数学杂志  2015, Vol. 35 Issue (1): 110-122   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
徐耀
张庆彩
关于亚纯函数唯一性的一些结果
徐耀, 张庆彩    
中国人民大学信息学院, 北京 100872
摘要:本文研究了涉及重值的具有四个公共小函数的亚纯函数的唯一性问题.利用关于小函数的Nevanlinna第二基本定理精简形式及处理小函数的有关方法, 改进了有关结果.利用Gundersen处理公共值对的方法, 对具有五个IM公共值对和四个IM公共小函数对的亚纯函数的情况作了进一步讨论, 推广改进了相关结果.
关键词亚纯函数    小函数    唯一性    公共值    
SOME UNIQUENESS RESULTS OF MEROMORPHIC FUNCTIONS
XU Yao, ZHANG Qing-cai    
School of Information, Renmin University of China, Beijing 100872, China
Abstract: In this paper, we study the uniqueness of meromorphic functions sharing four small functions concerning the multiplicities. Using the precise form of the second fundamental theorem of Nevanlinna concerning small functions and the some technique of dealing with small functions, we improve some previous results. And also by the methods of handling shared pairs given by Gundersen, we further research the problems of meromorphic functions sharing five pairs of values or sharing four pairs of small functions, and obtain some results which extending and improving the related results.
Key words: meromorphic function     small function     uniqueness     shared value    
1 引言及主要结果

$f(z)$$g(z)$为开平面内的非常数亚纯函数, 本文采用亚纯函数Nevanlinna理论的常用符号(见文献[1, 2]), 如$T(r,f), m(r,f), N(r,f), \overline{N}(r,f), N(r,a,f), S(r,f)$等等,并假设读者已熟悉Nevanlinna基本理论(见文献[2]).设$a$, $b$为两个复数, 若$f-a$$g-b$的零点相同, 则称$(a,b)$$f$$ g$的IM公共值对; 若$f-a$$g-b$的零点相同, 且零点的重级也相同, 则称$(a,b)$$f$$g$的CM公共值对.若$(a,0)$$f$$1/g$的CM(IM)公共值对, 则$(a,\infty)$$f$$g$的CM(IM)公共值对.当$(a_{k},b_{k})(1\leq k\leq n,n\geq2)$$f$$g$$n$个公共值对时, 我们要求$a_{i}\neq a_{j},b_{i}\neq b_{j}(i\neq j)$.当$a=b$时, 则称$a$$f$$g$的CM(IM)公共值.

$k$为一正整数, 我们用$E_{k)}(a,f)$表示$f-a$的重级不超过$k$的零点的集合, 且重级零点按重数计算; $\overline{E}_{k)}(a,f)$表示重级零点仅计一次的情况.若$E_{+\infty)}(a,f)=E_{+\infty)}(a,g)$, 则$a$$f$$g$的CM公共值; 若$\overline{E}_{+\infty)}(a,f)=\overline{E}_{+\infty)}(a,g)$, 则$a$$f$$g$的IM公共值.我们用$N_{k)}(r,a,f)$表示$f-a$的重级不超过$k$的零点的计数函数; $N_{(k+1}(r,a,f)$表示$f-a$的重级超过$k$的零点的计数函数. $\overline{N}_{k)}(r,a,f)$$\overline{N}_{(k+1}(r,a,f)$分别表示相应的精简计数函数.

$S(r,f)$表示$o(T(r,f))$($r\rightarrow\infty$, $r\not\in E$)型的量, 其中$E$$R^{+}$上的一个线性测度有穷的集合, 若$S(r,f)=S(r,g)$, 则记$S(r)=S(r,f)=S(r,g)$.

我们用$\overline{N}_{E}(r,f-a=0=g-b)$表示$f-a$$g-b$具有相同重级的公共零点的计数函数, 每个零点仅计一次; 用$\overline{N}(r,f-a=0=g-b)$表示$f-a$$g-b$公共零点的计数函数, 每个零点仅计一次.如果

$\overline{N}(r,a,f)-\overline{N}_{E}(r,f-a=0=g-b)=S(r,f)$

$\overline{N}(r,a,g)-\overline{N}_{E}(r,f-a=0=g-b)=S(r,g),$

则称$(a,b)$$f$$g$的CM$^{\ast}$公共值对.如果

$\overline{N}(r,a,f)-\overline{N}(r,f-a=0=g-b)=S(r,f)$

$\overline{N}(r,a,g)-\overline{N}(r,f-a=0=g-b)=S(r,g),$

则称$(a,b)$$f$$g$的IM$^{\ast}$公共值对.

$a(z)$为开平面内的亚纯函数, 若$T(r,a)=S(r,f)$, 则称$a$$f$的小函数.当$a$, $b$为小函数时, 也有与上述类似的定义, 只需把“值”替换为“小函数”.

$f(z)$$g(z)$为两个非常数亚纯函数, 若存在$f$的四个小函数$\alpha_{i}(z)$, $i$=1, 2, 3, 4, 使得$g=(\alpha_{1}f+\alpha_{2})/(\alpha_{3}f+\alpha_{4})$ $(\alpha_{1}\alpha_{4}-\alpha_{2}\alpha_{3}\not\equiv0)$, 则称$g$$f$的拟分式线性变换.

1929年, Nevanlinna (见文献[2])证明了下述四值定理:

定理A 设$f(z)$$g(z)$为两个非常数亚纯函数, 以$a_{j}(j=1, 2, 3, 4)$为四个判别的CM公共值, 则$f$$g$的分式线性变换.

1995年, Li和Yang (见文献[5])将“公共值”推广到“公共小函数”, 证明了下述定理:

定理B 设$f(z)$$g(z)$为两个非常数亚纯函数, $a_{j}(z)(j=1, 2, 3, 4)$$f$$g$的四个判别的CM$^{\ast}$公共小函数, 则$f$$g$的拟分式线性变换.

1999年, 张庆彩和杨连中(见文献[6])在考虑重值的情况下, 对定理A作了改进, 得到

定理C 设$f(z)$$g(z)$为两个非常数亚纯函数, $a_{j}(j=1, 2, 3, 4)$为四个判别的复数, $k$为一正整数.若$E_{k)}(a_{j},f)=E_{k)}(a_{j},g)$(j=1, 2, 3, 4), $k\geq12$, 则$f$$g$的分式线性变换.

