1 Introduction
The inequalities of partial sums have been studied by a lot of authors. The moments of random variables play an important role in limit theory of random variable sequence. By this the Marcinkiewicz-Zygmund-Burkholder type inequality, Kolmogorov type inequality, Rosenthal type inequality and Bernstein inequality are discussed.
In 1970, Rosenthal [1] proved that for real valued independent random variables, the following inequality is true
$\begin{equation} E|\sum\limits_{k=1}^n X_k|^r \leq B_r \max\{
\sum\limits_{k=1}^n E|X_k|^r,\quad (\sum\limits_{k=1}^nE|X_k|^2)^{r/2}\},
\end{equation}$ |
(1.1) |
where $\{X_k; 1\leq k\leq n\}$ are independent random variables with zero mean, $r>2$ and $B_r$ is a positive constant only depending on $r.$
Martingale difference can be regarded as the generalization of independent random variables and some classical inequalities can also be generalized such as Rosenthal type inequality [2].
$\begin{eqnarray}&&
c_1\{ E\biggl[\bigl(\sum\limits_{i=1}^n
E(X_i^2|\Sigma_{i-1})\bigl)^{r/2}\biggl]+\sum\limits_{i=1}^nE|X_i|^r\}\nonumber\\
&\leq & E |f_n|^r \leq c_2\{ E\biggl[\bigl(\sum\limits_{i=1}^n
E(X_i^2|\Sigma_{i-1})\bigl)^{r/2}\biggl]+\sum\limits_{i=1}^nE|X_i|^r\},
\end{eqnarray}$ |
(1.2) |
where $(f_i, \Sigma_i, 1\leq i\leq n)$ is a real valued martingale, $X_1=f_1 ,X_i=f_i-f_{i-1}, i=2,3,\cdots,n$, $ 2\leq
r<\infty $, $ c_1$ and $c_2$ are all positive constants only depending on $r$.
In 1981, De Acosta [3] proved the following inequality for Banach valued independent random variables which can be regarded as the generalization of Rosenthal type inequality:
$\begin{equation}E\biggl|\|f_n\|-E\|f_n\|\biggl |^r \leq c_r \{ (\sum\limits_{i=1}^n
E\|X_i\|^2)^{r/2}+\sum\limits_{i=1}^n E\|X_i\|^r\}, \end{equation}$ |
(1.3) |
where $r>2,$ $ (X_i; 1\leq i\leq n)$ are all independent random variables in Banach space and $f_n=\sum\limits_{i=1}^n X_i, n\geq
1$.
2 Preliminaries and Notations
Let $(\Omega, \Sigma, P)$ be a probability space, $(X, \|\cdot\|)$ be a Banach space and $(\Sigma_n, n\geq -1 )$ be a increasing $\sigma$-sub-algebra sequence in $\Sigma$, where $\Sigma=\cup_{n\geq -1}\Sigma_n,\ \Sigma_{-1}=\{\Omega,
\emptyset\}.$
Definition 1 [4] Let $1\leq \alpha<\infty.$
$f=(f_n,\Sigma_n, n\geq 0)$ is called a $\alpha$ quasi-martingale if
$\sum\limits_{n=1}^\infty \|E(f_{n+1}|\Sigma_n)-f_n\|_\alpha<\infty.$ |
When $\alpha=1,$ $(f_n,\Sigma_n, n\geq 0)$ is called a quasi-martingale.
Definition 2 [4] Banach space $X$ is called $p$ smoothable, if there exists a constant $c>0$ such that $
\rho_X(\tau)\leq c\tau^p, \tau>0,$ where
$\rho_X(\tau)=\sup\{\frac{\|x+y\|+\|x-y\|}{2}-1: \|x\|=1,
\|y\|=\tau\}.$ |
Definition 3 [4] Banach space $X$ is called $q$ convexiable, if there exists a constant $c>0$ such that $
\delta_X(\varepsilon)\geq c\varepsilon ^q,\quad 0\leq
\varepsilon\leq 2,$ where
$\delta_X(\varepsilon)=\inf
\{1-\frac{\|x+y\|}{2}: \|x\|=\|y\|=1, \|x-y\|=\varepsilon\}.$ |
In this paper the following notations will be used.
