数学杂志  2015, Vol. 35 Issue (1): 159-166   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
杨爱丽
张建华
因子von Neumann代数中套子代数上Jordan同构的刻画
杨爱丽1, 张建华2    
1. 西安科技大学理学院, 陕西 西安 710054;
2. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
摘要:本文研究了套子代数上由零积确定的子集中保Jordan积的线性映射与同构和反同构的关系.证明了若对任意的A, B ∈ algMβAB=0, 有φ(AB)=φ(A) ◦ φ(B)成立, 则φ是同构或反同构.其中, algMβ, algMγ是因子von Neumann代数M中的两个非平凡套子代数, φ:algMβ → algMγ是一个保单位线性双射.
关键词套子代数    Jordan积    同构    
CHARACTERIZATIONS OF JORDAN ISOMORPHISM ON NEST SUBALGEBRAS OF FACTOR VON NEUMANN ALGEBRAS
YANG Ai-li1, ZHANG Jian-hua2    
1. College of Sci., Xi'an University of Science and Technology, Xi'an 710054, China;
2. College of Math. and Inform. Sci., Shaanxi Normal University, Xi'an 710062, China
Abstract: This paper studied the relation between linear mappings preserving Jordan product in subset determined by zero product on nest subalgebras and isomorphism and anti isomorphism, and proved that if φ satisfies φ(AB)=φ(A) ◦ φ(B) for all A, B ∈ algMβ with AB=0, then φ is an isomorphism or an anti-isomorphism, where algMβ and algMγ be non-trivial nest subalgebras in the factor von Neumann algebra M, φ is a unital bijection.
Key words: nest subalgebra     Jordan isomorphism     isomorphism    
1 引言

${\cal A}$ ${\cal B}$是结合代数, $\varphi: \mbox{alg}_M\beta\rightarrow \mbox{alg}_M\gamma$是一个线性双射, 如果对任意的 $A, B\in \mbox{alg}_M\beta, $

$ \varphi(A\circ B)=\varphi(A)\circ \varphi(B), $

则称 $\varphi$是一个Jordan同构, 其中 $A\circ B=AB+BA$为Jordan积.关于Jordan同构的研究大多集中于素环或半素环以及半单Banach代数上.近年来引起了许多学者的关注. Wong[7]探讨了上三角矩阵环上的Jordan同构的结构并且给出了Jordan同构是同构或反同构的一个充分必要条件. Herstein[1]证明了特征不是2的素环上的Jordan同构是同构或反同构.但这个结论对半素环来说不一定成立.然而, 半素环上Jordan同构的结构也得到了刻画[2-4].如果用 ${\cal T}_{n}(\mathbb{F})$表示环 $R$上的 $n\times n$上三角矩阵环, 1998年, Molnár和Šemrl[5]证明了 ${\cal T}_{n}(\mathbb{F})$上的Jordan同构只可能是自同构或反自同构, 这里 $F$是至少包含三个元素的数域. Beidar, Brešar和Chebotar[6]进一步推广了这一结论, 他们证明了从 ${\cal T}_n({\cal C})$到代数 ${\cal A}$上的Jordan同构是同构或反同构, 这里 ${\cal C}$是幂等元只有 $0$ $1$的2-挠自由交换环, ${\cal A}$ ${\cal C}$上的任一代数.迄今为止, 对非半素和非半单Banach代数上Jordan同构的研究尚不见多. Zhang[8]利用谱理论和函数演算对套代数上的有界Jordan自同构进行了研究, 并在文[9]中给出了套代数上的Jordan同构的一个完整刻画.同时,Lu[10]在套代数上也得到了相同的结论.事实上, Jordan同构的刻画与近年来已被许多学者在各类算子代数上所研究的等距问题密切相关[11-13].本文研究了套子代数上由零积确定的子集中保Jordan积的线性映射与同构和反同构的关系.