2002年, Yao和Yu (见文献[7])在考虑重值的条件下, 改进了定理B, 得到

定理D 设$f(z)$$g(z)$为两个非常数亚纯函数, $a_{j}(z)(j=1, 2, 3, 4)$$f$$g$的四个判别的小函数, $k$为一正整数.若$E_{k)}(a_{j},f)=E_{k)}(a_{j},g)$(j=1, 2, 3, 4), $k\geq15$, 则$f$$g$的拟分式线性变换.

本文在定理C和定理D的基础上, 进一步得到如下结果:

定理1 设$f(z)$$g(z)$为两个非常数亚纯函数, $a_{j}(z)(j=1, 2, 3, 4)$$f$$g$的四个判别的小函数, $k$为一正整数.若$E_{k)}(a_{j},f)=E_{k)}(a_{j},g)$(j=1, 2, 3, 4), $k\geq11$, 则$f$$g$的拟分式线性变换.

对于上述四个值集的情况, 还可以予以精确化, 本文又证明了:

定理2 设$f(z)$$g(z)$为两个非常数亚纯函数, $a_{j}(z)(j=1, 2, 3, 4)$$f$$g$的四个判别的小函数, $k$为一正整数.若$E_{11)}(a_{j},f)=E_{11)}(a_{j},g)(j=1,2,3)$, $E_{k)}(a_{4},f)=E_{k)}(a_{4},g)$, $k\geq10$, 则$f$$g$的拟分式线性变换.

1997年, Czubiak和Gundersen (见文献[8])证明了下述定理:

定理E 设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq6)$$f$$g$的六个IM公共值对, 且$a_{i}\neq a_{j},b_{i}\neq b_{j}(i\neq j)$, 则$f$$g$的分式线性变换.

2003年, Hu, Li和Yang (见文献[9])对定理E作了改进, 证明了

定理F 设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq5)$$f$$g$的五个IM$^{\ast}$公共值对, 且$a_{i}\neq a_{j},b_{i}\neq b_{j}(i\neq j)$, 若

$\overline{N}(r,a_{6},f)-\overline{N}(r,f-a_{6}=0=g-b_{6})=S(r),$

其中$a_{6}\neq a_{k},b_{6}\neq b_{k}, (1\leq k\leq5)$, 则$f$$g$的分式线性变换.

本文得到了定理F的更一般结果:

定理3 设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq5)$$f$$g$的五个IM$^{\ast}$公共值对, 且$a_{i}\neq a_{j},b_{i}\neq b_{j}(i\neq j)$, 若

$\begin{align} \overline{N}(r,a_{6},f)-\overline{N}(r,f-a_{6}=0=g-b_{6})\leq\lambda T(r,f)+S(r),\label{eqa1} \end{align}$ (1.1)

其中$\lambda\in[0,\frac{2}{5}), a_{6}\neq a_{k},b_{6}\neq b_{k}, (1\leq k\leq5)$, 则$f$$g$的分式线性变换.

2011年, Gundersen (见文献[8])证明了下述定理和推论:

定理G 设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq5)$$f$$g$的五个IM公共值对, 且$a_{i}\neq a_{j}, b_{i}\neq b_{j}(i\neq j)$, 则或者$f$$g$的分式线性变换或者对任意不同的$i,j,k\in\{1, 2, 3, 4, 5\}$, 有以下五个不等式成立:

$\begin{eqnarray*} && \overline{N}(r,a_{i},f)+\overline{N}(r,a_{j},f)\leq\frac{3}{2}T(r,f)+S(r,f);\\ && T(r,f)\leq\overline{N}(r,a_{i},f)+\overline{N}(r,a_{j},f)+S(r,f);\\ && \overline{N}(r,a_{i},f)+\overline{N}(r,a_{j},f)+\overline{N}(r,a_{k},f)\leq2T(r,f)+S(r,f);\\ && \frac{3}{2}T(r,f)\leq\overline{N}(r,a_{i},f)+\overline{N}(r,a_{j},f)+\overline{N}(r,a_{k},f)+S(r,f);\\ && \overline{N}(r,a_{i},f)\leq2\overline{N}(r,a_{j},f)+S(r,f). \end{eqnarray*}$

推论A (见文献[8])设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq5)$$f$$g$的五个IM公共值对, 且$a_{i}\neq a_{j}, b_{i}\neq b_{j}(i\neq j)$, 则或者$f$$g$的分式线性变换或者$\overline{N}(r,a_{k},f)+S(r,f)\geq\frac{1}{3}T(r,f),1\leq k\leq5.$

推论B (见文献[8])设$f(z)$$g(z)$为两个非常数整函数, $(a_{k},b_{k})(1\leq k\leq4)$$f$$g$的四个IM公共值对, 其中$a_{k}$$b_{k}$均为有穷值, 且$a_{i}\neq a_{j}, b_{i}\neq b_{j}(i\neq j)$, 则$f$$g$的分式线性变换.

本文对推论A作了改进, 得到:

定理4 设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq4)$$f$$g$的四个IM$^{\ast}$公共小函数对, 且$a_{i}\neq a_{j}, b_{i}\neq b_{j}(i\neq j)$, 若

$\begin{align} \overline{N}(r,a_{5},f)\leq\lambda T(r,f)+S(r,f), \overline{N}(r,a_{5},g)\leq\lambda T(r,g)+S(r,g), \label{eqa2} \end{align}$ (1.2)

其中$\lambda\in[0,\frac{1}{3})$, $T(r,a_{5})=S(r,f)$, $T(r,b_{5})=S(r,g)$, $a_{5}\neq a_{k},b_{5}\neq b_{k}, (1\leq k\leq4)$, 则$f$$g$的拟分式线性变换.

注1 由定理4, 可把推论B中的“公共值对”推广到“公共小函数对”.

