数学杂志  2015, Vol. 35 Issue (2): 337-344   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
丁婷婷
吴俊
张培雨
N-弱拟Armendariz环
丁婷婷, 吴俊, 张培雨    
安徽师范大学数学计算机科学学院, 安徽 芜湖 241003
摘要:本文研究了N-弱拟Armendariz环的基本性质以及与一些特殊环的关系.利用某些矩阵环的特殊性质, 得到了环RN-弱拟Armendariz环当且仅当环Tn(R)是N-弱拟Armendariz环, 推广了弱拟-Armendariz环的相应结果.
关键词N-弱拟Armendariz环    弱拟-Armendariz环    半素环    nil-半交换环    
N-WEAK QUASI ARMENDARIZ RINGS
DING Ting-ting, WU Jun, ZHANG Pei-yu    
School of Mathematics & Computer Science, Anhui Normal University, Wuhu 241003, China
Abstract: In this paper, the basic properties and the relations with some special rings of N-weak quasi Armendariz rings are studied. By using particular properties of some matrix rings, we show that a ring R is a N-weak quasi Armendariz ring if and only if the ring Tn(R) is a N-weak quasi Armendariz ring, which generalizes the corresponding results of weak quasi-Armendariz rings.
Key words: N-weak quasi Armendariz rings     weak quasi-Armendariz rings     semiprime rings     nil-semicommutative rings    
1 引言

文中的所有环均指有单位元的结合环. $C(R)$表示环$R$的中心, $N(R)$表示环$R$的所有幂零元集合, $T_{n}(R)$表示环$R$上的$n$阶上三角矩阵环.在文[1]中, Rege等人引入了Armendariz环的概念, 并研究了Armendariz环与半交换环之间的关系.环$R$称为Armendariz环[1], 如果对任意的$f(x)=\sum\limits_{i=0}^{n}a_{i}x^{i},g(x)=\sum\limits_{j=0}^{m}b_{j}x^{j}\in R[x],$满足$f(x)g(x)=0$, 则有$a_{i}b_{j}=0,$对任意的$i,j.$随后, 众多数学工作者对Armendariz环以及Armendariz环的推广等相关问题做了些研究[2-7].在文[2]中, Liu和Zhao引入和讨论了弱Armendariz环.环$R$称为弱Armendariz环[2], 如果对任意的$f(x)=\sum\limits_{i=0}^{n}a_{i}x^{i},g(x)=\sum\limits_{j=0}^{m}b_{j}x^{j}\in R[x]$, 满足$f(x)g(x)=0$, 则有$a_{i}b_{j}\in N(R),$对任意的$i,j.$在文[3]中, Baser等人引入了弱拟-Armendariz环的概念并研究了它的相关性质.环$R$称为弱拟-Armendariz环[3], 如果对任意的$f(x)=a_{0}+a_{1}x,g(x)=b_{0}+b_{1}x\in R[x]$, 满足$f(x)R[x]g(x)=0$, 则有$a_{i}Rb_{j}=0,i,j=0,1.$

本文引入了$N$ -弱拟Armendariz环的概念, 通过例子说明了$N$ -弱拟Armendariz环是弱拟-Armendariz环的真正推广, 并且给出了$N$ -弱拟Armendariz环的等价刻画以及它与一些特殊环之间的关系.

2 主要结果

定义2.1 环$R$称为$N$ -弱拟Armendariz环, 如果$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in R[x], $满足$f(x)R[x]g(x)=0, $则有$a_{i}Rb_{j}\subseteq N(R), i, j=0, 1.$

引理2.2 [8, n2.1] 设$f(x), g(x)\in R[x], $$f(x)Rg(x)=0$当且仅当$f(x)R[x]g(x)=0.$

$R$为环, $M$$(R, R)$ -双模, $R$对于$M$的平凡扩张$T(R, M)=R\bigoplus M, $其中运算为

$(r_{1}, m_{1})+(r_{2}, m_{2})=(r_{1}+r_{2}, m_{1}+m_{2}), (r_{1}, m_{1})(r_{2}, m_{2})=(r_{1}r_{2}, r_{1}m_{2}+m_{1}r_{2}).$

