By this theory, we obtain the limit properties of transition probabilities for double Markov chains transformation from a set to another set. Some limit properties and strong limit theorems known about transition probabilities for double Markov chains are generalized.
Key words: Markov chains in single infinite random environments     double Markov chains     a strong law of large numbers     limit properties    
1 引言与引理

20世纪80年代初Cogburn R等人开始研究随机环境中马氏链的一般理论, 取得一系列深刻而丰富的成果[1-3]. Orey [4]在Cogburn等人研究的基础对随机环境中马氏链进行了深入地研究, 并提出一系列的问题, 引起众多概率论学者的广泛关注.强大数定律是随机环境马氏链理论研究的热门课题之一, 已取得深入的结果, 然而马氏环境中马氏双链函数的强大数定律研究却很少.鉴于此, 本文引入了一类马氏双链函数, 主要研究其大数定律.本文利用将双链函数分段研究的方法, 得到了马氏环境中马氏双链函数强大数定律成立的一个充分条件, 并将该定律应用到马氏双链的研究中去, 得出马氏双链从一个状态到另一个状态转移概率的极限性质, 进而推广了马氏双链的极限性质.

本文沿用文[1-4]中的符号和术语, 设N表示整数集, N$_{+}$表示非负整数集, $(\Omega, \mathcal{F}, P)$是一概率空间, $(X, \mathcal{A})$$(\Theta, \mathcal{B})$均为任意的可测空间, $\overrightarrow{\xi_{0}^{\infty}}=\{\xi_{n}:n\in N_{+}\}$$\overrightarrow{X}=\{X_{n}:n\in N_{+}\}$分别是$(\Omega, \mathcal{F}, P)$上取值于$\Theta$和X的随机序列, $\{P(\theta):\theta\in\Theta\}$$(X, \mathcal{A})$上的一族转移函数, 且假定对任意的$A\in\mathcal{A}, P(\cdot;\cdot, A)$关于$\mathcal{B}\times\mathcal{A}$可测的. $\{K_{n}(., .)\}$$(\Theta, \mathcal{B})$上的一步转移概率函数族, 且假定对任意的$B\in\mathcal{B}, K_{n}(., B)$关于$\mathcal{B}$可测的, 对任意序列$\overrightarrow{\eta}=\{\eta_{n }, n\in N_{+}\}$, 记$\overrightarrow{\eta_{k}^{r }}=\{\eta_{n }, 0 \leq k\leq n \leq r \leq\infty\}.$

定义1 [5]  如果对任意的A$\in\mathcal{A}$, $n\in N_{+}$, 有

$ P(X_{0}\in A\mid\overrightarrow{\xi_{0}^{\infty}})=P(X_{0}\in A\mid \xi_{0}), \\ P(X_{n+1}\in A\mid\ \overrightarrow {X_{0}^{n}}, \overrightarrow {\xi_{0}^{\infty}})=P(\xi_{n};X_{n}, A), $

则称$\overrightarrow{X}$是单无限随机环境$\overrightarrow{\xi_{0}^{\infty}}$中的马氏链, $\overrightarrow{\xi_{0}^{\infty}}$为单无限随机环境序列.若$\overrightarrow{\xi_{0}^{\infty}}$是一马氏序列, 则称$\overrightarrow{X}$是单无限马氏环境中的马氏链.

引理1 [5]  设$\overrightarrow{X}$是单无限马氏环境$\overrightarrow{\xi_{0}^{\infty}}$中的马氏链, 则$\{(X_{n}, \xi_{n}), n\geq 0\}$是马氏双链.特别的, 若$\overrightarrow{\xi_{0}^{\infty}}$的一步转移函数为$K_{n}(\theta, B)$, 则$\{(X_{n}, \xi_{n}), n\geq 0\}$一步转移概率为

$Q_{n }(x, \theta;A\times B)=K_{n}(\theta, B)P(\theta;x, A); $

$\overrightarrow{\xi_{0}^{\infty}}$是时齐的, 则$\{(X_{n}, \xi_{n}), n\geq 0\}$也是时齐的.