${\cal H}$是复可分Hilbert空间, ${\cal B(H)}$表示 ${\cal H}$上的全体有界线性算子, $M$是作用在 ${\cal H}$上的因子von Neumann代数. $M$中的套 $\beta$是指 $M$中包含 $0$ $I$且在强算子拓扑下连续的全序正交投影族. $M$中相应于套 $\beta$的套子代数记为 $\mbox{alg}_M \beta, $并定义为

$ \mbox{alg}_M \beta =\{T\in M:PTP=TP, P\in \beta \}, $

$M\cap(\mbox{alg}_M \beta)^\prime={\mathbb C}I$(见文[14]), 这里 $\mathbb{C}$是复数域, $I$ $M$中的恒等算子.令 $\beta^\bot=\{P^\bot : P\in\beta\}.$显然, $\beta^\bot$仍是 $M$中的一个套且 $\mbox{alg}_M \beta^\bot=(\mbox{alg}_M \beta)^*.$文中未加说明的概念与符号请参阅文献[14-15].

2 主要定理及其证明

定理2.1  设 $\mbox{alg}_M\beta, \mbox{alg}_M\gamma$是因子von Neumann代数 $M$中的两个非平凡套子代数, $\varphi: \mbox{alg}_M\beta\rightarrow\mbox{alg}_M\gamma$是一个线性双射, 且 $\varphi(I)=I, $若对任意的 $A, B\in \mbox{alg}_M\beta$ $AB=0, $ $\varphi(A\circ B)=\varphi(A)\circ \varphi(B)$成立, 则 $\varphi$要么是一个同构, 要么是一个反同构.

为证明定理2.1, 我们需要下面几个引理.

引理2.1  设 $\varphi: \mbox{alg}_M\beta\rightarrow\mbox{alg}_M\gamma$是一个线性双射且 $\varphi(I)=I.$若对任意的 $A, B\in \mbox{alg}_M\beta$ $AB=0, $ $ \varphi(A\circ B)=\varphi(A)\circ \varphi(B), $ $\varphi$保幂等元.即 $\varphi(E)=\varphi(E)^{2}, $对任意的 $E\in {\cal A}$ $E=E^{2}.$

  因为 $E=E^{2}, $所以 $E(I-E)=0, $于是 $ \varphi(E)\circ \varphi(I-E)=\varphi(E\circ (I-E))=\varphi(0)=0. $ $\varphi(I)=I, $从而 $\varphi(E)=\varphi(E)^{2}.$

以下总假设 $\varphi: \mbox{alg}_M\beta\rightarrow \mbox{alg}_M\gamma$是一个线性双射且 $\varphi(I)=I.$若对任意的 $A, B\in \mbox{alg}_M\beta$ $AB=0, $ $ \varphi(A\circ B)=\varphi(A)\circ \varphi(B) $成立.

引理2.2  设 $P\in \beta$是一个固定的非平凡投影, 则对 $A\in \mbox{alg}_M\beta, $

(1) $\varphi(P)\varphi(PAP^{\perp})\varphi(P)=\varphi(P^{\perp})\varphi(PAP^{\perp})\varphi(P)=0;$

(2) $\varphi(PAP)=\varphi(P)\varphi(PAP)\varphi(P);$

(3) $\varphi(P^{\perp}AP^{\perp})=\varphi(P^{\perp})\varphi(P^{\perp}AP^{\perp})\varphi(P^{\perp}).$

  (1) 设 $A\in \mbox{alg}_M\beta, $则由 $PAP^{\perp}P=0$

$ \varphi(PAP^{\perp})=\varphi(PAP^{\perp}\circ P)=\varphi(PAP^{\perp})\circ \varphi(P), $

上式两边同乘 $\varphi(P), $并由引理2.1得

$ \begin{equation} \varphi(P)\varphi(PAP^{\perp})\varphi(P)=0.\end{equation} $ (2.1)

$P^{\perp}PAP^{\perp}=0, $从而 $ \varphi(PAP^{\perp})=\varphi(P^{\perp}\circ PAP^{\perp})=\varphi(P^{\perp})\circ \varphi(PAP^{\perp}). $上式两边同乘以 $\varphi(P^{\perp}), $并由引理2.1得