易知$T(R, M)\cong \left\{\left(\begin{array}{ccccc}r&m\\0&r\end{array}\right)|r\in R, m\in M\right\}.$

$S_{n}(R)=\left\{\left(\begin{array}{ccccc}a&a_{12}&\cdots&a_{1n}\\0&a&\cdots&a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&a\end{array}\right)|a, a_{ij}\in R\right\}(n\ge 2). $

由文[3, 例2.5]可知, 若$R$是弱拟-Armendariz环, $S_{n}(R)$不是弱拟-Armendariz环, 但对于$N$ -弱拟Armendariz环却有以下结论.

定理2.3 设$R$是环, 则下列命题等价:

(1) $R$$N$ -弱拟Armendariz环;

(2) $T_{n}(R)$$N$ -弱拟Armendariz环, 对任意$n\geq 2$;

$(2^\prime)$ $T_{n}(R)$$N$ -弱拟Armendariz环, 对某个$n\geq 2$;

(3) $S_{n}(R)$$N$ -弱拟Armendariz环, 对任意$n\geq 2$;

$(3^\prime)$ $S_{n}(R)$$N$ -弱拟Armendariz环, 对某个$n\geq 2$;

(4) $T(R, R)$$N$ -弱拟Armendariz环.

 $(1)\Rightarrow(2)$$f(x)=A_{0}+A_{1}x, g(x)=B_{0}+B_{1}x\in T_{n}(R)[x]$, 有$f(x)T_{n}(R)[x]g(x)=0, $其中

$A_{i}={\left(\begin{array}{ccccc}a_{11}^{i}&a_{12}^{i}&\cdots&a_{1n}^{i}\\0&a_{22}^{i}&\cdots&a_{2n}^{i}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&a_{nn}^{i}\end{array}\right)}, \ B_{j}={\left(\begin{array}{ccccc}b_{11}^{j}&b_{12}^{j}&\cdots&b_{1n}^{j}\\0&b_{22}^{j}&\cdots&b_{2n}^{j}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&b_{nn}^{j}\end{array}\right)}, i, j=0, 1.$

易证存在环同构$T_{n}(R)[x]\rightarrow T_{n}(R[x])$;

$\sum\limits_{i=0}^{n}{\left(\begin{array}{ccccc}a_{11}^{i}&a_{12}^{i}&\cdots&a_{1n}^{i}\\0&a_{22}^{i}&\cdots&a_{2n}^{i}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&a_{nn}^{i}\end{array}\right)}x^{i}\mapsto {\left(\begin{array}{ccccc}\sum\limits_{i=0}^{n}a_{11}^{i}x^{i}&\sum\limits_{i=0}^{n}a_{12}^{i}x^{i}&\cdots&\sum\limits_{i=0}^{n}a_{1n}^{i}x^{i}\\0&\sum\limits_{i=0}^{n}a_{22}^{i}x^{i}&\cdots&\sum\limits_{i=0}^{n}a_{2n}^{i}x^{i}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&\sum\limits_{i=0}^{n}a_{nn}^{i}x^{i}\end{array}\right)}. $

则可令

$f(x)={\left(\begin{array}{ccccc}f_{11}&f_{12}&\cdots&f_{1n}\\0&f_{22}&\cdots&f_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&f_{nn}\end{array}\right)}, \ g(x)={\left(\begin{array}{ccccc}g_{11}&g_{12}&\cdots&g_{1n}\\0&g_{22}&\cdots&g_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&g_{nn}\end{array}\right)}, $

其中$f_{st}=a_{st}^{o}+a_{st}^{1}x, g_{vw}=b_{vw}^{o}+b_{vw}^{1}x\ \ (1\leq s, t, v, w\leq n).$故对任意的$r\in R, $$f(x)T_{n}(R)[x]g(x)=0$,得