Let $0<p<\infty$ and $ f=(f_n,n\geq 0)$ be an adapted process,
$\begin{eqnarray*}f_n^*&=&\sup\limits_{n\geq k\geq 0}\|f_k\|, \quad f^*=\sup\limits_{n\geq
0}\|f_n\|;\\
df_n&=&f_{n}-f_{n-1},\quad n\geq 0,\quad f_{-1}=0;\\
S^{(p)}(f)&=&(\sum\limits_{i=0}^\infty\|df_i\|^p)^{1/p},\quad S_n^{(p)}(f)=(\sum\limits_{i=0}^n\|df_i\|^p)^{1/p};\\
\sigma^{(p)}(f)&=&\bigl(\sum\limits_{i=0}^\infty E(\|df_i\|^p\bigl|\Sigma_{i-1})\bigl)^{1/p},\quad \sigma_n^{(p)}(f)=\bigl(\sum\limits_{i=0}^n E(\|df_i\|^p\bigl|\Sigma_{i-1})\bigl)^{1/p};\\
R_n(f)&=&\sum\limits_{i=0}^n \|E(df_i|\Sigma_{i-1})\|, \quad R(f)=\sup\limits_{n\geq
0}R_n(f).
\end{eqnarray*}$ |
In this paper, the constants $c$ may denote different constants in different contexts.
3 Main Results
Lemma 1 [2] Let $r>1, \beta >1, \delta >0, $ $\xi$ and $\eta$ be two non-negative random variables. If for all $\delta>0$ small enough, there exists constant $\varepsilon_\delta$ satisfying $\lim\limits_{\delta\rightarrow
0}\varepsilon_\delta=0$, such that
$P(\xi>\beta \lambda, \eta\leq \delta
\lambda)\leq \varepsilon_\delta P(\xi>\lambda), \quad \forall \lambda>0,$ |
then there exists a constant $c$ such that $E(\xi^r)\leq cE(\eta^r).$
Lemma 2 [5] Let $X$ be a Banach space. Then the following statements are equivalent:
(1) $ X$ is $p$ smoothable;
(2) There exists a constant $c>0$ such that for every $X$-valued quasi-martingale $f=(f_n,\Sigma_n,n\geq
0)$,
$\|f^*\|_p\leq
c\bigl(\|\sigma^{(p)}(f)\|_p+\|R(f)\|_p\bigl).$
Lemma 3 [5] Let $X$ be a Banach space. Then the following statements are equivalent:
(1) $X$ is $q$ convexifiable;
(2) There exists a constant $c>0$ such that for every $X$-valued quasi-martingale $f=(f_n,\Sigma_n,n\geq
0)$, $\|S^{(q)}(f)\|_q\leq c\bigl(\|f^*\|_q\leq
+\|R(f)\|_q\bigl).$
Remark If $\|\cdot\|_q$ is replaced by any $\|\cdot\|_r, \
r\geq q$ in Lemma 3, the conclusion is also true.