2 引理

引理1 (见文献[9])设$f(z)$为一个非常数亚纯函数, $a_{j}(z)(j=1,2,\cdots,q)$$f$$q$个判别的小函数, 则对于任意的$\varepsilon>0$, 有

$(q-2)T(r,f)\leq\sum\limits_{j=1}^{q} \overline{N}(r,a_{j},f)+\varepsilon T(r,f)+S(r,f),$

其中$r\not\in E, E\subset R$$\int_{E} d\log\log r<\infty$.

引理2 (见文献[10])设$f(z)$, $a(z)$$b(z)$为亚纯函数$(f(z),a(z),b(z)\not\equiv\infty)$, $a(z)$$b(z)$$f$的小函数, 且$a(z)\not\equiv b(z)$, 设

$\begin{equation} L(f,a,b)=\begin{matrix} \begin{vmatrix}f&f'&1\\a&a'&1\\b&b'&1\end{vmatrix} \end{matrix}, \end{equation}$

$L(f,a,b)\not\equiv0$, 及

$m(r,\frac{L(f,a,b)f^{k}}{(f-a)(f-b)})=S(r,f)(k=0,1).$

引理3 设$f(z)$为一个非常数亚纯函数, $a_{j}(z)(j=1,2,\cdots,q)$$f$$q$个判别的小函数, $k$为正整数, 则

$\sum\limits_{j=1}^{q}\overline{N}_{(k+1}(r,a_{j},f)\leq\frac{2+\varepsilon}{k}T(r,f)+S(r,f).$

 由引理1, 得

$\begin{align} (q-2)T(r,f)\leq\sum\limits_{j=1}^{q}\overline{N}(r,a_{j},f)+\varepsilon T(r,f)+S(r,f).\label{eqb1} \end{align}$ (2.1)

$\overline{N}(r,a_{j},f)+k\overline{N}_{(k+1}(r,a_{j},f)\leq N(r,a_{j},f)\leq T(r,f)+S(r,f),$

故有

$\begin{align} k\sum\limits_{j=1}^{q}\overline{N}_{(k+1}(r,a_{j},f)+\sum\limits_{j=1}^{q}\overline{N}(r,a_{j},f)\leq qT(r,f)+S(r,f).\label{eqb2} \end{align}$ (2.2)

由(2.1) 和(2.2) 式, 得

$(q-2)T(r,f)+k\sum\limits_{j=1}^{q}\overline{N}_{(k+1}(r,a_{j},f)\leq qT(r,f)+\varepsilon T(r,f)+S(r,f),$

$\sum\limits_{j=1}^{q}\overline{N}_{(k+1}(r,a_{j},f)\leq\frac{2+\varepsilon}{k}T(r,f)+S(r,f).$

引理3证毕.

引理4 设$f(z)$$g(z)$为两个非常数亚纯函数, $a_{j}(z)(j=1, 2, 3, 4)$$f$$g$的四个判别的小函数, 若$f\not\equiv g$, 且$\overline{E}_{k)}(a_{j},f)=\overline {E}_{k)}(a_{j},g),(j=1, 2, 3, 4)$, $k\geq3$为正整数, 则

$\begin{eqnarray*} ({\hbox{a}}) &&T(r,f)\leq\frac{k}{k-2-\varepsilon-k\varepsilon}T(r,g)+S(r), T(r,g)\leq\frac{k}{k-2-\varepsilon-k\varepsilon}T(r,f)+S(r),\\ && S(r)=S(r,f)=S(r,g);\\ ({\hbox{b}}) &&(2-\frac{2+\varepsilon+k\varepsilon}{k})T(r,f)+S(r)\leq\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f)\leq(1+\frac{k}{k-2-\varepsilon-k\varepsilon})T(r,f)+S(r),\\ &&(2-\frac{2+\varepsilon+k\varepsilon}{k})T(r,g)+S(r)\leq\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},g)\leq(1+\frac{k}{k-2-\varepsilon-k\varepsilon})T(r,g)+S(r). \end{eqnarray*}$

 由引理1和引理3, 有

$\begin{align} 2T(r,f)&\leq\sum\limits_{j=1}^{4}\overline{N}(r,a_{j},f)+\varepsilon T(r,f)+S(r,f) \notag \\ &=\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f) +\sum\limits_{j=1}^{4}\overline{N}_{(k+1}(r,a_{j},f)+\varepsilon T(r,f)+S(r,f) \label{eqb3}\\ &\leq T(r,f)+T(r,g)+\frac{2+\varepsilon+k\varepsilon}{k}T(r,f)+S(r,f), \notag \end{align}$ (2.3)

从而

$(k-2-\varepsilon-k\varepsilon)T(r,f)\leq kT(r,g)+S(r,f).$

因为$k\geq3$, 取$\varepsilon$充分小, 使$k-2-\varepsilon-k\varepsilon>0$, 所以有

$\begin{align} T(r,f)\leq\frac{k}{k-2-\varepsilon-k\varepsilon}T(r,g)+S(r,f).\label{eqb4} \end{align}$ (2.4)

同理

$\begin{align} T(r,g)\leq\frac{k}{k-2-\varepsilon-k\varepsilon}T(r,f)+S(r,g).\label{eqb5} \end{align}$ (2.5)

由(2.4) 和(2.5) 式, 得$S(r)=S(r,f)=S(r,g)$.此即得(a).

由(2.3) 式, 引理3和(a)得

$\begin{eqnarray*} 2T(r,f)&\leq&\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f)+\frac{2+\varepsilon+k\varepsilon}{k}T(r,f)+S(r)\\ &\leq& T(r,f)+T(r,g)+\frac{2+\varepsilon+k\varepsilon}{k}T(r,f)+S(r)\\ &\leq&(1+\frac{k}{k-2-\varepsilon-k\varepsilon})T(r,f)+\frac{2+\varepsilon+k\varepsilon}{k}T(r,f)+S(r), \end{eqnarray*}$

即得

$(2-\frac{2+\varepsilon+k\varepsilon}{k})T(r,f)+S(r) \leq\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f)\leq(1+\frac{k}{k-2-\varepsilon-k\varepsilon})T(r,f)+S(r).$

同理, 有

$(2-\frac{2+\varepsilon+k\varepsilon}{k})T(r,g)+S(r) \leq\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},g)\leq(1+\frac{k}{k-2-\varepsilon-k\varepsilon})T(r,g)+S(r).$

此即得(b).引理4证毕.