$\begin{array}{rcl} &&{\left(\begin{array}{ccccc}f_{11}&f_{12}&\cdots&f_{1n}\\0&f_{22}&\cdots&f_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&f_{nn}\end{array}\right)}{\left(\begin{array}{ccccc}r&0&\cdots&0\\0&r&\cdots&0\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&r\end{array}\right)}{\left(\begin{array}{ccccc}g_{11}&g_{12}&\cdots&g_{1n}\\0&g_{22}&\cdots&g_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&g_{nn}\end{array}\right)}\\ &=&{\left(\begin{array}{ccccc}f_{11}rg_{11}&*&\cdots&*\\0&f_{22}rg_{22}&\cdots&*\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&f_{nn}rg_{nn}\end{array}\right)}=0.\end{array}$

因此$f_{ss}Rg_{ss}=0, $$f_{ss}R[x]g_{ss}=0$, $s=1, 2, \cdots, n.$由于$R$$N$ -弱拟Armendariz环, 所以$a_{ss}^{i}Rb_{ss}^{j}\subseteq N(R).$

下证$A_{i}T_{n}(R)B_{j}\subseteq N(T_{n}(R)).$任取

$C={\left(\begin{array}{ccccc}c_{11}&c_{12}&\cdots&c_{1n}\\0&c_{22}&\cdots&c_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&c_{nn}\end{array}\right)}\in T_{n}(R), $

$\begin{array}{rcl} A_{i}CB_{j}&=&{\left(\begin{array}{ccccc}a_{11}^{i}c_{11}b_{11}^{j}&*&\cdots&*\\0&a_{22}^{i}c_{22}b_{22}^{j}&\cdots&*\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&a_{nn}^{i}c_{nn}b_{nn}^{j}\end{array}\right)}, \end{array}$

$a_{ss}^{i}Rb_{ss}^{j}\subseteq N(R)$, 所以对任意的$s$$i, j$, 存在$m_{ijs}^{c}\in\mathbb{N}^{+}$, 使得$(a_{ss}^{i}c_{ss}b_{ss}^{j})^{m_{ijs}^{c}}=0.$$m_{ij}^{c}=\max\{m_{ij1}^{c}, m_{ij2}^{c}, \cdots, m_{ijn}^{c}\}$, 则$(a_{tt}^{i}c_{tt}b_{tt}^{j})^{m_{ij}^{c}}=0, t=1, 2, \cdots, n, $因此$\Big((A_{i}CB_{j})^{m_{ij}^{c}}\Big)^{n}=0$.所以$T_{n}(R)$$N$ -弱拟Armendariz环, 对任意$n\geq 2$.

$(2)\Rightarrow(2^\prime)$显然成立.

$(2^\prime)\Rightarrow(1)$$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in R[x], $$f(x)R[x]g(x)=0.$

$\begin{eqnarray*}&&\left(\begin{array}{ccccc}f(x)&&&\\ &f(x)&\\ &&\ddots\\ &&&f(x)\end{array}\right)T_{n}(R[x])\left(\begin{array}{ccccc}g(x)&&&\\ &g(x)&\\ &&\ddots\\ &&&g(x)\end{array}\right)=0, \\ && T_{n}(R)[x]\cong T_{n}(R[x]), \end{eqnarray*}$

于是

$\left(\left(\begin{array}{ccccc}a_{0}&&&\\ &a_{0}&\\ &&\ddots\\ &&&a_{0}\end{array}\right )+\left(\begin{array}{ccccc}a_{1}&&&\\ &a_{1}&\\ &&\ddots\\ &&&a_{1}\end{array}\right)x\right)T_{n}(R)[x]$
$\left(\left(\begin{array}{ccccc}b_{0}&&&\\ &b_{0}&\\ &&\ddots\\ &&&b_{0}\end{array}\right)+\left(\begin{array}{ccccc}b_{1}&&&\\ &b_{1}&\\ &&\ddots\\ &&&b_{1}\end{array}\right)x\right)=0.$