Theorem 1 Let $X$ be a Banach space, $1<p\leq 2,\
p\leq r<\infty$. Then the following statements are equivalent:
(1) $X$ is $p$ smoothable;
(2) There exists a constant $c>0$ only depending on $p$ and $r$ such that for every $X$-valued quasi-martingale $f=(f_n,\Sigma_n, n\geq 0)$,
$\|f_n^*\|^r_r\leq c\bigl(\|\sigma_n^{(p)}(f)\|_r^r+\|R_n(f)\|_r^r+\sum\limits_{i=1}^nE(\|df_i\|^r)\bigl), \quad \forall n\geq 1.$ |
Proof $(1)\Longrightarrow (2)$ Suppose $X$ is $p$ smoothable. Let $\xi=\max_{i\leq n}\|f_i\|,$
$\eta=\max\{
\sigma^{(p)}_n(f), R_n(f), \max_{i\leq n }\|df_i\|\}$ |
and $\varepsilon=\delta^p/(\beta-\delta-1)^p,$ where $\beta>1,
0<\delta<\beta-1.$
Let
$ A_k=\{\omega| \lambda<\max_{i\leq k-1}\|f_i(\omega)\|\leq
\beta \lambda, \quad
\max_{i\leq k-1}\|df_i(\omega)\|\leq \delta
\lambda,
\max\{\sigma^{(p)}_k(f)(\omega), R_k(f)(\omega)\}\leq \delta\lambda\}$ |
and $T_i=\sum\limits_{k=1}^i \chi_{A_k}df_k, 1\leq i\leq n.$ Then $T=(T_i, \Sigma_i,\ 1\leq i\leq n)$ is an $X$-valued quasi-martingale. Now we let
$k_0=\inf \{k; \lambda<\max_{i\leq
k-1}\|f_i(\omega)\|, 1\leq k\leq n\}, n_0=\sup\{k;\max_{i\leq
k-1}\|f_i(\omega)\|\leq \beta \lambda\}.$ |
Then $1\leq k_0<n_0\leq
n$ and $\|f_{k_0-1}\|>\lambda ,\ \ \|f_{n_0}\|>\beta\lambda.$
On the set $\{\xi>\beta \lambda, \ \eta\leq\delta \lambda\}$, we have $T_n=\sum\limits_{i=k_0}^{n_0}df_i=f_{n_0}-df_{k_0}+f_{k_0-1}$ and
$\begin{equation}\|T_n\|\geq \|f_{n_0}\|-\|df_{k_0}\|-\|f_{k_0-1}\|\geq
(\beta-\delta-1)\lambda.
\end{equation}$ |
(3.1) |
Moreover
$\begin{equation}P(\xi>\beta \lambda, \eta\leq \delta
\lambda)\leq P(\|T_n\|\geq (\beta-\delta-1)\lambda)\leq
(\beta-\delta-1)^{-p}\lambda^{-p}E(T^*)^p.\end{equation}$ |
(3.2) |
Since $X$ is $p$ smoothable, by Lemma 2 we have
$E(T^*)^p\leq c\bigl(\|\sigma^{(p)}(T)\|_p+\|R(T)\|_p)^{p}\leq c\bigl( \|\sigma^{(p)}(T)\|^p_p+\|R(T)\|_p^{p}\bigl). $ |
By calculation we have
$\begin{eqnarray}\|\sigma^{(p)}(T)\|^p_p&=&E[\sum\limits_{k=1}^n\chi_{A_k}E(\|df_k\|^p|\Sigma_{k-1})]\notag\\
&\leq& E[\sum\limits_{k=1}^n\chi_{\{\omega| \lambda<\max_{i\leq
k-1}\|f_i(\omega)\|,\
\sigma^{(p)}_n(f)(\omega)\leq
\delta\lambda\}}E(\|df_k\|^p|\Sigma_{k-1})]\notag\\
&\leq& c\delta^p\lambda^p P(\max_{i\leq n}\|f_i\|>\lambda)
\end{eqnarray}$ |
(3.3) |
and
$\begin{eqnarray}
\|R(T)\|_p^{p}&=&\bigl\|\sum\limits_{k=1}^{n}\|E(dT_k|\Sigma_{k-1})\|\bigl\|^p_p=\bigl\|\sum\limits_{k=1}^{n}\chi_{A_k}\|E(df_k|\Sigma_{k-1})\|\bigl\|_p^p\notag\\
&\leq& E[\sum\limits_{k=1}^n\chi_{\{\omega| \lambda<\max_{i\leq
k-1}\|f_i(\omega)\|,\
R_k(f)(\omega)\leq
\delta\lambda\}}\|E(df_k|\Sigma_{k-1})\|]^p\notag\\& \leq& c\delta^p\lambda^p P(\max_{i\leq
n}\|f_i\|>\lambda).