引理2 [6]   (克罗内克引理)设$\{x_{n}\}$是实数的一个序列, $\{\alpha_{n}, n>0\}$$\lim\limits_{n \rightarrow\infty}\alpha_{n}=\infty $的一个正数列, 若$ \sum\limits_{n=1}^{\infty}\frac{x_{n}}{\alpha_{n}}<\infty, $$\lim\limits_{n \rightarrow\infty} \frac{1}{\alpha_{n}}\sum\limits_{k=1}^{n}x_{k}=0.$

引理3 [6]  对任意的事件$\{E_{n}, n\in N_{+}\}$, 若$ \sum\limits_{n=0}^{\infty}P(E_{n}) <\infty, $$P(E_{n}\;\;{\hbox{i.o.}})=0.$

本文恒设$\overrightarrow{X}$是单无限马氏环境中的马氏链.

2 主要结果及证明

定理1  设$\{(X_{n}, \xi_{n}), n\geq 0\}$$(\Omega, \mathcal{F}, P)$上取值于X$\times \Theta $上的马氏双链, $\{F_{n}(X_{n}, \xi_{n}), n\geq 0\}$$(X\times \Theta, \mathcal{A}\times \mathcal{B}) $上的可测函数列, 且$0<a_{n}\uparrow \infty$, 若

$\mathop \sum \limits_{n = 0}^\infty \textbf{E}\frac{|F_{n}(X_{n}, \xi_{n})|^{\beta}}{a_{n}|F_{n}(X_{n}, \xi_{n})|^{\beta-1}+a_{n}^{\beta}} <\infty (1\leq\beta\leq2), $ (2.1)

则对$\forall k\geq1$

$\mathop \sum \limits_{n = 0}^\infty \frac{F_{n}(X_{n}, \xi_{n})-\textbf{E}(F_{n}(X_{n}, \xi_{n})|X_{n-k}, \xi_{n-k})}{a_{n}} <\infty\;\;\;\;{\hbox{a.s.}}, $

$\lim\limits_{n\rightarrow \infty}\frac{1}{a_{n}}\mathop \sum \limits_{n = 0}^\infty (F_{m}(X_{m}, \xi_{m})-\textbf{E}(F_{m}(X_{m}, \xi_{m})|X_{m-k}, \xi_{m-k})) =0\;\;\;\;{\hbox{a.s.}}, $

这里约定$\forall k\geq1, X_{-k}=0, \xi_{-k}=0$.

 先考虑$ k=1$的情况.因为$1\leq\beta\leq2$, 所以当$|F_{n}(X_{n}, \xi_{n})|> a_{n}> 0$时, 有

$\frac{2|F_{n}(X_{n}, \xi_{n})|^{\beta}}{a_{n}|F_{n}(X_{n}, \xi_{n})|^{\beta-1}+a_{n}^{\beta}}>\frac{2|F_{n}(X_{n}, \xi_{n})|^{\beta}}{2|F_{n}(X_{n}, \xi_{n})|^{\beta}}=1\;\;, $

由(2.1) 式可知

$ \sum \limits_{n = 0}^\infty P(|F_{n}(X_{n}, \xi_{n})|>a_{n}) =\sum \limits_{n = 0}^\infty \textbf{E} I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}\\ \leq\sum \limits_{n = 0}^\infty \textbf{E}\frac{2|F_{n}(X_{n}, \xi_{n})|^{\beta}}{a_{n}|F_{n}(X_{n}, \xi_{n})|^{\beta-1}+a_{n}^{\beta}}I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}\\ \leq\sum \limits_{n = 0}^\infty \textbf{E}\frac{2|F_{n}(X_{n}, \xi_{n})|^{\beta}}{a_{n}|F_{n}(X_{n}, \xi_{n})|^{\beta-1}+a_{n}^{\beta}}<\infty. $

由引理3可知$P(|F_{n}(X_{n}, \xi_{n})|>a_{n} \;\; {\hbox{i.o.}})=0$, 即$P(\frac{|F_{n}(X_{n}, \xi_{n})|}{a_{n}}>1 \;\;{\hbox{i.o.}})=0$, 所以

