反应扩散方程和方程组是一类重要的抛物型偏微分方程, 它们有着非常广泛的实际背景, 涉及了如物理, 化学, 以及生物群体动力学等许多方面的科学研究领域.它们是自然界中广泛存在的扩散现象的一种数学抽象.
关于如下形式的拟线性退化抛物方程
和方程组
古典解的整体存在和非存在性的研究已经取得了丰富的结果, 其中文献[1-3]讨论的是单方程的情形, 而文献[4-6]讨论了强耦合方程组的情形.他们通过对$a, \ b$以及区域${\it \Omega}$大小关系的讨论, 分别建立了整体解的存在与不存在性条件.
2008年, Chen [7]研究了如下形式的拟线性问题
利用一种基于积分估计的方法, 他证明了上述问题是否存在整体解与$(q-\beta)(r-\theta)-(\alpha+1-p)(\eta+1-s)$的符号密切相关.
受上述工作的启发, 本文研究如下形式的扩散方程组解的整体存在与非存在性:
其中${\it \Omega}$是$R^N$中具有光滑边界$\partial{\it \Omega}$的有界区域, $a_i, b_i, c_i(i=1, 2), p, q>0$, $r, s, l, m\geq1$.初值$(u_0, v_0)$满足
这里$n$代表$\partial{\it \Omega}$上的外法向量.模型(1.1) 可以用来描述生物种群动力学中具有互惠作用的两种群的种群密度的变化规律.其中未知函数$u(x, t), v(x, t)$分别代表两种群在$t$时刻$x$处的种群密度, $a_1, a_2$是各自的净出生率, 系数$b_1, c_2$代表了种群内部的竞争而系数$b_2, c_1$代表种群间的互惠作用.问题的强耦合性使得通常的比较原理一般不再成立.为了克服这一困难, 本文中我们采用Chen在文献[7]中用过的借助积分估计的方法来证明问题(1.1) 整体解的存在与非存在性.我们将证明当种群内部竞争强于种群间的互惠作用时, 问题(1.1) 存在整体古典解而当两种群具有强互惠作用时, 该问题所有的正古典解都不是整体存在的.类似问题的讨论还可以参见文献[8-10].
我们称$(u, v)$是问题(1.1) 的古典解, 如果存在$0<T\leq\infty, \text{使得}(u, v)\in[C^{2, 1}({\it \Omega}\times(0, T))\cap C(\overline{{\it \Omega}}\times[0, T))]^2$, $(u, v)$在${\it \Omega}\times(0, T)$内满足方程并且连续地满足初边值条件.
本文中我们用$\lambda_1$代表$-\Delta$在${\it \Omega}$内齐次Dirichlet边值问题的第一特征值, $\varphi>0$为相应的特征函数满足$\max\limits_{x\in\overline{{\it \Omega}}}\varphi(x)=1$.易知$\lambda_1>0, \ \frac{\partial\varphi}{\partial n}<0$于$\partial{\it \Omega}$.
文章安排如下:第二部分我们给出正古典解局部存在性的证明.在第三和第四两部分我们分别给出问题整体解存在和不存在的充分条件.
由于在$\partial{\it \Omega}$上$u=v=0$, 所以$(1.1)$式不是严格抛物型的.经典的抛物方程理论[11, 12]不能直接用于证明它的古典解的局部存在性.为了克服这个困难, 我们采用正则逼近的方法.这个方法已被很多学者用来证明退化方程或方程组解的局部存在性(见文献[3, 13, 14]).这里我们只是简要地给出证明框架.考虑如下逼近问题
由抛物方程的经典理论可知(2.1) 式存在惟一正解$(u_\epsilon, v_\epsilon)\in [C^{2, 1}({\it \Omega}\times(0, T(\epsilon)))\cap C^{1, 0}(\overline{{\it \Omega}}\times[0, T(\epsilon))]^2$ ($0<T(\epsilon)\leq\infty$), 这里$T(\epsilon)$是解的最大存在时间.此外, 由类似与文献[13]中的方法可得, 对任意$0<\epsilon\leq\min\{(\frac{a_1}{b_1})^{\frac{1}{r}}, (\frac{a_2}{c_2})^{\frac{1}{m}}\}$, 在$\overline{{\it \Omega}}\times[0, T(\epsilon))$上都有$u_\epsilon, v_\epsilon\geq\epsilon$.