$ \begin{equation} \varphi(P^{\perp})\varphi(PAP^{\perp})\varphi(P^{\perp})=0.\end{equation} $ (2.2)

由等式(2.1) 和(2.2) 知, 对任意的 $A\in \mbox{alg}_M\beta, $

$ \varphi(P)\varphi(PAP^{\perp})\varphi(P)=\varphi(P^{\perp})\varphi(PAP^{\perp})\varphi(P^{\perp})=0. $

(2) 由 $P^{\perp}PAP=0$

$ \begin{equation} \varphi(P^{\perp})\circ\varphi(PAP)=\varphi(P^{\perp}\circ PAP)=0.\end{equation} $ (2.3)

由(2.3) 式及引理2.1得

$ \varphi(P^{\perp})\varphi(PAP)\varphi(P^{\perp}) =\varphi(P^{\perp})\varphi(PAP)\varphi(P)=\varphi(P)\varphi(PAP)\varphi(P^{\perp})=0. $

综上可知, 对任意的 $A\in \mbox{alg}_M\beta, $

$ \varphi(PAP)=\varphi(P)\varphi(PAP)\varphi(P). $

类似地, 我们可以证明(3).证毕.

引理2.3  设 $P\in \beta$是一个固定的非平凡投影, 则对 $A\in \mbox{alg}_M\beta, $

(1) $\varphi(PAP)=\varphi(P)\varphi(A)\varphi(P), \varphi(P^{\perp}AP^{\perp})=\varphi(P^{\perp})\varphi(A)\varphi(P^{\perp});$

(2) $\varphi(PAP^{\perp})=\varphi(P)\varphi(A)\varphi(P^{\perp})+\varphi(P^{\perp})\varphi(A)\varphi(P);$

(3) $\varphi(PA+AP)=\varphi(P)\varphi(A)+\varphi(A)\varphi(P).$

  (1) 设 $A\in \mbox{alg}_M\beta, $由引理2.2(1) 和(3) 知

$ \varphi(P)\varphi(PAP^{\perp})\varphi(P)=\varphi(P)\varphi(P^{\perp}AP^{\perp})\varphi(P)=0. $

再利用引理2.2(2) 得

$ \begin{eqnarray*} &&\varphi(PAP)=\varphi(P)\varphi(PAP)\varphi(P)+\varphi(P)\varphi(PAP^{\perp})\varphi(P) +\varphi(P)\varphi(P^{\perp}AP^{\perp})\varphi(P)\\ &=&\varphi(P)\varphi(PAP+PAP^{\perp}+P^{\perp}AP^{\perp})\varphi(P)\\ &=&\varphi(P)\varphi(A)\varphi(P). \end{eqnarray*} $

同理可得, 对任意的 $A\in \mbox{alg}_M\beta, $ $ \varphi(P^{\perp}AP^{\perp})=\varphi(P^{\perp})\varphi(A)\varphi(P^{\perp}). $

(2) 设 $A\in \mbox{alg}_M\beta, $一方面, $ \varphi(A)=\varphi(PAP+PAP^{\perp}+P^{\perp}AP^{\perp}). $

另一方面, $ \varphi(A)=\varphi(P)\varphi(A)\varphi(P)+\varphi(P)\varphi(A)\varphi(P^{\perp}) +\varphi(P^{\perp})\varphi(A)\varphi(P)+\varphi(P^{\perp})\varphi(A)\varphi(P^{\perp}). $于是, 由(1) 得

$ \varphi(PAP^{\perp})=\varphi(P)\varphi(A)\varphi(P^{\perp})+\varphi(P^{\perp})\varphi(A)\varphi(P). $

(3) 由(1) 和(2), 并注意到 $PA=PAP, $从而对任意的 $A\in \mbox{alg}_M\beta, $

$ \begin{eqnarray*} \varphi(PA+AP) &=&\varphi(2PAP+PAP^{\perp})=2\varphi(PAP)+\varphi(PAP^{\perp})\\ &=&2\varphi(P)\varphi(A)\varphi(P)+\varphi(P)\varphi(A)\varphi(P^{\perp}) +\varphi(P^{\perp})\varphi(A)\varphi(P)\\ &=&\varphi(P)\varphi(A)+\varphi(A)\varphi(P). \end{eqnarray*} $

证毕.