引理5 (见文献[2])设$f(z)$为一个非常数亚纯函数, $R(f)=\frac{P(f)}{Q(f)}$, 其中$P(f)=\sum\limits_{k=0}^{p}a_{k}f^{k}$$Q(f)=\sum\limits_{j=0}^{q}b_{j}f^{j}$是两个互质的$f$的多项式, 系数$\{a_{k}(z)\}$$\{b_{k}(z)\}$均为$f$的小函数, 且$a_{p}(z)\not\equiv0, b_{q}(z)\not\equiv0$, 则

$T(r,R(f))=\max\{p,q\}\cdot T(r,f)+S(r,f).$

引理6 (见文献[7])设$f(z)$$g(z)$为两个非常数亚纯函数, $(a_{k},b_{k})(1\leq k\leq5)$$f$$g$的五个IM$^{\ast}$公共值对, 且$a_{i}\neq a_{j}, b_{i}\neq b_{j}(i\neq j)$, 若$f$不是$g$的分式线性变换, 则下列等式成立:

(a) $ T(r,f)=T(r,g)+S(r),\quad S(r)=S(r,f)=S(r,g);$

(b) $3T(r,f)=\sum\limits_{k=1}^{5}\overline{N}(r,a_{k},f)+S(r);$

(c) $T(r,f)=\overline{N}(r,a,f)+S(r),\quad a\neq a_{k},1\leq k\leq5.$

3 定理证明

定理1的证明 不失一般性, 假设$a_{1}(z)\equiv \infty$, $a_{2}(z)\equiv 0$, $a_{3}(z)\equiv 1$, $a_{4}(z)\equiv a(z)(\not\equiv\infty,0,1)$, 且$f\not\equiv g$.令

$\begin{align} H_{1}=\begin{matrix}\begin{vmatrix}f(f-1)&f'\\a(a-1)&a' \end{vmatrix}\end{matrix}\Bigg/[f(f-1)(f-a)] -\begin{matrix}\begin{vmatrix}g(g-1)&g'\\a(a-1)&a' \end{vmatrix}\end{matrix}\Bigg/[g(g-1)(g-a)], \label{eqh1} \end{align}$ (3.1)

$\begin{matrix}\begin{vmatrix} f(f-1)&f'\\a(a-1)&a'\end{vmatrix}\end{matrix}=-f(f-1)(f'-a')+(1-a)(f-a)(f-1)f'+af(f-a)f',$

由对数导数引理, 有$m(r,H_{1})=S(r).$$H_{1}\not\equiv0$, 则有

$\begin{align*} N(r,H_{1})\leq&\sum\limits_{j=2}^{4}\overline{N}_{(k+1}(r,a_{j},f)+\sum\limits_{j=2}^{4}\overline{N}_{(k+1}(r,a_{j},g)+S(r) \\ \leq&\frac{1}{k+1}\sum\limits_{j=2}^{4}N_{(k+1}(r,a_{j},f)+\frac{1}{k+1}\sum\limits_{j=2}^{4}N_{(k+1}(r,a_{j},g)+S(r) \\ =&\frac{1}{k+1}\bigg\{\sum\limits_{j=2}^{4}N(r,a_{j},f)+\sum\limits_{j=2}^{4}N(r,a_{j},g)\bigg\} \\ &-\frac{1}{k+1}\bigg\{\sum\limits_{j=2}^{4}N_{k)}(r,a_{j},f)+\sum\limits_{j=2}^{4}N_{k)}(r,a_{j},g)\bigg\}+S(r) \\ \leq&\frac{3}{k+1}\{T(r,f)+T(r,g)\} -\frac{2}{k+1}\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f) +\frac{2}{k+1}N_{k)}(r,a_{1},f)+S(r). \end{align*}$

$N_{k)}(r,a_{1},f)\leq N(r,0,H_{1})\leq T(r,H_{1})+S(r)=N(r,H_{1})+S(r), $

所以

$ N(r,H_{1})\leq \frac{3}{k-1}\{T(r,f)+T(r,g)\}-\frac{2}{k-1}\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f)+S(r). $

从而则根据上式和引理4(b)得

$\begin{align*} &\overline{N}_{k)}(r,a_{1},f)\leq N_{k)}(r,a_{1},f)\leq N(r,H_{1})+S(r) \\ \leq&\frac{3}{k-1}\{T(r,f)+T(r,g)\} -\frac{2}{k-1}\sum\limits_{j=1}^{4}\overline{N}_{k)}(r,a_{j},f)+S(r) \\ \leq&\frac{3}{k-1}\{T(r,f)+T(r,g)\}-\frac{2}{k-1}(2-\frac{2+\varepsilon+k\varepsilon}{k})T(r,f)+S(r). \end{align*}$

同理, 有

$\overline{N}_{k)}(r,a_{1},g) \leq\frac{3}{k-1}\{T(r,f)+T(r,g)\}-\frac{2}{k-1}(2-\frac{2+\varepsilon+k\varepsilon}{k})T(r,g)+S(r).$

故我们有

$\begin{align} \overline{N}_{k)}(r,a_{1},f)+\overline{N}_{k)}(r,a_{1},g) \leq \frac{2(k+2+\varepsilon+k\varepsilon)}{k(k-1)}\{T(r,f)+T(r,g)\}+S(r). \label{eqc7} \end{align}$ (3.2)

同理, 设

$\begin{align} H_{2}=L(f,1,a)f/[(f-1)(f-a)]-L(g,1,a)g/[(g-1)(g-a)], \label{eqh2} \end{align}$ (3.3)
$\begin{align} H_{3}=L(f,0,a)(f-1)/[f(f-a)]-L(g,0,a)(g-1)/[g(g-a)], \label{eqh3} \end{align}$ (3.4)
$\begin{align} H_{4}=L(f,0,1)(f-a)/[f(f-1)]-L(g,0,1)(g-a)/[g(g-1)]. \label{eqh4} \end{align}$ (3.5)