\end{eqnarray}$ |
(3.4) |
By (3.2), (3.3) and (3.4) we have $P(\xi>\beta \lambda, \eta\leq
\delta
\lambda)\leq c(\beta-\delta-1)^{-p}\delta^p P(\max\limits_{i\leq
n}\|f_i\|>\lambda)$, where $\lim\limits_{\delta\rightarrow 0}\varepsilon=\lim\limits_{\delta\rightarrow 0}(\beta-\delta-1)^{-p}\delta^p =0.$ By Lemma 1, we have $\forall n\geq 1,$
$\begin{eqnarray}
\|f_n^*\|^r_r=E(\xi^r)&\leq& c E(\eta^r)\leq
c\bigl(E(\sigma_n^{(p)}(f)^r)+E((\max_{i\leq
n}\|df_i\|)^r)+E(R_n(f)^r)\bigl)\notag\\
&\leq&c\bigl(E(\sigma_n^{(p)}(f)^r)+\sum\limits_{i=1}^nE(\|df_i\|^r)+E(R_n(f)^r)\bigl)\notag\\
&=&
c\bigl(\|\sigma_n^{(p)}(f)\|_r^r+\|R_n(f)\|_r^r+\sum\limits_{i=1}^nE(\|df_i\|^r)\bigl).
\end{eqnarray}$ |
(3.5) |
$(2)\Longrightarrow (1)$ Suppose (2) is true. Let $r=p$. For all $n\geq 1$ we have
$\begin{eqnarray}
\|f_n^*\|_p&\leq&
c\bigl(\|\sigma_n^{(p)}(f)\|_p^p+\|R_n(f)\|_p^p+\sum\limits_{i=1}^nE(\|df_i\|^p)\bigl)^{1/p}\notag\\
&\leq& c\bigl(
\|\sigma_n^{(p)}(f)\|_p+\|R_n(f)\|_p+E(\sum\limits_{i=1}^n\|df_i\|^p)^{1/p}\bigl)\notag\\
&=&c\bigl(
\|\sigma_n^{(p)}(f)\|_p+\|R_n(f)\|_p+E(\sum\limits_{i=1}^nE(\|df_i\|^p|\Sigma_{i-1}\bigl)^{1/p}\bigl)\notag\\
&\leq& c\bigl(\|\sigma_n^{(p)}(f)\|_p+\|R_n(f)\|_p\bigl).
\end{eqnarray}$ |
(3.6) |
By Lemma 2, $X$ is $p$-smoothable.
Theorem 2 Let $X$ be a Banach space, $2\leq q<\infty,
q\leq r<\infty$. Then the following statements are equivalent:
(1) $ X$ is $q$ convexifiable;
(2) There exists a constant $c>0$ only depending on $p$ and $r$ such that for every $X$-valued quasi-martingale $f=(f_n,\Sigma_n, n\geq 0)$,
$ \|\sigma_n^{(q)}(f)\|_r^r+\sum\limits_{i=1}^nE(\|df_i\|^r) \leq c\{\|f_n^*\|^r_r +\|R_n(f)\|_r^r \},\quad \forall n\geq 1.$ |
Proof $(1)\Longrightarrow (2)$ Suppose $X$ is $q$-convexifiable, by Remark there exists a constant $c>0$ such that for every X-valued quasi-martingale $f=(f_n,\Sigma_n,n\geq 0)$
$\begin{equation}\|S^{(q)}(f)\|_r\leq c(\|f^*\|_r
+\|R(f)\|_r), \quad r\geq q.\end{equation}$ |
(3.7) |
By the fact $\sum\limits_{i=1}^nE(
\|df_i\|^r)=E(\sum\limits_{i=1}^n \|df_i\|^r) \leq
E\bigl((\sum\limits_{i=1}^n
\|df_i\|^q)^{r/q}=\|S_n^{(q)}(f)\|_r^r\bigl),\quad r\geq q$ we have
$\begin{eqnarray}\|\sigma_n^{(q)}(f)\|_r^r+\sum\limits_{i=1}^nE(\|df_i\|^r)&\leq&
c\|S_n^{(q)}(f)\|_r^r+\sum\limits_{i=1}^nE(\|df_i\|^r)\notag\\
&\leq& c\|S_n^{(q)}(f)\|_r^r\leq cE(\max_{i\leq
n}\|f_i\|^r)+\|R_n(f)\|_r^r.