引理2.4  设 $P\in \beta$是一个固定的非平凡投影, 则对 $A, B\in \mbox{alg}_M\beta, $

$ \begin{eqnarray*}&& \varphi(P)\varphi(A)\varphi(P^\bot)\varphi(B)\varphi(P)=0; \ \ \ &&\varphi(P)\varphi(B)\varphi(P^\bot)\varphi(A)\varphi(P)=0;\\ &&\varphi(P^\bot)\varphi(A)\varphi(P)\varphi(B)\varphi(P^\bot)=0;\ \ && \varphi(P^\bot)\varphi(B)\varphi(P)\varphi(A)\varphi(P^\bot)=0.\end{eqnarray*} $

  设 $A, B\in \mbox{alg}_M\beta, $因为 $PAP^{\perp}PBP^{\perp}=0, $所以

$ \varphi(PAP^{\perp})\circ\varphi(PBP^{\perp})=\varphi(PAP^{\perp}\circ PBP^{\perp})=0. $

从而由引理2.3(2),

$ \begin{eqnarray*} &&\varphi(P)\varphi(A)\varphi(P^\bot)\varphi(B)\varphi(P)+ \varphi(P^\bot)\varphi(A)\varphi(P)\varphi(B)\varphi(P^\bot)\\ &&+\varphi(P)\varphi(B)\varphi(P^\bot)\varphi(A)\varphi(P)+ \varphi(P^\bot)\varphi(B)\varphi(P)\varphi(A)\varphi(P^\bot)\\ &=&[\varphi(P)\varphi(A)\varphi(P^\bot)+\varphi(P^\bot)\varphi(A)\varphi(P)]\circ [\varphi(P)\varphi(B)\varphi(P^\bot)+\varphi(P^\bot)\varphi(B)\varphi(P)]\\ &=&\varphi(PAP^\bot)\circ \varphi(PBP^\bot)=0. \end{eqnarray*} $

这说明

$ \begin{eqnarray}&& \varphi(P)\varphi(A)\varphi(P^\bot)\varphi(B)\varphi(P) +\varphi(P)\varphi(B)\varphi(P^\bot)\varphi(A)\varphi(P)=0, \end{eqnarray} $ (2.4)
$ \begin{eqnarray}&& \varphi(P^\bot)\varphi(A)\varphi(P)\varphi(B)\varphi(P^\bot) +\varphi(P^\bot)\varphi(B)\varphi(P)\varphi(A)\varphi(P^\bot)=0.\end{eqnarray} $ (2.5)

因为 $\varphi$是双射, 我们用 $\varphi(P)\varphi(A)\varphi(P^\bot)$代替(2.4) 和(2.5) 式中的 $\varphi(A), $可得

$ \varphi(P)\varphi(A)\varphi(P^\bot)\varphi(B)\varphi(P)=0 \mbox{且} \varphi(P^\bot)\varphi(B)\varphi(P)\varphi(A)\varphi(P^\bot)=0. $

再由(2.4) 和(2.5) 式, 于是对任意的 $A, B\in \mbox{alg}_M\beta, $

$ \varphi(P)\varphi(A)\varphi(P^\bot)\varphi(B)\varphi(P)= \varphi(P^\bot)\varphi(A)\varphi(P)\varphi(B)\varphi(P^\bot)=0 $

$ \varphi(P)\varphi(B)\varphi(P^\bot)\varphi(A)\varphi(P)= \varphi(P^\bot)\varphi(B)\varphi(P)\varphi(A)\varphi(P^\bot)=0. $

证毕.

引理2.5  设 $\beta$是因子von Nuemann代数 $M$中的套, 且 $T, S\in M, $ $T(\mbox{alg}_M\beta)S=0$当且仅当存在 $P\in\beta$使得 $T=TP^\bot$ $S=PS$.