为了讨论$(u_\epsilon, v_\epsilon)$的收敛性, 我们需要对它们做一些上、下界的估计.由假设(1.2) 式可知, 存在两个正常数$k$, $K$使得
记$M=\max\{\max\limits_{\overline{{\it \Omega}}}u_0(x), \max\limits_{\overline{{\it \Omega}}}v_0(x)\}$.令$(f(t), g(t))$为下述ODE的惟一解
则$f(t), g(t)\geq M+\max\{(\frac{a_1}{b_1})^{\frac{1}{r}}$, $(\frac{a_2}{c_2})^{\frac{1}{m}}\}$.记$T^*$ ($0<T^*<\infty$)为它的最大存在时间(注意$T^*<\infty$因为$(f(t), g(t))$在有限时刻爆破).我们可以得到正则化问题解$(u_\epsilon, v_\epsilon)$的上、下界估计, 也就是如下的
命题2.1 设$0<\epsilon\leq\min\{(\frac{a_1}{b_1})^{\frac{1}{r}}, (\frac{a_2}{c_2})^{\frac{1}{m}}\}$, $(u_\epsilon, v_\epsilon)$是问题(2.1) 的解.则对任意固定的$T$, $0<T<\min\{T(\epsilon), T^*\}$, 有
这表明对任意的$0<\epsilon\leq\min\{(\frac{a_1}{b_1})^{\frac{1}{r}}, (\frac{a_2}{c_2})^{\frac{1}{m}}\}$, 都有$T(\epsilon)\geq T^*$.
命题2.2 设$0<\epsilon\leq\min\{(\frac{a_1}{b_1})^{\frac{1}{r}}, (\frac{a_2}{c_2})^{\frac{1}{m}}\}$, $(u_\epsilon, v_\epsilon)$是问题(2.1) 的解, 且正常数$k$满足(2.2) 式.则存在一个不依赖于$\epsilon$的正常数$\rho$使得
这里$T_*=\frac{T^*}{2}$.
这两个命题可以用类似于文献[13]中的方法给予证明, 这里我们略去其细节.
借助于命题2.1和2.2, 并利用标准的局部Schauder估计和对角线方法可知, 存在$\{\epsilon\}$的子列$\{\epsilon^\prime\}$和$u, v\in C^{2+\alpha, 1+\frac{\alpha}{2}}_{loc}({\it \Omega}\times(0, T_*])$使得对任意${\it \Omega}_*\Subset{\it \Omega}$和$0<\tau<T_*$都有
于是$(u, v)$满足方程(1.1).
固定$\epsilon_0:0<\epsilon_0<\min\{(\frac{a_1}{b_1})^{\frac{1}{r}}, (\frac{a_2}{c_2})^{\frac{1}{m}}\}$.对任意${\it \Omega}_0\Subset{\it \Omega}$ and $0<\epsilon^\prime<\epsilon_0$, 再次利用命题2.1, 2.2, 标准的$L^p$估计和嵌入定理可知$u_{\epsilon^\prime}$和$v_{\epsilon^\prime}$的$C^{\alpha, \frac{\alpha}{2}}(\overline{{\it \Omega}}_0\times[0, T_*])$范数对任意$\epsilon^\prime<\epsilon_0$是一致有界的.于是可知当$\epsilon^\prime\rightarrow 0^+$时,
这表明$u, v \in C({\it \Omega}\times[0, T_*])$.类似于文献[2]中的讨论我们可知$(u, v)$连续到抛物侧边界$\partial{\it \Omega}\times(0, T_*]$.综上可得如下的局部存在性定理.
定理2.1 假设初值$(u_0(x), v_0(x))$满足(1.2) 式.则问题(1.1) 存在一个正古典解
在这部分我们将给出问题(1.1) 存在整体正古典解的一个充分条件, 我们的结果是如下:
定理3.1 假设$r=s$, $l=m$, $b_1\geq c_1$, $b_2\leq c_2$.则只要$\lambda_1>\max\{a_1, a_2\}$, 问题(1.1) 就有整体正古典解.
证 我们的证明将分三步进行.
第一步 根据特征值对区域${\it \Omega}$的连续依赖性可知, 对任意$\rho\in(0, \lambda_1)$, 可以找到一个区域$D:D\Supset{\it \Omega}$, 使得$\lambda_1-\rho$是$-\Delta$在$D$内齐次Dirichlet边值问题的第一特征值, 即
记$\varphi$为满足$\max_{x\in D}\varphi(x)=1$的第一特征函数.易知在$\overline{{\it \Omega}}$上$\varphi>0$.对任意正整数$n$, 定义
这里$k>0$待定.对(3.2) 式关于$t$求导, 利用方程(2.1) 并分部积分可得
为估计(3.3) 式, 我们利用下述恒等式
此时(3.3) 式变为
对(3.5) 式中右端第二项分部积分可得
借助(3.1) 和(3.6) 式可得
(3.5) 式中右端第五项可以借助Cauchy不等式估计如下:
将(3.7) 和(3.8) 式代入(3.5) 式, 可得
利用Young不等式可以对(3.9) 式右端倒数第二项估计如下:
由于对任意$0<T<T(\epsilon)$, $u_\epsilon, \ v_\epsilon$以及$\nabla v_\epsilon$在$\overline{{\it \Omega}}\times[0, T]$上是有界的, 故我们可以选取充分大的$n$使得在$\overline{{\it \Omega}}\times[0, T]$上有
注意到$\lambda_1>\max\{a_1, a_2\}$, 我们可以选取$\rho>0$充分小使得$\lambda_1-\rho>\max\{a_1, a_2\}$.然后取$k<1$但是充分接近$1$使得$k(\lambda_1-\rho)>\max\{a_1, a_2\}$.这样, 对充分大的$n$可得
类似的, 可以得到
将(3.12) 和(3.13) 式相加可知对充分大的$n$和任意$t\in[0, T]$有
这里$\delta_1, \cdots, \delta_4$是不依赖于$n$和$\epsilon$的正常数.求解(3.14) 式可得
对(3.15) 式开$n$次方根并令$n\rightarrow\infty$可得
这表明$T(\epsilon)=\infty$, 且对任意$0<\epsilon\leq\min\{(\frac{a_1}{b_1})^{\frac{1}{r}}, (\frac{a_2}{c_2})^{\frac{1}{m}}\}$, 都有$u_\epsilon+v_\epsilon\leq c_0e^{Mt}$.