$\sum \limits_{n = 0}^\infty \frac{F_{n}(X_{n}, \xi_{n})}{a_{n}}I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}<\infty \;\;\;\;{\hbox{a.s.}}, $ (2.2)

由(2.1) 式知

$ \textbf{E}\sum \limits_{n = 0}^\infty |\textbf{E}| \frac{F_{n}(X_{n}, \xi_{n})}{a_{n}}I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}|(X_{n-1}, \xi_{n-1})||\\ \leq \textbf{E}\sum \limits_{n = 0}^\infty |\textbf{E}\frac{|F_{n}(X_{n}, \xi_{n})|}{a_n}I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}|(X_{n-1}, \xi_{n-1})|\\ \leq \sum \limits_{n = 0}^\infty \textbf{E}(\frac{|F_{n}(X_{n}, \xi_{n})|}{a_{n}}\frac{2|F_{n}(X_{n}, \xi_{n})|^{\beta-1}}{a_{n}^{\beta-1}+|F_{n}(X_{n}, \xi_{n})|^{\beta-1}} I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}|(X_{n-1}, \xi_{n-1}))\\ \leq 2\sum \limits_{n = 0}^\infty \textbf{E}\frac{|F_{n}(X_{n}, \xi_{n})|^{\beta}}{a_{n}|F_{n}(X_{n}, \xi_{n})|^{\beta-1}+a_{n}^{\beta}} <\infty, $

所以

$\sum \limits_{n = 0}^\infty \textbf{E}( \frac{F_{n}(X_{n}, \xi_{n})}{a_n}I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}|(X_{n-1}, \xi_{n-1}))<\infty\;\;\;\;{\hbox{a.s.}}.$ (2.3)

$ Y_{n}=\frac{F_{n}(X_{n}, \xi_{n})}{a_n} I_{\{|F_{n}(X_{n}, \xi_{n})|\leq a_{n}\}}-\textbf{E} (\frac{F_{n}(X_{n}, \xi_{n})}{a_n} I_{\{|F_{n}(X_{n}, \xi_{n})|\leq a_{n}\}}|(X_{n-1}, \xi_{n-1})), $

$\mathfrak{B}_{n}=\sigma(\overrightarrow X_{0}^{n}, \overrightarrow \xi_{0}^{n} )$, 因为$\{(X_{n}, \xi_{n}), n\geq 0\}$是马氏双链, 所以$\{(Y_{n}, \mathfrak{B}_{n}), n\geq 0\}$为鞅差序列.由鞅差序列正交性以及$1\leq\beta\leq2$

$ \textbf{E}|\mathop \sum \limits_{m = 0}^n Y_{m} |^{2} =\mathop \sum \limits_{m = 0}^n \textbf{E} Y_{m}^{2}\\ \leq4\mathop \sum \limits_{m = 0}^n \textbf{E} \frac{|F_{m}(X_{m}, \xi_{m})|^{2}}{a_{m}^{2}}I_{\{|F_{m}(X_{m}, \xi_{m})|\leq a_{m}\}}\\ \leq 4\mathop \sum \limits_{m = 0}^n \textbf{E} \frac{|F_{m}(X_{m}, \xi_{m})|^{\beta}}{a_{m}^{\beta}}I_{\{|F_{m}(X_{m}, \xi_{m})|\leq a_{m}\}}\\ \leq 4\mathop \sum \limits_{m = 0}^n \textbf{E} \frac{2|F_{m}(X_{m}, \xi_{m})|^{\beta}}{a_{m}^{\beta}+a_{m} |F_{m}(X_{m}, \xi_{m})|^{\beta-1}}I_{\{|F_{m}(X_{m}, \xi_{m})|\leq a_{m}\}}, $

由(2.1) 式可知

$\sup\limits_{n\geq0}\textbf{E}|\mathop \sum \limits_{m = 0}^n Y_{m} |^{2}<\infty, $