$H_{j}\not\equiv0(j=2,3,4)$, 则由引理2, 当$j=2,3,4$时, 同样也有

$\begin{align} \overline{N}_{k)}(r,a_{j},f)+\overline{N}_{k)}(r,a_{j},g)\leq \frac{2(k+2+\varepsilon+k\varepsilon)}{k(k-1)}\{T(r,f)+T(r,g)\}+S(r).\label{eqc8} \end{align}$ (3.6)

由引理4(b), 可得

$(1-\frac{2+\varepsilon+k\varepsilon}{k})\{T(r,f)+T(r,g)\}\leq\sum\limits_{j=1,j\neq j_{0}}^{4}\{\overline{N}_{k)}(r,a_{j},f)+\overline{N}_{k)}(r,a_{j},g)\}+S(r).$

$j_{0}=1, 2, 3, 4$.可知$\overline{N}_{k)}(r,a_{j},f)+\overline{N}_{k)}(r,a_{j},g)(j=1, 2, 3, 4)$中至少有两个, 不失一般性, 可设$j=3,4$, 使得

$\begin{align} \overline{N}_{k)}(r,a_{3},f)+\overline{N}_{k)}(r,a_{3},g) &\geq\frac{1}{3}\{(1-\frac{2+\varepsilon+k\varepsilon}{k})+o(1)\}\{T(r,f)+T(r,g)\}(r\in I),\label{eqc9} \end{align}$ (3.7)
$\begin{align} \overline{N}_{k)}(r,a_{4},f)+\overline{N}_{k)}(r,a_{4},g) &\geq\frac{1}{3}\{(1-\frac{2+\varepsilon+k\varepsilon}{k})+o(1)\}\{T(r,f)+T(r,g)\}(r\in I),\label{eqc10} \end{align}$ (3.8)

其中$I$为无穷测度集.若$H_{3}\not\equiv0$, 则由(3.6) 和(3.7) 式, 得$\frac{1}{3}(1-\frac{2+\varepsilon+k\varepsilon}{k})\leq\frac{2(k+2+\varepsilon+k\varepsilon)}{k(k-1)}.$$\varepsilon\rightarrow 0$, 有$ \frac{1}{3}(1-\frac{2}{k})\leq\frac{2(k+2)}{k(k-1)}. $解得$k\leq10$, 与定理2条件$k\geq11$矛盾, 故$H_{3}\equiv0$.同理由(3.6) 和(3.8) 式可得$H_{4}\equiv0$.即

$\begin{align} L(f,0,a)(f-1)/[f(f-a)]\equiv L(g,0,a)(g-1)/[g(g-a)],\label{eqc11} \end{align}$ (3.9)
$\begin{align} f'(f-a)/[f(f-1)]\equiv g'(g-a)/[g(g-1)].\label{eqc12} \end{align}$ (3.10)

$z_{a}$$f-a$的零点, 但不是$g-a$的零点.则$z_{a}$是(3.9) 式等号左边的一个极点, 由此对于等号右边, 我们有$g(z_{a})=0$$g(z_{a})=\infty$.由(3.9) 和(3.10), 得

$\begin{align} L(f,0,a)f'/f^{2}\equiv L(g,0,a)g'/g^{2}.\label{eqc13} \end{align}$ (3.11)

$z_{a}$不是(3.11) 式等号左边的极点, 但却是等号右边的二重极点, 矛盾.故$z_{a}$$g-a$的零点.由对称性, 并且比较(3.9) 式等号两边在点$z_{a}$的留数, 可得$a$$f$$g$的CM$^{\ast}$公共值.同理可得1为$f$$g$的CM$^{\ast}$公共值.

根据式(3.9) 和(3.10), 我们可得

$\begin{align} &a(a-1)\frac{f'-a'}{f-a}+a\frac{f'}{f}\equiv a(a-1)\frac{g'-a'}{g-a}+a\frac{g'}{g},\label{eqc14} \end{align}$ (3.12)
$\begin{align} &(1-a)\frac{f'}{f-1}+a\frac{f'}{f}\equiv (1-a)\frac{g'}{g-1}+a\frac{g'}{g}.\label{eqc15} \end{align}$ (3.13)

消去$f'/f$$g'/g$, 有

$\begin{align} a\frac{f'-a'}{f-a}+\frac{f'}{f-1}\equiv a\frac{g'-a'}{g-a}+\frac{g'}{g-1}.\label{eqc16} \end{align}$ (3.14)

由(3.14) 式, 显然有$\infty$$f$$g$的CM$^{\ast}$公共值.

由(3.12) 或(3.13) 式, 可得$0$也为$f$$g$的CM$^{\ast}$公共值.故$0, 1, \infty, a$均为$f$$g$的CM$^{\ast}$公共值, 从而由定理B, 得$f$$g$的拟分式线性变换.定理1证毕.

定理2的证明 由定理1可知, 仅需考虑$k<11$的情况.考虑到拟分式线性变换, 不失一般性, 可设$a_{j}(z)\not\equiv \infty (j=1, 2, 3, 4)$, 且假设$f\not\equiv g$.由引理1, 有

$\begin{eqnarray*} &&2T(r,f)\leq\sum\limits_{j=1}^{4}\overline{N}(r,a_{j},f)+\varepsilon T(r,f)+S(r)\\ &=&\sum\limits_{j=1}^{3}\overline{N}_{11)}(r,a_{j},f)+\sum\limits_{j=1}^{3}\overline{N}_{(12}(r,a_{j},f)+ \overline{N}_{k)}(r,a_{4},f)+\overline{N}_{(k+1}(r,a_{4},f)+\varepsilon T(r,f)+S(r)\\ &\leq&\frac{11}{12}\sum\limits_{j=1}^{3}\overline{N}_{11)}(r,a_{j},f)+\frac{1}{12}\sum\limits_{j=1}^{3}N(r,a_{j},f)+ \frac{k}{k+1}\overline{N}_{k)}(r,a_{4},f)\\ &&+\frac{1}{k+1}N(r,a_{4},f)+\varepsilon T(r,f)+S(r)\\ &\leq&\frac{11}{12}\left[\sum\limits_{j=1}^{3}\overline{N}_{11)}(r,a_{j},f)+\overline{N}_{k)}(r,a_{4},f)\right] +\frac{1}{4}T(r,f)+\frac{1}{k+1}T(r,f)+\varepsilon T(r,f)+S(r)\\ &\leq&(\frac{7}{6}+\frac{1}{k+1}+\varepsilon)T(r,f)+\frac{11}{12}T(r,g)+S(r). \end{eqnarray*}$