由于$T_{n}(R)$$N$ -弱拟Armendariz环, 所以

$\left(\begin{array}{ccccc}a_{i}&&&\\ &a_{i}&\\ &&\ddots\\ &&&a_{i}\end{array}\right)T_{n}(R)\left(\begin{array}{ccccc}b_{j}&&&\\ &b_{j}&\\ &&\ddots\\ &&&b_{j}\end{array}\right)\subseteq N(T_{n}(R)), i, j=0, 1. $

特别地, 对任意的$r\in R$, 存在$n_{ij}^{r}\in \mathbb{N}^{+}$, 使得

$\left(\left(\begin{array}{ccccc}a_{i}&&&\\ &a_{i}&\\ &&\ddots\\ &&&a_{i}\end{array}\right)\left(\begin{array}{ccccc}r&&&\\ &r&\\ &&\ddots\\ &&&r\end{array}\right)\left(\begin{array}{ccccc}b_{j}&&&\\ &b_{j}&\\ &&\ddots\\ &&&b_{j}\end{array}\right)\right)^{n_{ij}^{r}}=0, $

$(a_{i}rb_{j})^{n_{ij}^{r}}=0$, 于是$a_{i}Rb_{j}\subseteq N(R).$所以$R$$N$ -弱拟Armendariz环.

$(1)\Rightarrow (3)\Rightarrow(3^\prime)\Rightarrow(1)$与上述证明过程类似.

$(1)\Rightarrow (3)\Rightarrow(4)\Rightarrow(1)$易证, 从而得证.

 由定义可知, 弱拟-Armendariz环一定是$N$ -弱拟Armendariz环.

下面的例子说明了反之是不成立的.

例2.4 设$W$为约化环, 由文[3, 例2.5]可知$R=T(W, W)$为弱拟-Armendariz环, 且$S_{3}(R)$不是弱拟-Armendariz环, 但由定理2.3知$S_{n}(R)$$N$ -弱拟Armendariz环, 对任意$n\geq 2$.

引理2.5 [3] 若$R$是半素环, 则$aRb=0$当且仅当$bRa=0$, 且若$aRbRa=0, $$aRb=0$, 任意的$a, b\in R.$

引理2.6 若$R$是半素环, 则$R[x]$$N$ -弱拟Armendariz环.

 由文[3, 定理2.7]可以直接得出该结论, 下面给出该引理的另一种证法.

$F(y)=f_{0}+f_{1}y, G(y)=g_{0}+g_{1}y\in R[x][y], f_{i}, g_{j}\in R[x], i, j=0, 1, $$F(y)R[x][y]G(y)=0, $$F(y)R[x]G(y)=0$.则对任意的$f(x)\in R[x], $

$f_{0}fg_{0}=0, \ f_{0}fg_{1}+f_{1}fg_{0}=0, \ f_{1}fg_{1}=0.$

由文[9, 定理10.19]知, 环$R$是半素的当且仅当环$R[x]$是半素的. $f_{0}fg_{0}=0$, 由引理2.5知$g_{0}ff_{0}=0$, 即$g_{0}R[x]f_{0}=0.$任取$h(x)\in R[x], $$f_{0}fg_{1}+f_{1}fg_{0}=0$两边同时右乘$hf_{0}$, 则有

$f_{0}fg_{1}hf_{0}=-f_{1}fg_{0}hf_{0}=0.$

由引理2.5知$f_{0}fg_{1}=0, $$f_{i}fg_{j}\in N( R[x]), $$f_{i}R[x]g_{j}\subseteq N( R[x]), i, j=0, 1.$所以$R[x]$$N$ -弱拟Armendariz环.

引理2.7 若$R[x]$$N$ -弱拟Armendariz环, 则$R$$N$ -弱拟Armendariz环.