  充分性显然.下面只须证必要性.

$P$表示由 ${\cal H}$ $(\mbox{alg}_M\beta)S{\cal H}$的闭包上的正交投影, 则 $P\in \beta.$由于 $T(\mbox{alg}_M\beta)S=0, $从而 $TP=0, $ $T=TP^\bot.$另一方面, 我们有 $P^\bot(\mbox{alg}_M\beta)S=0.$于是 $P^\bot S=0, $ $S=PS.$ \证毕.

引理2.6  设 $P\in \beta$是一个固定的非平凡投影, 则对 $T\in \mbox{alg}_M\beta, $有要么 $\varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot);$要么 $\varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P).$

  不妨设 $P\in\beta/\{0, I\}.$ $ A=\varphi(P)\varphi(T)\varphi(P^\bot)$ $ B=\varphi(P^\bot)\varphi(T)\varphi(P). $则由引理2.4, 对任意算子 $X\in \mbox{alg}_M\gamma, $都有

$ \begin{equation} \varphi(P^\bot)XA=\varphi(P)XB=0.\end{equation} $ (2.6)

由(2.6) 式和引理2.5, 则存在投影 $P_1\in \gamma$使得

$ \begin{eqnarray} \varphi(P^\bot)=\varphi(P^\bot)P_1^\bot, \end{eqnarray} $ (2.7)
$ \begin{eqnarray} A=P_1A.\end{eqnarray} $ (2.8)

存在投影 $P_2\in \gamma$使得

$ \begin{eqnarray} \varphi(P)=\varphi(P)P_2^\bot;\end{eqnarray} $ (2.9)
$ \begin{eqnarray}B=P_2B. \end{eqnarray} $ (2.10)

由(2.7) 和(2.9) 式, 则

$ \varphi(P^\bot)P_1^\bot+\varphi(P)P_2^\bot=\varphi(I)=I. $

对上式两边右乘 $P_1P_2$ $P_1P_2=0.$如果 $A\neq 0, $则由(2.8) 式知 $P_1\neq0.$于是 $P_2=0.$因此由(2.10) 式得 $B=0. $同理, 如果 $B\neq 0, $则一定有 $A=0.$这说明 $A=0$ $B=0.$ $\varphi(PTP^\bot)=A+B, $从而对任意的 $T\in \mbox{alg}_M\beta, $必有以下两式

$ \varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot) \ \ \mbox{和} \ \ \varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P) $

之一成立.由于 $M$是因子, 则存在部分等距算子 $V\in M$使得 $V=PVP^\bot, $从而 $V\in \mbox{alg}_M\beta.$于是由上述讨论可知要么 $\varphi(V)=\varphi(P)\varphi(V)\varphi(P^\bot)$; 要么 $\varphi(V)=\varphi(P^\bot)\varphi(V)\varphi(P).$

$\varphi(V)=\varphi(P)\varphi(V)\varphi(P^\bot)$时, 如果存在 $S\in\mbox{alg}_M\beta$使得 $\varphi(PSP^\bot)\neq\varphi(P)\varphi(S)\varphi(P^\bot), $ $\varphi(PSP^\bot)=\varphi(P^\bot)\varphi(S)\varphi(P).$

另一方面, 由于

$\varphi(V+PSP^\bot)=\varphi(P)\varphi(V+S)\varphi(P^\bot) \ \mbox{和} \ \ \varphi(V+PSP^\bot)=\varphi(P^\bot)\varphi(V+S)\varphi(P) $之一成立, 并且 $\varphi(V)=\varphi(P)\varphi(V)\varphi(P^\bot), \ \varphi(PSP^\bot)\neq\varphi(P)\varphi(S)\varphi(P^\bot), $

$ \varphi(V+PSP^\bot)=\varphi(P^\bot)\varphi(V+S)\varphi(P). $

于是 $\varphi(V)=\varphi(P^\bot)\varphi(V)\varphi(P)=\varphi(P)\varphi(V)\varphi(P^\bot).$这说明 $\varphi(V)=0, $从而 $V=0.$矛盾.所以此时对任意的 $T\in \mbox{alg}_M\beta, $

$ \varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot). $

同理可得当 $\varphi(V)=\varphi(P^\bot)\varphi(V)\varphi(P)$时, 对任意的 $T\in \mbox{alg}_M\beta, $

$ \varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P). $

因此, 对任意的 $T\in \mbox{alg}_M\beta$和任意投影 $P\in\beta$,要么 $\varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot);$要么 $\varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P).$证毕.