所以$\{(\sum\limits_{m=0}^{n}Y_{m}, \mathfrak{B}_{n}), n \geq 0\}$$L^{2}$有界鞅, 从而

$\sum \limits_{n = 0}^\infty Y_{n}<\infty \;\;\;\;{\hbox{a.s.}}, $ (2.4)

所以

$ \mathop \sum \limits_{n = 1}^\infty \frac{F_{n}(X_{n}, \xi_{n})-\textbf{E}(F_{n}(X_{n}, \xi_{n})|(X_{n-1}, \xi_{n-1}))}{a_{n}} \\ =\mathop \sum \limits_{n = 1}^\infty (\frac{F_{n}(X_{n}, \xi_{n})}{a_{n}} I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}}) +\sum \limits_{n = 0}^\infty Y_{n} -\sum \limits_{n = 0}^\infty \textbf{E}( \frac{F_{n}(X_{n}, \xi_{n})}{a_{n}} I_{\{|F_{n}(X_{n}, \xi_{n})|>a_{n}\}})|(X_{n-1}, \xi_{n-1})), $

由(2.2), (2.3) 和(2.4) 式可知

$\mathop \sum \limits_{n = 1}^\infty \frac{F_{n}(X_{n}, \xi_{n})-\textbf{E}(F_{n}(X_{n}, \xi_{n})|(X_{n-1}, \xi_{n-1}))}{a_{n}} <\infty, \;\;\;\;{\hbox{a.s.}}. $ (2.5)

下面考虑$k>1$的情形.

$\{(X_{n}, \xi_{n}), n\geq 0\}$的马氏性知, 对于任意的$m=1, 2, \cdots, k-1, \{(X_{nk+m}, \xi_{nk+m}), n\geq 0\}$也是马氏链, 由(2.1) 式显然有

$\sum \limits_{n = 0}^\infty \textbf{E}\frac{|F_{nk+m}(X_{nk+m}, \xi_{nk+m})|^{\beta}}{a_{nk+m}|F_{nk+m}(X_{nk+m}, \xi_{nk+m})|^{\beta-1}+a_{nk+m}^{\beta}} <\infty.$

由(2.5) 式知, 对任意的$m=1, 2, \cdots, k-1, $

$\mathop \sum \limits_{n = 1}^\infty \frac{F_{nk+m}(X_{nk+m}, \xi_{nk+m})-\textbf{E}(F_{nk+m}(X_{nk+m}, \xi_{nk+m})|(X_{nk+m-k}, \xi_{nk+m-k}))}{a_{nk+m}} <\infty \;\;\;\;{\hbox{a.s.}}, $ (2.6)

从而由(2.6) 式知

$\sum\limits_{n = 1}^\infty {\frac{{{F_n}({X_n},{\xi _n}) - {\bf{E}}({F_n}({X_n},{\xi _n})|({X_{n - k}},{\xi _{n - k}}))}}{{{a_n}}}} \\ = \mathop \sum \limits_{n = 1}^\infty \sum\limits_{m=1}^{k-1}\frac{F_{nk+m}(X_{nk+m}, \xi_{nk+m})-\textbf{E}(F_{nk+m}(X_{nk+m}, \xi_{nk+m})|(X_{nk+m-k}, \xi_{nk+m-k}))}{a_{nk+m}}\nonumber\\ =\sum\limits_{m=1}^{k-1}\mathop \sum \limits_{n = 1}^\infty \frac{F_{nk+m}(X_{nk+m}, \xi_{nk+m})-\textbf{E}(F_{nk+m}(X_{nk+m}, \xi_{nk+m})|(X_{nk+m-k}, \xi_{nk+m-k}))}{a_{nk+m}}<\infty. \;\;\;\;{\hbox{a.s.}}.$ (2.7)

由引理2和(2.7) 式知

$\mathop {\lim }\limits_{n \to \infty } \frac{1}{a_{n}}\mathop \sum \limits_{m = 1}^n F_{m}(X_{m}, \xi_{m})-\textbf{E}(F_{m}(X_{m}, \xi_{m})|(X_{m-k}, \xi_{m-k}))=0 {\hbox{a.s.}}.$

即定理1得证.