 设$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in R[x]$, 有$f(x)R[x]g(x)=0, $$f(x)Rg(x)=0.$则对任意的$r\in R, $

$a_{0}rb_{0}=0, \ a_{0}rb_{1}+a_{1}rb_{0}=0, \ a_{1}rb_{1}=0.$

$p(y)=a_{0}+a_{1}y, q(y)=b_{0}+b_{1}y\in R[x][y]$.

下证$p(y)R[x]q(y)=0.$对任意的$r\in R$, $t\in \mathbb{N}$, 由上面的三个等式可知,

$p(y)(rx^{t})q(y)=(a_{0}rb_{0})x^{t}+(a_{0}rb_{1}+a_{1}rb_{0})x^{t}y+(a_{1}rb_{1})x^{t}y^{2}=0. $

于是$p(y)R[x]q(y)=0$, 即$p(y)R[x][y]q(y)=0.$由于$R[x]$$N$-弱拟Armendariz环, 所以$a_{i}R[x]b_{j}\subseteq N(R[x]). $特别地, $a_{i}Rb_{j}\subseteq N(R), i, j=0, 1.$所以$R$$N$ -弱拟Armendariz环.

由引理2.6, 引理2.7可即得,

定理2.8 若$R$是半素环, 则$R$$N$ -弱拟Armendariz环.

 1) 由文[3, 定理2.7]也可推出该定理成立.

2) 例2.4说明了该定理的逆命题不成立.

事实上, 令$a=\left(\begin{matrix} 0&1\\0&0\end{matrix}\right)\in R$, 任意的

$\left(\begin{matrix} w_{11}&w_{12}\\0&w_{11}\end{matrix}\right)\in R, \left(\begin{matrix} 0&1\\0&0\end{matrix}\right)\left(\begin{matrix} w_{11}&w_{12}\\0&w_{11}\end{matrix}\right)\left(\begin{matrix} 0&1\\0&0\end{matrix}\right)=0, $

$aRa=0$, 但$a\neq 0, $所以$R$不是半素环.

命题2.9 设$e$是环$R$的中心幂等元.则$R$$N$ -弱拟Armendariz环当且仅当$eR$$(1-e)R$都是$N$ -弱拟Armendariz环.

 $(\Rightarrow )$$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in (eR)[x]$, 有$f(x)(eR)[x]g(x)=0, $$f(x)(eR)$ $g(x)=0.$$f(x)e=f(x).$故对任意的$r\in R, f(x)rg(x)=f(x)(er)g(x)=0, $$f(x)R[x]g(x)=0.$由于$R$$N$ -弱拟Armendariz环, 所以$a_{i}Rb_{j}\subseteq N(R), i, j=0, 1, $则对任意的$er\in eR, r\in R, a_{i}(er)b_{j}=(a_{i}e)rb_{j}=a_{i}rb_{j}\in N(R)\bigcap eR=N(eR)$.所以$eR$$N$ -弱拟Armendariz环, 类似可证$(1-e)R$$N$ -弱拟Armendariz环.

$(\Leftarrow)$$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in R[x], $$f(x)R[x]g(x)=0, $$f(x)Rg(x)=0$.故对任意的$r\in R, $

$ef(x)(er)eg(x)=ef(x)rg(x)=0, (1-e)f(x)(1-e)r(1-e)g(x)=(1-e)f(x)rg(x)=0.$

$ef(x)(eR)[x]eg(x)=0, (1-e)f(x)((1-e)R)[x](1-e)g(x)=0.$

由于$eR$$(1-e)R$都是$N$ -弱拟Armendariz环, 所以对任意的$r\in R$, 存在$n_{ij}^{r}, m_{ij}^{r}\in\mathbb{N}^{+}, $使得