引理2.7  设 $P\in \beta$是一个固定的非平凡投影, 则对 $A, T\in \mbox{alg}_M\beta, $下列之一成立:

(1) $\varphi(APTP^\bot)=\varphi(A)\varphi(PTP^\bot), \varphi(PTP^\bot A)=\varphi(PTP^\bot)\varphi(A);$

(2) $\varphi(APTP^\bot)=\varphi(PTP^\bot)\varphi(A), \varphi(PTP^\bot A)=\varphi(A)\varphi(PTP^\bot).$

  由引理2.6知, 对 $T\in \mbox{alg}_M\beta, $ $\varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot)$

$ \varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P) $

之一成立.当 $\varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot)$时, $ \varphi(P^\bot)\varphi(T)\varphi(P)=0. $由引理2.3(1) 知, 对 $T\in \mbox{alg}_M\beta, $

$ \begin{equation} \varphi(TP)=\varphi(PTP)=\varphi(P)\varphi(T)\varphi(P^\bot) +\varphi(P^\bot)\varphi(T)\varphi(P)=\varphi(T)\varphi(P).\end{equation} $ (2.11)

同理可得

$ \begin{equation} \varphi(P^{\perp}T)=\varphi(P^{\perp}TP^{\perp})=\varphi(P^{\perp})\varphi(T)\varphi(P^\bot) +\varphi(P^\bot)\varphi(T)\varphi(P)=\varphi(P^{\perp})\varphi(T).\end{equation} $ (2.12)

$PAP=AP, (PTP^{\perp})AP=0$及(2.11) 式知, 对任意的 $A\in \mbox{alg}_M\beta, $

$ \begin{eqnarray*} \varphi(APTP^\bot)&=&\varphi(PTP^\bot\circ AP)=\varphi(PTP^\bot)\circ\varphi(AP)\\ &=&\varphi(PTP^\bot)\varphi(AP)+\varphi(AP)\varphi(PTP^\bot)\\ &=&\varphi(A)\varphi(P)\varphi(T)\varphi(P^\bot)\\ &=&\varphi(A)\varphi(PTP^\bot). \end{eqnarray*} $

$P^\bot AP^\bot=P^\bot A, P^\bot A(PTP^{\perp})=0, $由(2.12) 式类似可得

$ \begin{eqnarray*} \varphi(PTP^\bot A)&=&\varphi(P^{\perp}A\circ PTP^\bot)=\varphi(P^{\perp}A)\circ\varphi(PTP^\bot)\\ &=&\varphi(PTP^\bot)\varphi(A). \end{eqnarray*} $

即当 $\varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot)$时, 结论(1) 成立.

类似可证, 当 $\varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P)$成立时, 结论(2) 成立.证毕.

定理2.1的证明  由引理2.6, 对任意的 $T\in \mbox{alg}_M\beta, $

$ \varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot) \ \ \mbox{和} \ \ \ \varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P) $

其中之一成立.

$ \varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot), $则由引理2.7(1), 并注意到 $BP=PBP, $从而对任意的 $A, B\in \mbox{alg}_M\beta, $

$ \varphi(AB)\varphi(PTP^\bot)=\varphi(ABPTP^\bot)=\varphi(A)\varphi(BPTP^\bot) =\varphi(A)\varphi(B)\varphi(PTP^\bot). $

从而对任意 $A, B\in \mbox{alg}_M\beta, $

$ \begin{equation} [\varphi(AB)-\varphi(A)\varphi(B)]\varphi(P)\mbox{alg}_M\gamma\varphi(P^\bot)=0, \end{equation} $ (2.13)