3 强大数定律的应用

定理2  设$\overrightarrow{X}$是单无限马氏环境$\overrightarrow{\xi_{0}^{\infty}}$中的马氏链, $S_{n}(x, \theta)$表示序列$(X_{1}, \xi_{1}), (X_{2}, \xi_{2}), \cdots, \\(X_{n}, \xi_{n})$$(x, \theta)$出现的次数, 则

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(x, \theta)}{n}-\frac{1}{n}\mathop \sum \limits_{m = 0}^n K_{m}(\xi_{m-1}, \theta)P(\xi_{m-1};X_{m-1}, x)=0\;\;\;\;{\hbox{a.s.}}. $

特别地, 当$\overrightarrow{\xi_{0}^{\infty}}$是时齐的, 有

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(x, \theta)}{n}=K (\xi_{0}, \theta)P(\xi_{0};X_{0}, x)\;\;\;\;{\hbox{a.s.}}. $

 令$ F_{m}(X_{m}, \xi_{m})=\delta_{x}(X_{m})\delta_{\theta}(\xi_{m})$, 所以$S_{n}(x, \theta)=\sum\limits_{m=1}^{n}F_{m}(X_{m}, \xi_{m}), $则有

$\sum \limits_{n = 0}^\infty \textbf{E}\frac{|F_{n}(X_{n}, \xi_{n})|^{2}}{n|F_{n}(X_{n}, \xi_{n})|+n^{2}} \leq \sum \limits_{n = 0}^\infty \textbf{E}\frac{1}{n^{2}}<\infty, $

$a_{n}=n, \beta=2 $, 由定理1可知

$\mathop {\lim }\limits_{n \to \infty } \frac{1}{n}\mathop \sum \limits_{m = 0}^n (F_{m}(X_{m}, \xi_{m})-\textbf{E}(F_{m}(X_{m}, \xi_{m})|(X_{m-1}, \xi_{m-1})) =0 \;\;\;\;{\hbox{a.s.}}, $ (3.1)

又因为$\sum\limits_{m=0}^{n}F_{m}(X_{m}, \xi_{m})=S_{n}(x, \theta)+\delta_{x}(X_{0})\delta_{\theta}(\xi_{0}), $由引理1知

$ E(F_{m}(X_{m}, \xi_{m})|(X_{m-1}, \xi_{m-1}))=\textbf{E} (\delta_{x}(X_{m})\delta_{\theta}(\xi_{m})|(X_{m-1}, \xi_{m-1})\\ = Q_{m }(X_{m-1}, \xi_{m-1};x, \theta)=K_{m}(\xi_{m-1}, \theta)P(\xi_{m-1};X_{m-1}, x), $

将上式代入(3.1) 式得

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(x, \theta)}{n}-\frac{1}{n}\mathop \sum \limits_{m = 0}^n K_{m}(\xi_{m-1}, \theta) P(\xi_{m-1};X_{m-1}, x)=0\;\;\;\;{\hbox{a.s.}}.$ (3.2)

$\overrightarrow{\xi_{0}^{\infty}}$是时齐的, 由引理1知$\{(X_{n}, \xi_{n}), n\geq 0\}$也是时齐的, 所以

$Q_{m }(X_{m-1}, \xi_{m-1};x, \theta) =Q(X_{0}, \xi_{0};x, \theta) =K(\xi_{0}, \theta)P(\xi_{0};X_{0}, x), $

从而由(3.2) 式得

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(x, \theta)}{n}=K (\xi_{0}, \theta)P(\xi_{0};X_{0}, x)\;\;\;\;{\hbox{a.s.}}. $

即定理2得证.