$[(ea_{i})(er)(eb_{j})]^{n_{ij}^{r}} =e(a_{i}rb_{j})^{n_{ij}^{r}}=0, [(1-e)a_{i}((1-e)r)(1-e)b_{j}]^{m_{ij}^{r}}=(1-e)(a_{i}rb_{j})^{m_{ij}^{r}}=0.$

$k_{ij}^{r}=\max\{n_{ij}^{r}, m_{ij}^{r}\}, $

$e(a_{i}rb_{j})^{k_{ij}^{r}}=0, (1-e)(a_{i}rb_{j})^{k_{ij}^{r}}=0, (a_{i}rb_{j})^{k_{ij}^{r}}=e(a_{i}rb_{j})^{k_{ij}^{r}}+(1-e)\\(a_{i}rb_{j})^{k_{ij}^{r}}=0, $

于是$a_{i}Rb_{j}\subseteq N(R), i, j=0, 1.$所以$R$$N$ -弱拟Armendariz环.

$R$称为nil-半交换的[10], 若对任意的$a, b\in R,$ $ab\in N(R),$$aRb\subseteq N(R).$ $I\lhd R$称为nil -半交换的, 若$I$满足上述条件.

命题2.10 设$R$是环, 则有

(1) 若$R$$N$ -弱拟Armendariz环, $L$$C(R)$的零化子, 则$R/L$$N$ -弱拟Armendariz环.

(2) $I\lhd R, $$R/I$$N$ -弱拟Armendariz环, $I$是nil-半交换的, 则$R$$N$ -弱拟Armendariz环.

 (1) $\varnothing \neq C(R)=\{s\in R|sr=rs, r\in R\}, $$\bar{a}=a+L, a\in R,$ $\bar{R}=R/L.$$\bar{f}(x)=\bar{a_{0}}+\bar{a_{1}}x, \bar{g}(x)=\bar{b_{0}}+\bar{b_{1}}x\in \bar{R}[x], $$\bar{f}(x) \bar{R}[x]\bar{g}(x)=\bar{0}.$

下证$\bar{a_{i}}\bar{R}\bar{b_{j}}\subseteq N( \bar{R}), i, j=0, 1, $ $\bar{f}(x) \bar{R}[x]\bar{g}(x)=\bar{0}, $故对任意的$\bar{r}\in \bar{R}, \bar{f}(x) \bar{r}\bar{g}(x)=\bar{0}, $$a_{0}rb_{0}, \ a_{0}rb_{1}+a_{1}rb_{0}, \ a_{1}rb_{1}\in L, $所以对任意的$s\in C(R), $

$s(a_{0}rb_{0})=0, \ s(a_{0}rb_{1}+a_{1}rb_{0})=0, \ s(a_{1}rb_{1})=0.$

$(sa_{0}+sa_{1}x)R(b_{0}+b_{1}x)=0, $$(sa_{0}+sa_{1}x)R[x](b_{0}+b_{1}x)=0.$由于$R$$N$ -弱拟Armendariz环, 所以对任意的$r\in R$, 存在$n_{ij}^{r}\in \mathbb{N}^{+}, $使得$(sa_{i}rb_{j})^{n_{ij}^{r}}=s^{n_{ij}^{r}}(a_{i}rb_{j})^{n_{ij}^{r}}=0, $$(a_{i}rb_{j})^{n_{ij}^{r}} \in L(s\in C(R)\Rightarrow s^{n_{ij}^{r}}\in C(R)), $于是$\bar{a_{i}}\bar{R}\bar{b_{j}}\subseteq N( \bar{R}), i, j=0, 1.$所以$R/L$$N$ -弱拟Armendariz环.