\end{eqnarray}$ |
(3.8) |
$(2)\Longrightarrow (1)$ Suppose (2) is true. Let $r=q$. By the fact
$\|S_n^{(q)}(f)\|_q^q=E(\sum\limits_{i=0}^n\|df_i\|^q)=\|\sigma_n^{(q)}(f)\|_q^q,$ |
we have
$ \|S_n^{(q)}(f)\|_q^q=1/2(\|\sigma_n^{(q)}(f)\|_q^q+\sum\limits_{i=1}^nE(\|df_i\|^q)) \leq c\{\|f_n^*\|^q_q +\|R_n(f)\|_q^q
\}.$ |
Thus
$\|S^{(q)}(f)\|_q\leq c\bigl(\|f^*\|_q\leq
+\|R(f)\|_q\bigl).$ |
By Lemma 3 $X$ is $q$-convexifiable.
Corollary 1 Let $X$ be a Banach space, $2\leq r<\infty$, Then the following statements are equivalent:
(1) $X$ is a Hilbert space;
(2) There exists a constant $c$ such that
$\begin{eqnarray*}&& c^{-1}
\bigl(\|\sigma_n^{(2)}(f)\|_r^r +\sum\limits_{i=1}^n E(\|df_i\|^r) \bigl
)\\
&\leq& \|f_n^*\|^r_r
+\|R_n(f)\|_r^r \leq c \bigl(\|\sigma_n^{(2)}(f)\|_r^r +\sum\limits_{i=1}^n E(\|df_i\|^r)+\|R_n(f)\|_r^r
\bigl), \forall n\geq 1.\end{eqnarray*}$ |
Theorem 3 Let $X$ be a $p$-smoothable Banach space,
$1<p\leq 2, p\leq r<\infty$. If $f=(f_n,\Sigma_n, n\geq 0)$ is an $X$-valued quasi-martingale satisfying $\sum\limits_{n=1}^\infty
(\frac{E(\|df_n\|^r|\Sigma_{n-1})}{n^r})^{1/r}<\infty\quad {\rm
a.s.},$ then $\frac{1}{n}f_n=\frac{1}{n}\sum\limits_{i=1}^n
df_i\rightarrow 0 \quad {\rm a.s.}$.
Proof Since $\sum\limits_{n=1}^\infty
(\frac{E(\|df_n\|^r|\Sigma_{n-1})}{n^r})^{1/r}<\infty\quad {\rm
a.s.}$ for $0< \varepsilon<1$, there exists $\mathbf{N}$, such that
$\sum\limits_{n=\mathbf{N}+1}^\infty
(\frac{E(\|df_n\|^r|\Sigma_{n-1})}{n^r})^{1/r}\leq \varepsilon<1
\quad {\rm a.s.}.$ |
Now, for any $ m>n\geq \mathbf{N}$, let $dg_{i}=\frac{df_i}{i},$ then $\sum\limits_{i=n+1}^m\frac{df_i}{i}=\sum\limits_{i=n+1}^mdg_i=g_m-g_n:=g^{(n)}_m.$ By the fact $dg^{(n)}_i=g^{(n)}_i-g^{(n)}_{i-1}=g_i-g_{i-1}=dg_i=\frac{df_i}{i},
(i>n)$ and
$\begin{eqnarray*}&&\sum\limits_{m=n+1}^\infty \|E(g^{(n)}_{m+1}|\Sigma_m)-g^{(n)}_m\|_1
=\sum\limits_{m=n+1}^\infty \|\frac{E(df_{m+1}|\Sigma_m)}{m+1}\|_1\\
&\leq&\sum\limits_{m=n+1}^\infty
\|E(f_{m+1}|\Sigma_m)-f_m)\|_1<\infty,\end{eqnarray*}$ |
we know $g^{(n)}=(g^{(n)}_m, m\geq n)$ is a quasi-martingale.
By Theorem 1, we have
$\|g^{(n)}_m\|^r_r \leq c\bigl(\sum\limits_{i=n+1}^mE(\|dg^{(n)}_i\|^r)+\|\sigma_m^{(p)}(g^{(n)})\|_r^r+\|R_m(g^{(n)})\|_r^r\bigl),$ |
i.e.,
$\begin{eqnarray}&&E\|\sum\limits_{i=n+1}^m\frac{df_i}{i}\|^r\notag\\
&\leq& c\{
\sum\limits_{i=n+1}^m\frac{E\|df_i\|^r}{i^r}+E\bigl(\sum\limits_{i=n+1}^m \frac{
E(\|df_i\|^p|\Sigma_{i-1})}{i^p}\bigl)^{r/p}+E\bigl(\sum\limits_{i=n+1}^m
\frac{\|E(df_i|\Sigma_{i-1})\|} {i} \bigl)^r\}.\notag\\
&=&:I+II+III.