推论1  设$\overrightarrow{X}$是单无限马氏环境$\overrightarrow{\xi_{0}^{\infty}}$中的马氏链, $S_{n}(\theta)$表示序列$\xi_{1}, \xi_{2}, \cdots, \xi_{n}$$\theta$出现的次数, 则

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(\theta)}{n}-\frac{1}{n}\mathop \sum \limits_{m = 0}^n K_{m}(\xi_{m-1}, \theta)=0\;\;\;\;{\hbox{a.s.}}.$

特别地, 当$\overrightarrow{\xi_{0}^{\infty}}$是时齐的, 有

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(\theta)}{n}=K (\xi_{0}, \theta)\;\;\;\;{\hbox{a.s.}}. $

 令$ F_{m}(X_{m}, \xi_{m})=\delta_{\theta}(\xi_{m})$, 所以$S_{n}(\theta)+\delta_{\theta}(\xi_{0})=\sum\limits_{m=0}^{n}F_{m}(X_{m}, \xi_{m}), $由引理1知

$\textbf{E}(F_{m}(X_{m}, \xi_{m})|(X_{m-1}, \xi_{m-1}))=\textbf{E} (\delta_{\theta}(\xi_{m})|(X_{m-1}, \xi_{m-1}))=K_{m}(\xi_{m-1}, \theta).$

由定理2知$F_{n}(X_{n}, \xi_{n})$满足(2.1) 式, 由上述计算过程可得

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(\theta)}{n}-\frac{1}{n}\sum\limits_{m=0}^{n}K_{m}(\xi_{m-1}, \theta)=0\;\;\;\;{\hbox{a.s.}}; $ (3.3)

$\overrightarrow{\xi_{0}^{\infty}}$是时齐的, 从而由(3.3) 式得

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(\theta)}{n}=K (\xi_{0}, \theta)\;\;\;\;{\hbox{a.s.}}. $

即推论1得证.

推论2  设$\overrightarrow{X}$是单无限马氏环境$\overrightarrow{\xi_{0}^{\infty}}$中的马氏链, $S_{n}(x)$表示序列$X_{1}, X_{2}, \cdots, X_{n}$$x$出现的次数, 则

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(x)}{n}-\frac{1}{n}\mathop \sum \limits_{m = 0}^n P(\xi_{m-1};X_{m-1}, x)=0\;\;\;\;{\hbox{a.s.}}. $

特别地, 当$\overrightarrow{\xi_{0}^{\infty}}$是时齐的, 有

$\mathop {\lim }\limits_{n \to \infty } \frac{S_{n}(x)}{n}=P(\xi_{0};X_{0}, x)\;\;\;\;{\hbox{a.s.}}.$

 令$ F_{m}(X_{m}, \xi_{m})=\delta_{x}(X_{m})$, 所以

$ S_{n}(x)+\delta_{x}(X_{0})=\mathop \sum \limits_{m = 0}^n F_{m}(X_{m}, \xi_{m})=\mathop \sum \limits_{m = 0}^n \delta_{x}(X_{m}), \\ \textbf{E}(F_{n}(X_{n}, \xi_{n})|(X_{n-1}, \xi_{n-1}))=\textbf{E} (\delta_{x}(X_{m})|(X_{n-1}, \xi_{n-1}))=P(\xi_{m-1};X_{m-1}, x), $

用类似于定理2和推论1的方法可得出推论2.

参考文献
[1] Cogburn R. Markov chains in random environments: the case of Markovian environment[J]. Ann.Prob., 1980, 8(3): 908–916.
[2] Cogburn R. The ergodic theory of Markov chains in random environments[J]. Z. Wahrsch. Verw.Gebiete, 1984, 66(2): 109–128.
[3] Cogburn R. On the central limit theorm for Markov chains in random environments[J]. Ann. Prob., 1991, 19(2): 587–604. DOI:10.1214/aop/1176990442
[4] Orey S. Markov chains with stochastically transtion probabilities[J]. Ann. Prob., 1991, 19(3): 907–928. DOI:10.1214/aop/1176990328
[5] 李应求. 随机环境中马氏链与马氏双链间的相互关系[J]. 数学学报, 2006, 49(6): 1373–1380.
[6] 郭明乐. 随机环境中马氏链的强大数定律[J]. 应用概率统计, 2004, 12(2): 154–160.
[7] 宋明珠. 马氏双链函数的一个强大数定律[J]. 数学杂志, 2012, 32(6): 1105–1110.