(2) 设$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in R[x]$, 有$f(x)R[x]g(x)=0, $$f(x)Rg(x)=0.$则对任意的$r\in R$,

$a_{0}rb_{0}=0, \ a_{0}rb_{1}+a_{1}rb_{0}=0, \ a_{1}rb_{1}=0.$

另一方面$\bar{f}(x) \bar{R}\bar{g}(x)=\bar{0}, $由于$\bar{R}$$N$ -弱拟Armendariz环, 所以$\bar{a_{i}}\bar{R}\bar{b_{j}}\subseteq N(\bar{R}), i, j=0, 1. $故对任意的$r\in R, $存在$n_{ij}^{r}\in \mathbb{N}^{+}, $使得$(a_{i}rb_{j})^{n_{ij}^{r}}\in I, $$(a_{0}rb_{1})^{p}\in I, p\in \mathbb{N}^{+}.$

下证$a_{0}rb_{1}\in N(R).$$a_{0}rb_{0}=0$$(b_{0}a_{0}r)^{2}=0$, 于是

$(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}a_{1}r(b_{0}a_{0}r)^{2}(b_{0}(a_{0}rb_{1})^{p+1})=0.$

因为

$(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}a_{1}r(b_{0}a_{0}r)\in I, (b_{0}a_{0}r)(b_{0}(a_{0}rb_{1})^{p+1})\in I, b_{1}(a_{0}rb_{1})^{p}a_{1}r\in I, $

$I$是nil -半交换的, 所以

$(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}a_{1}r(b_{0}a_{0}r)b_{1}(a_{0}rb_{1})^{p}a_{1}r(b_{0}a_{0}r)(b_{0}(a_{0}rb_{1})^{p+1})\in N(I).$

$[(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}]^{2}a_{1}r(b_{0}a_{0}r)(b_{0}(a_{0}rb_{1})^{p+1})\in N(I).$

继续此过程可得, $[(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}]^{4}\in N(I), $于是$(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}\in N(I).$在等式$ a_{0}rb_{1}+a_{1}rb_{0}=0$两边同时右乘$(a_{0}rb_{1})^{p+1}$, 则有

$(a_{0}rb_{1})^{p+2}=-(a_{1}rb_{0})(a_{0}rb_{1})^{p+1}\in N(I).$

这样$ a_{0}rb_{1}\in N(I)\subseteq N(R)$, 则$a_{i}Rb_{j}\subseteq N(R), i, j=0, 1.$所以$R$$N$ -弱拟Armendariz环.

推论2.11 若$R$是nil -半交换环, 则$R$$N$ -弱拟Armendariz环.

$x\in R$称为正则的[11], 若对任意的$0\neq r\in R, rx\neq 0, xr\neq 0.$

命题2.12 设$\triangle$$R$中中心正则元构成的乘法封闭子集.则$R$$N$ -弱拟Armendariz环当且仅当$\triangle ^{-1}R$$N$ -弱拟Armendariz环.

 $(\Rightarrow)$$F(x)=\alpha _{0}+\alpha _{1}x, G(x)=\beta _{0}+\beta _{1}x\in (\triangle ^{-1}R)[x]$, 有$F(x)(\triangle ^{-1}R)[x]G(x)=0, $

$F(x)(\triangle ^{-1}R)G(x)=0, $

其中$\alpha _{i}=u^{-1}a_{i}, \beta _{j}=v^{-1}b_{j}, u, v\in \triangle, a_{i}, b_{j}\in R$.故对任意的$w^{-1}r\in \triangle ^{-1}R, $

$0=u^{-1}(a_{0}+a_{1}x)(w^{-1}r)v^{-1}(b_{0}+b_{1}x)=(uwv)^{-1}(a_{0}+a_{1}x)r(b_{0}+b_{1}x).$

$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x, $$f(x), g(x)\in R[x]$, 且$f(x)Rg(x)=0$, 即$f(x)R[x]g(x)=0$.由于$R$$N$ -弱拟Armendariz环, 所以对任意的$r\in R, $存在$n_{ij}^{r}\in \mathbb{N}^{+}, $使得$(a_{i}rb_{j})^{n_{ij}^{r}}=0$, 则

$[(uwv)^{-1}a_{i}rb_{j}]^{n_{ij}^{r}}=0,$

$(uwv)^{-1}a_{i}rb_{j}\in N(\triangle ^{-1}R), i, j=0, 1, $$\alpha _{i}(\triangle ^{-1}R)\beta _{j}\subseteq N(\triangle ^{-1}R).$所以$\triangle ^{-1}R$$N$ -弱拟Armendariz环.