从而根据上式$T(r,f)\leq\frac{11(k+1)}{2(5k-1-6k\varepsilon-6\varepsilon)}T(r,g)+S(r),$

$\begin{align} \frac{3(7k+3-4k\varepsilon-4\varepsilon)}{11(k+1)}T(r,f)+S(r) \leq\sum\limits_{j=1}^{3}\overline{N}_{11)}(r,a_{j},f)+\overline{N}_{k)}(r,a_{4},f).\label{eqc17} \end{align}$ (3.15)

在接下来的证明中, 考虑到拟分式线性变换, 可设$a_{1}(z)\equiv \infty$, $a_{2}(z)\equiv 0$, $a_{3}(z)\equiv 1$, $a_{4}(z)\equiv a(z)(\not\equiv \infty, 0, 1)$.设$H_{1}$同(3.1) 式, 则有$m(r,H_{1})=S(r)$.若$H_{1}\not\equiv0$, 由(3.15) 式有

$\begin{align} &N(r,H_{1}) \notag\\ \leq&\sum\limits_{j=2}^{3}\overline{N}_{(12}(r,a_{j},f)+\sum\limits_{j=2}^{3}\overline{N}_{(12}(r,a_{j},g) +\overline{N}_{(k+1}(r,a_{4},f)+\overline{N}_{(k+1}(r,a_{4},g)+S(r) \notag\\ \leq&\frac{1}{12}\bigg\{\sum\limits_{j=2}^{3}N(r,a_{j},f)+\sum\limits_{j=2}^{3}N(r,a_{j},g)\bigg\} -\frac{1}{12}\bigg\{\sum\limits_{j=2}^{3}N_{11)}(r,a_{j},f)+\sum\limits_{j=2}^{3}N_{11)}(r,a_{j},g)\bigg\} \notag\\ &+\frac{1}{k+1}\{N(r,a_{4},f)+N(r,a_{4},g)\}-\frac{1}{k+1}\{N_{k)}(r,a_{4},f)+N_{k)}(r,a_{4},g)\}+S(r) \notag\\ \leq&(\frac{1}{6}+\frac{1}{k+1})\{T(r,f)+T(r,g)\}+\frac{1}{6}N_{11)}(r,a_{1},f) \notag\\ &-2\bigg\{\frac{1}{12}\sum\limits_{j=1}^{3}N_{11)}(r,a_{j},f)+\frac{1}{k+1}N_{k)}(r,a_{4},f)\bigg\}+S(r) \notag\\ \leq&(\frac{1}{6}+\frac{1}{k+1})\{T(r,f)+T(r,g)\}+\frac{1}{6}N_{11)}(r,a_{1},f)-\frac{7k+3-4k\varepsilon-4\varepsilon}{22(k+1)}T(r,f) +S(r). \label{eqc18} \end{align}$ (3.16)

$\begin{align} N_{11)}(r,a_{1},f)\leq N(r,0,H_{1})\leq T(r,H_{1})+S(r)=N(r,H_{1})+S(r), \label{eqc19} \end{align}$ (3.17)

则根据(3.16) 和(3.17) 式得

$\begin{eqnarray*} &&\overline{N}_{11)}(r,a_{1},f)\leq N_{11)}(r,a_{1},f)\\ &\leq&(\frac{k+7}{5(k+1)})\{T(r,f)+T(r,g)\}-\frac{3(7k+3-4k\varepsilon-4\varepsilon)}{55(k+1)}T(r,f)+S(r). \end{eqnarray*}$

同理, 有

$\overline{N}_{11)}(r,a_{1},g) \leq(\frac{k+7}{5(k+1)})\{T(r,f)+T(r,g)\}-\frac{3(7k+3-4k\varepsilon-4\varepsilon)}{55(k+1)}T(r,g)+S(r), $

所以有

$\begin{align} &\overline{N}_{11)}(r,a_{1},f)+\overline{N}_{11)}(r,a_{1},g)\notag\\ \leq&\{\frac{2(k+7)}{5(k+1)}-\frac{3(7k+3-4k\varepsilon-4\varepsilon)}{55(k+1)}\}\{T(r,f)+T(r,g)\}+S(r)\notag\\ =&\frac{k+145+12k\varepsilon+12\varepsilon}{55(k+1)}\{T(r,f)+T(r,g)\}+S(r). \label{eqc22} \end{align}$ (3.18)

同理, 设$H_{2}, H_{3}, H_{4}$分别同(3.3), (3.4), (3.5) 式, 若$H_{j}\not\equiv0(j=2,3,4)$, 则由引理2, 当$j=2,3,4$时, 同样也有

$\begin{align} \overline{N}_{11)}(r,a_{j},f)+\overline{N}_{11)}(r,a_{j},g) &\leq\frac{k+145+12k\varepsilon+12\varepsilon}{55(k+1)}\{T(r,f)+T(r,g)\}+S(r), \label{eqc23a} \end{align}$ (3.19)
$\begin{align} \overline{N}_{k)}(r,a_{4},f)+\overline{N}_{k)}(r,a_{4},g) &\leq\frac{2k+4+4k\varepsilon+4\varepsilon}{11(k+1)}\{T(r,f)+T(r,g)\}+S(r) \notag\\ &\leq\frac{k+145+12k\varepsilon+12\varepsilon}{55(k+1)}\{T(r,f)+T(r,g)\}+S(r), \label{eqc23b} \end{align}$ (3.20)

上式(3.20) 对$2\leq k <11$成立.为方便计我们设$k_{1}=k_{2}=k_{3}=11$, $k_{4}=k$, 由(3.15) 式可得

$\frac{2(5k-1-6k\varepsilon-6\varepsilon)}{11(k+1)}\{T(r,f)+T(r,g)\}\leq\sum\limits_{j=1,j\neq j_{0}}^{4}\{\overline{N}_{k_{j})}(r,a_{j},f)+\overline{N}_{k_{j})}(r,a_{j},g)\}+S(r), $