类似地, 由引理2.7(1) 及 $P^{\perp}A=P^{\perp}AP^{\perp}, $对任意 $A, B\in \mbox{alg}_M\beta, $

$ \begin{equation} \varphi(P)\mbox{alg}_M\gamma\varphi(P^\bot)[\varphi(AB)-\varphi(A)\varphi(B)]=0.\end{equation} $ (2.14)

由上面两式和引理2.5知, 存在投影 $Q_1, Q_2\in\gamma$使得

$ [\varphi(AB)-\varphi(A)\varphi(B)]\varphi(P)=[\varphi(AB)-\varphi(A)\varphi(B)]\varphi(P)Q_1^\bot; $ (2.15)
$ \begin{eqnarray} \varphi(P^\bot)=Q_1\varphi(P^\bot); \end{eqnarray} $ (2.16)
$ \begin{eqnarray} \varphi(P)=\varphi(P )Q_2^\bot;\end{eqnarray} $ (2.17)
$ \varphi(P^\bot)[\varphi(AB)-\varphi(A)\varphi(B)]=Q_2\varphi(P^\bot)[\varphi(AB)-\varphi(A)\varphi(B)]. $ (2.18)

由于 $\varphi(PTP^\bot)=\varphi(P)\varphi(T)\varphi(P^\bot), $则对任意的 $T\in \mbox{alg}_M\beta, $ $ \varphi(P^\bot)\varphi(T)\varphi(P)=0. $从而 $[\varphi(P)]\in M, [\varphi(P)]$表示由 ${\cal H}$ $\varphi(P){\cal H}$上的正交投影.特别地, $ \varphi(P^\bot)Q_1^\bot\varphi(P)=0, $

$ \varphi(P^\bot)Q_1^\bot\varphi(P^\bot)=\varphi(P^\bot)Q_1^\bot. $

从而由(2.16) 式知

$ \varphi(P^\bot)Q_1^\bot=Q_1^\bot\varphi(P^\bot)=0. $

这说明 $Q_1^\bot[\varphi(P^\bot)]=0.$由于 $P$是一个非平凡投影, 则 $[\varphi(P^\bot)]\neq0, $从而 $Q_1^\bot=0.$于是由(2.15) 式得

$ [\varphi(AB)-\varphi(A)\varphi(B)]\varphi(P)=0. $ (2.19)

由(2.17) 式, 同上类似地讨论可得 $ \varphi(P)Q_2=Q_2\varphi(P)=0. $这说明 $[\varphi(P)]Q_2=0, $从而 $Q_2=0.$于是由(2.18) 式知,

$ \varphi(P^\bot)[\varphi(AB)-\varphi(A)\varphi(B)]=0. $ (2.20)

由于 $P^{\perp}BP^{\perp}PAP^{\perp}=0, $由引理2.2知, 对任意 $A, B\in \mbox{alg}_M\beta, $

$ \begin{eqnarray*} \varphi(PAP^{\perp}BP^{\perp}) &=& \varphi(P^{\perp}BP^{\perp}\circ PAP^{\perp})=\varphi(P^{\perp}BP^{\perp})\circ \varphi(PAP^{\perp})\\ &=& \varphi(P^{\perp}BP^{\perp})\varphi(PAP^{\perp}). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{eqnarray*} $ (2.21)

由于 $PBP^{\perp}PAP=0, $同理可得

$ \varphi(PAPBP^{\perp})=\varphi(PAP)\varphi(PBP^{\perp}). $ (2.22)

由等式(2.21)、(2.22) 及引理2.3得

$ \begin{eqnarray*} \varphi(P)\varphi(AB)\varphi(P^\bot) &=&\varphi(PAPBP^\bot)+\varphi(PAP^\bot BP^\bot)\\ &=&\varphi(PAP)\varphi(PBP^\bot)+\varphi(PAP^\bot)\varphi(P^\bot BP^\bot)\\ &=&\varphi(P)\varphi(A)\varphi(P)\varphi(B)\varphi(P^\bot) +\varphi(P)\varphi(A)\varphi(P^\bot)\varphi(B)\varphi(P^\bot)\\ &=&\varphi(P)\varphi(A)\varphi(B)\varphi(P^\bot). \end{eqnarray*} $