$(\Leftarrow)$$f(x)=a_{0}+a_{1}x, g(x)=b_{0}+b_{1}x\in R[x], $$f(x)R[x]g(x)=0, $$f(x)Rg(x)=0.$故对任意的$r\in R, w\in \triangle, 0=w^{-1}f(x)rg(x)=f(x)(w^{-1}r)g(x), $

$f(x)(\triangle ^{-1}R)g(x)=0,$

$f(x)(\triangle ^{-1}R)[x]g(x)=0$.由于$\triangle ^{-1}R$$N$ -弱拟Armendariz环, 所以对任意的$w^{-1}r\in \triangle ^{-1}R, $存在$n_{ij}^{wr}\in\mathbb{N}^{+} $, 使得$[a_{i}(w^{-1}r)b_{j}]^{n_{ij}^{wr}}=0, $$(a_{i}rb_{j})^{n_{ij}^{wr}}=0, $于是$a_{i}Rb_{j}\subseteq N( R), i, j=0, 1.$所以$R$$N$ -弱拟Armendariz环.

$R[x;x^{-1}]=\{\sum\limits_{i=k}^{n}m_{i}x^{i}|m_{i}\in R, k, n\in \mathbb{Z}\}$, 其中加法和乘法运算与$R[x]$中相同.

推论2.13 设$R$为环.则$R[x]$$N$ -弱拟Armendariz环当且仅当$R[x;x^{-1}]$$N$ -弱拟Armendariz环.

 令$\triangle =\{1, x, x^{2}, \cdots\}, $$\triangle$$R[x]$中中心正则元构成的乘法封闭子集. $R[x;x^{-1}]=\triangle ^{-1}R[x], $由命题2.12即证.

参考文献
[1] Rege M B, Chhawchharia S. Armendariz rings[J]. Pro. Japan Acad. Ser. A Math. Sci., 1997, 73: 14–17. DOI:10.3792/pjaa.73.14
[2] Liu Z K, Zhao R Y. On weak Armendariz rings[J]. Comm. Algebra, 2006, 34(7): 2607–2616. DOI:10.1080/00927870600651398
[3] Baser M, Kaynarca F. Weak quasi-Armendariz rings[J]. Algebra Coll., 2011, 18(4): 541–552. DOI:10.1142/S1005386711000423
[4] Jeon Y C, Kim H K, Lee Y, et al. On weak Armendariz rings[J]. Bull. Korean Math. Soc., 2009, 46(1): 135–146. DOI:10.4134/BKMS.2009.46.1.135
[5] Lee T K, Wong T L. On Armendariz rings[J]. Houston J. Math., 2003, 29(3): 583–593.
[6] Anderson D D, Camillo V. Armendariz rings and Gaussian rings[J]. Comm. Algebra, 1998, 26(7): 2265–2272. DOI:10.1080/00927879808826274
[7] Hong C Y, Kwak T K, Rizvi S T. Extensions of generalized Armendariz rings[J]. Algebra Coll., 2002, 30(2): 751–761. DOI:10.1081/AGB-120013179
[8] Hirano Y. On annihilator ideals of a polynomial ring over a noncommutative ring[J]. J. Pure Appl. Algebra, 2002, 168(1): 45–52. DOI:10.1016/S0022-4049(01)00053-6
[9] Lam T Y. A first course in noncommutative rings[M]. New York: Springer-Verlag New York Inc., 1991.
[10] Chen W X. On nil-semicommutative rings[J]. Thai J. of Math., 2011, 9(1): 39–47.
[11] Goodearl K R. Ring theory: nonsingular rings and modules[M]. New York: Marcel Dekker, Inc., 1976.