\end{eqnarray}$ |
(3.9) |
Since
$\begin{equation*}\lim\limits_{n\rightarrow \infty
}\frac{E(\|df_i\|^r|\Sigma_{i-1})}{i^r}=0 \quad {\rm
a.s.},\end{equation*}$ |
then
$\begin{equation}\sup\limits_{n\geq 1}
\frac{E(\|df_n\|^r|\Sigma_{n-1})}{n^r}<\infty \ {\rm a.s.}.
\end{equation}$ |
(3.10) |
Thus we have
$\begin{eqnarray}I&=&\sum\limits_{i=n+1}^\infty\frac{E(\|df_i\|^r)}{i^r}\notag\\
&=&E(
\sum\limits_{i=n+1}^\infty\frac{E(\|df_i\|^r|\Sigma_{i-1})}{i^r})\notag\\
&=&E(
\sum\limits_{i=n+1}^\infty(\frac{E(\|df_i\|^r|\Sigma_{i-1})}{i^r})^{1/r }(\frac{E(\|df_i\|^r|\Sigma_{i-1})}{i^r})^{1-1/r })\notag\\
&\leq& E((\sup\limits_{n\geq 1}
\frac{E(\|df_n\|^r|\Sigma_{n-1})}{n^r})^{1-1/r}\sum\limits_{i=n+1}^\infty(\frac{E(\|df_i\|^r|\Sigma_{i-1})}{i^r})^{1/r
})\notag\\
&\rightarrow& 0.
\end{eqnarray}$ |
(3.11) |
Since $r\geq p$, by Jensen inequality
$ \frac{
E(\|df_i\|^p|\Sigma_{i-1})}{i^p}\leq (\frac{
E(\|df_i\|^r|\Sigma_{i-1})}{i^r})^{p/r}\leq (\frac{
E(\|df_i\|^r|\Sigma_{i-1})}{i^r})^{1/r}, \quad \forall i\geq 1,$ |
then
$\begin{equation}II=E\bigl(\sum\limits_{i=n+1}^m \frac{ E(\|df_i\|^p|\Sigma_{i-1})}{i^p}\bigl)\leq E\bigl(
\sum\limits_{i=n+1}^m(\frac{
E(\|df_i\|^r|\Sigma_{i-1})}{i^r})^{1/r}\bigl)\rightarrow 0 (
n\rightarrow \infty).\end{equation}$ |
(3.12) |
Since
$\begin{eqnarray*}\sum\limits_{i=n+1}^m
\frac{\|E(df_i|\Sigma_{i-1})\|} {i}&\leq& \sum\limits_{i=n+1}^m
\frac{E(\|df_i\|\bigl|\Sigma_{i-1})} {i}\\ &\leq& \sum\limits_{i=n+1}^m
(\frac{E(\|df_i\|^r|\Sigma_{i-1})} {i^r})^{1/r}\rightarrow 0
\quad (n\rightarrow \infty).\end{eqnarray*}$ |
Then
$\begin{equation}III=E\bigl( \sum\limits_{i=n+1}^m
\frac{\|E(df_i|\Sigma_{i-1})\|} {i}\bigl)^r\rightarrow 0\quad
(n\rightarrow \infty).\end{equation}$ |
(3.13) |
By (14), (15) and (16) we have $\lim\limits_{n\rightarrow
\infty}E||\sum\limits_{i=n+1}^m \frac{df_i}{i}\|^r=0$ a.s. and $\sum\limits_{i=1}^m\frac{df_i}{i}$ is convergent almost everywhere. By Kronecher lemma $\frac{1}{n}f_n=\frac{1}{n}\sum\limits_{i=1}^n df_i\rightarrow 0$ a.s..