$j_{0}=1, 2, 3, 4$, 可知$\overline{N}_{k_{j})}(r,a_{j},f)+\overline{N}_{k_{j})}(r,a_{j},g)(j=1, 2, 3, 4)$中至少有两个, 不失一般性, 可设$j=3,4$, 使得

$\begin{align} \overline{N}_{11)}(r,a_{3},f)+\overline{N}_{11)}(r,a_{3},g) \geq\frac{1}{3}\{\frac{2(5k-1-6k\varepsilon-6\varepsilon)}{11(k+1)}+o(1)\}\{T(r,f)+T(r,g)\}(r\in I),\label{eqc24} \end{align}$ (3.21)
$\begin{align} \overline{N}_{k)}(r,a_{4},f)+\overline{N}_{k)}(r,a_{4},g) \geq\frac{1}{3}\{\frac{2(5k-1-6k\varepsilon-6\varepsilon)}{11(k+1)}+o(1)\}\{T(r,f)+T(r,g)\}(r\in I),\label{eqc25} \end{align}$ (3.22)

其中$I$为无穷测度集.若$H_{3}\not\equiv0$, 则由(3.19) 和(3.21) 式得

$\frac{2(5k-1-6k\varepsilon-6\varepsilon)}{33(k+1)}\leq\frac{k+145+12k\varepsilon+12\varepsilon}{55(k+1)}.$

$\varepsilon\rightarrow 0$$\frac{2(5k-1)}{33(k+1)}\leq\frac{k+145}{55(k+1)}.$解得$k\leq9$.当$k=10$时产生矛盾,故$H_{3}\equiv0$.同理由(3.20) 和(3.22) 式可得当$k=10$$H_{4}\equiv0$.与定理2证明的讨论相同, 可得$0, 1, \infty, a$$f$$g$的CM$^{\ast}$公共值, 从而由定理B得$f$$g$的拟分式线性变换.定理2证毕.

定理3的证明 假设$f$不是$g$的分式线性变换, 不失一般性, 设$a_{i}\neq\infty, b_{i}\neq\infty, 1\leq i\leq6$.存在不全为零的常数$A_{i}, 1\leq i\leq6$, 使得函数

$F(f,g)=A_{1}f^{2}g+A_{2}fg+A_{3}f^{2}+A_{4}f+A_{5}g+A_{6}$

满足$F(a_{i},b_{i})=0, i=1,\cdots,5.$$F(f,g)\equiv 0$, 则$(A_{1}f^{2}+A_{2}f+A_{5})g=-A_{3}f^{2}-A_{4}f-A_{6}.$因为$f$不是常数, 所以$A_{1}f^{2}+A_{2}f+A_{5}\not\equiv 0$.故

$\begin{align} g=\frac{-A_{3}f^{2}-A_{4}f-A_{6}}{A_{1}f^{2}+A_{2}f+A_{5}}.\label{eqc28} \end{align}$ (3.23)

若存在一个$a_{i}$使得$A_{1}a_{i}^{2}+A_{2}a_{i}+A_{5}=0$, 那么$A_{3}a_{i}^{2}+A_{4}a_{i}+A_{6}=0$, 因此$f-a_{i}$$-A_{3}f^{2}-A_{4}f-A_{6}$$A_{1}f^{2}+A_{2}f+A_{5}$的公因式,所以$g$$f$的分式线性变换, 这与假设矛盾.因此对任意的$a_{i}$, 有$A_{1}a_{i}^{2}+A_{2}a_{i}+A_{5}\neq0$.因为$F(a_{i},b_{i})=0$, 有

$\begin{align} b_{i}=\frac{-A_{3}a_{i}^{2}-A_{4}a_{i}-A_{6}}{A_{1}a_{i}^{2}+A_{2}a_{i}+A_{5}}.\label{eqc29} \end{align}$ (3.24)

由(3.23) 和(3.24) 式得

$\begin{align} g-b_{i}=\frac{(f-a_{i})(c_{i}f-d_{i})}{A_{1}f^{2}+A_{2}f+A_{5}}, \label{eqc30} \end{align}$ (3.25)

其中$c_{i},d_{i}$为常数.若$c_{i}= 0$, 由假设$g$不是$f$的分式线性变换,则此时$A_{1}\ne 0$.由引理5和引理6(a), 得$T(r,g)=2T(r,f)+S(r).$由第二基本定理, 有

$ 6T(r,f)=3T(r,g)+S(r)\leq\sum\limits_{i=1}^{5}\overline N(r,b_{i},g)+S(r) =\sum\limits_{i=1}^{5}\overline N(r,a_{i},f)+S(r)\leq5T(r,f)+S(r), $

$T(r,f)=S(r)$, 矛盾.若$c_{i}\ne 0$, 由假设$g$不是$f$的分式线性变换,则此时$A_{1}\left(\frac{d_{i}}{c_{i}}\right)^{2}+A_{2}\left(\frac{d_{i}}{c_{i}}\right)+A_{5}\neq0$, 因此仍有$T(r,g)=2T(r,f)+S(r)$,同样可得矛盾$T(r,f)=S(r)$.故$F(f,g)\not\equiv0$.