从而对任意 $A, B\in \mbox{alg}_M\beta, $

$ \varphi(P)[\varphi(AB)-\varphi(A)\varphi(B)]\varphi(P^\bot)=0. $ (2.23)

由(2.19)、(2.20) 及(2.23) 式知, 对任意 $A, B\in \mbox{alg}_M\beta, $

$ \varphi(AB)=\varphi(A)\varphi(B). $

如果对任意 $T\in \mbox{alg}_M\beta, $ $\varphi(PTP^\bot)=\varphi(P^\bot)\varphi(T)\varphi(P), $对任意 $X\in\mbox{alg}_M\beta^\bot, $我们定义 $\psi(X)=\varphi(JX^*J), $这里 $J$是文[11, 引理2.3]中所定义的共轭线性对合算子.由引理2.7(2) 类似可证

$ \varphi(AB)=\varphi(B)\varphi(A). $

综上所述 $\varphi$要么是一个同构, 要么是一个反同构.证毕.

参考文献
[1] Herstein I N. Jordan homomorphisms[J]. Trans. Amer. Math. Soc., 1956, 81: 331–351. DOI:10.1090/S0002-9947-1956-0076751-6
[2] Baxter W E, Martindale W S. Jordan homomorphisms of semiprime rings[J]. Algebra, 1979, 56(2): 457–471. DOI:10.1016/0021-8693(79)90349-1
[3] Brešar M. Jordan mappings of semiprime rings Ⅱ[J]. Bull. Austral. Math. Soc., 1991, 44(2): 233–238. DOI:10.1017/S000497270002966X
[4] Brešar M. Jordan mappings of semiprime rings[J]. J. Algebra, 1989, 127(1): 218–228. DOI:10.1016/0021-8693(89)90285-8
[5] Molnár L, Šemrl P. Some linear preserver problems on upper triangular matrices[J]. Linear and Multilinear Algebra, 1998, 45(2-3): 189–206. DOI:10.1080/03081089808818586
[6] Beidar K I, Brešar M, Chebotar M A. Jordan isomorphisms of triangular matrix algebras over a connected commutative ring[J]. Linear Alg. Appl., 2000, 312(1-2): 197–201.
[7] Wong T L. Jordan isomorphisms of triangular rings[J]. Proc. Amer. Math. Soc., 2005, 133(11): 3381–3388. DOI:10.1090/S0002-9939-05-07989-X
[8] 张建华. 套代数上的Jordan导子[J]. 数学学报, 1998, 41(1): 205–212.
[9] 张建华. 套代数上的Jordan同构[J]. 数学学报, 2002, 45(4): 819–824.
[10] Lu F. Jordan isomorphisms of nest algbras[J]. Proc. Londin Math. Soc., 2003, 131(1): 147–154. DOI:10.1090/S0002-9939-02-06587-5
[11] Chebotar M A, Ke W F, Lee P H, Wong N C. Mappings preserving zero product[J]. Studia Math., 2003, 155(1): 77–94. DOI:10.4064/sm155-1-6
[12] Hou J. Additive maps preserving Jordan zero-product on nest algebra[J]. Linear Algebra Appl., 2008, 429(1): 190–208. DOI:10.1016/j.laa.2008.02.021
[13] Zhang J, Yang A, Pan F. Linear maps preserving zero product on Nest subalgebras of factor von Neumann algebras[J]. Linear Algebra Appl., 2006, 412(2-3): 348–361. DOI:10.1016/j.laa.2005.07.001
[14] Gilfeather F, Larson D R. Nest subalgebras of von Neumann algebras[J]. Adv. Math, 1982, 46: 171–199. DOI:10.1016/0001-8708(82)90022-6
[15] Davidson K R. Nest algebras[M]. Pitman Reseach Notes in Mathematics Series 191, New York: Longman Scientiflc and Technical, 1988.