由引理6(c), 可以得到$T(r,f)=\overline{N}(r,f)+S(r)$, 所以有$m(r,f)=S(r), m(r,g)=S(r)$.从而$m(r,F)=S(r)$.由引理6(a), 得

$\begin{align} \sum\limits_{i=1}^{5}\overline N(r,a_{i},f)&\leq\overline N(r,0,F)+S(r) \leq T(r,F)+S(r)=N(r,F)+S(r) \notag\\ &\leq2N(r,f)+N(r,g)+S(r)\leq2T(r,f)+T(r,g)+S(r) \notag\\ &=3T(r,f)+S(r). \label{eqc31a} \end{align}$ (3.26)

同理, 可得

$\begin{align} \sum\limits_{i=1}^{4}\overline N(r,a_{i},f)+\overline N(r,f-a_{6}=0=g-b_{6})\leq3T(r,f)+S(r). \label{eqc31b} \end{align}$ (3.27)

则由(1.1) 和(3.27) 式得

$\begin{align} &\sum\limits_{i=1}^{6}\overline N(r,a_{i},f)=\sum\limits_{i=1}^{4}\overline N(r,a_{i},f)+\overline N(r,a_{5},f)+ \overline N(r,a_{6},f) \notag\\ \leq&3T(r,f)+\overline N(r,a_{5},f)+ \overline N(r,a_{6},f)-\overline N(r,f-a_{6}=0=g-b_{6})+S(r) \notag\\ \leq&(3+\lambda)T(r,f)+\overline N(r,a_{5},f)+S(r). \label{eqc32} \end{align}$ (3.28)

同理, 有

$\begin{align} \sum\limits_{i=1}^{6}\overline N(r,a_{i},f)\leq(3+\lambda)T(r,f)+\overline N(r,a_{i},f)+S(r), \quad i=1, 2, 3, 4. \label{eqc33} \end{align}$ (3.29)

由第二基本定理, 得

$\begin{align} 4T(r,f)\leq\sum\limits_{i=1}^{6}\overline N(r,a_{i},f)+S(r).\label{eqc34} \end{align}$ (3.30)

由(3.28), (3.29), (3.30) 式和引理6(b), 得

$\begin{equation*} \begin{split} 20T(r,f)&\leq5\sum\limits_{i=1}^{6}\overline N(r,a_{i},f)+S(r)\leq(15+5\lambda)T(r,f)+\sum\limits_{i=1}^{5}\overline N(r,a_{i},f)+S(r)\\&=(18+5\lambda)T(r,f)+S(r), \end{split} \end{equation*}$

$\begin{align} (2-5\lambda)T(r,f)\leq S(r). \label{eqc35} \end{align}$ (3.31)

已知$\lambda\in[0,\frac{2}{5})$, 则(3.31) 式不成立, 所以假设不成立.故$f$$g$的分式线性变换.定理3证毕.

定理4的证明 假设$f$不是$g$的拟分式线性变换, 不失一般性, 设$a_{k}\not\equiv\infty, b_{k}\not\equiv\infty, 1\leq k\leq5$.考虑$\{a_{1},a_{2},a_{3},a_{4}\}$中的任意三个小函数, 不失一般性, 假设$a_{1},a_{2},a_{3}$, 令$L(z)$为满足$L(a_{k})=b_{k}(k=1,2,3)$的拟分式线性变换, 则有

$\begin{align} \sum\limits_{k=1}^{3}\overline N(r,a_{k},f)\leq N(r,0,L(f)-g)\leq T(r,f)+T(r,g)+S(r).\label{eqc36} \end{align}$ (3.32)

显然从$\{a_{1},a_{2},a_{3},a_{4}\}$中任取三个小函数, 都可以得到相应的$L(f)$和(3.32) 式, 这样有四个不等式, 相加得

$\begin{align} 3\sum\limits_{k=1}^{4}\overline N(r,a_{4},f)\leq4T(r,f)+4T(r,g)+S(r).\label{eqc37} \end{align}$ (3.33)

由引理1, (1.2) 和(3.33) 式得

$\begin{equation*} \begin{split} 3T(r,f)&\leq\sum\limits_{k=1}^{5}\overline N(r,a_{k},f)+\varepsilon T(r,f)+S(r,f)\\&=\sum\limits_{k=1}^{4}\overline N(r,a_{k},f)+\overline N(r,a_{5},f)+\varepsilon T(r,f)+S(r,f) \\&\leq\frac{4}{3}T(r,f)+\frac{4}{3}T(r,g)+(\lambda+\varepsilon) T(r,f)+S(r,f), \end{split} \end{equation*}$

$\begin{align} (5-3\lambda-3\varepsilon)T(r,f)\leq4T(r,g)+S(r,f).\label{eqc38} \end{align}$ (3.34)

同理, 也有

$\begin{align} (5-3\lambda-3\varepsilon)T(r,g)\leq4T(r,f)+S(r,g).\label{eqc39} \end{align}$ (3.35)

(3.34) 与(3.35) 式相加得

$\begin{align} (1-3\lambda-3\varepsilon)\{T(r,f)+T(r,g)\}\leq S(r,f)+S(r,g).\label{eqc40} \end{align}$ (3.36)

已知$\lambda\in[0,\frac{1}{3})$, 取$\varepsilon$足够小, 则(3.36) 式不成立, 所以假设不成立.故$f$$g$的拟分式线性变换.定理4证毕.

参考文献
[1] Hayman W K. Meromorphic Functions[M]. Oxford: Clarendon, 1964.
[2] Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions[M]. Beijing, New York: Science Press; Kluwer Academic Publ., 2003.
[3] Li P, Yang C C. On two meromorphic functions that share pairs of small functions[J]. Complex Variable, 1997, 32: 177–190. DOI:10.1080/17476939708814988
[4] 张庆彩, 杨连中. 具有四个公共值的亚纯函数的唯一性[J]. 山东科学, 1999, 12(2): 8–12.
[5] Yao W H, Yu M J. A further result about meromorphic functions sharing four small functions CM$.{ast}$[J]. J. of Math., 2002, 22: 374–378.
[6] Czubiak T P, Gundersen G G. Meromorphic functions that share pairs of values[J]. Complex Variables, 1997, 34: 35–46. DOI:10.1080/17476939708815036
[7] Hu P C, Li P, Yang C C. Unicity of meromorphic mappings[M]. Dordrecht, Boston, London: Kluwer Academic Publ., 2003.
[8] Gundersen G G. Meromorphic functions that share five pairs of values[J]. Complex Variables, 2011, 56: 93–99. DOI:10.1080/17476930903394937
[9] Yamanoi K. The second main theorem for small functions and related problems[J]. Acta Math., 2004, 192: 225–294. DOI:10.1007/BF02392741
[10] 李玉华. 具有四个有穷的IM公共小函数的整函数[J]. 数学学报, 1998, 41: 249–260.