第二步 第一步的结果表明对任意$T<T(\epsilon)$, $(u_\epsilon, v_\epsilon)$在$[0, T]$上都是有界的.利用类似于命题2.2的方法可以证明在${\it \Omega}\times[0, T]$上, $u_\epsilon, v_\epsilon\geq ke^{-\rho t}\varphi$, 这里$\rho$是不依赖于$\epsilon$的正常数.
第三步 由前两步的结论可知, 对任意${\it \Omega}_n\Subset{\it \Omega}$和$0<\tau<T_n<T$, 存在两个正常数$\sigma(n, t)$和$M(n, t)$使得在$\overline{{\it \Omega}}_n\times[\tau, T_n]$上有$\sigma(n, t)\leq u_\epsilon, v_\epsilon\leq M(n, t)$.再次利用标准的局部Schauder估计和对角线法则可知存在$\{\epsilon\}$的子列$\{\epsilon^\prime\}$和$u, v\in C^{2+\alpha, 1+\frac{\alpha}{2}}_{\rm loc}({\it \Omega}\times(0, T))$使得对任意${\it \Omega}_*\Subset{\it \Omega}$和$0<\tau<T_0<T$
于是$(u, v)$在${\it \Omega}\times(0, T)$上满足(1.1) 的方程.
类似于局部存在性时的讨论可知$(u, v)\in [C^{2+\alpha, 1+\frac{\alpha}{2}}_{\rm loc}({\it \Omega}\times(0, T))\cap C(\overline{{\it \Omega}}\times[0, T))]^2$是(1.1) 式的古典解.由$T$的任意性可知, $(u, v)\in [C^{2+\alpha, 1+\frac{\alpha}{2}}_{loc}({\it \Omega}\times(0, \infty))\cap C(\overline{{\it \Omega}}\times[0, \infty))]^2$, 即$(u, v)$是(1.1) 式的整体解.证毕.
注 利用类似于文献[14]中的方法还可以证明, 通过正则化方法得到的解$(u, v)$其实是问题(1.1) 的一个最大解, 即若$(\overline{u}, \overline{v})$是(1.1) 式的任意一个解, 则必有$u\geq\overline{u}, \ v\geq\overline{v}$.这和定理3.1表明此时问题(1.1) 的所有解都是整体解.
本节给出问题(1.1) 不存在整体古典解的一个充分条件, 主要结果是如下的
定理4.1 假设$b_1\leq c_1, \ c_2\leq b_2, r=s, l=m$, $0<p, \ q<2$.则当$\lambda_1<\min\{a_1, a_2\}$时, 问题(1.1) 不存在非平凡的整体古典解.
证 若不然假设问题(1.1) 存在一个非平凡的整体古典解, 我们将证明它必在有限时刻爆破.根据特征值对区域$\it \Omega$的连续依赖性我们可以找到一个小常数$\theta>0$和区域$D, \ D\Subset {\it \Omega}$使得
且$\lambda_1+\theta$是$-\Delta$在$D$内齐次Dirichlet边值问题的第一特征值, 即
易知$u$和$v$在$\overline{D}$上是严格正的.
对任意正整数$n$, 定义
这里$k\geq1$待定.对(4.3) 式关于$t$求导, 利用方程(1.1) 和分部积分公式可得
为了估计(4.4) 式, 我们利用如下恒等式
此时(4.4) 式变为
对(4.5) 右端第二项利用分部积分可得
利用(4.2) 式和上述关系可得
对(4.5) 式中右端第四项可以用Cauchy不等式作如下估计:
将(4.7) 和(4.8) 式代入(4.5) 式, 我们得到
同样对(4.9) 式中右端第四项利用Cauchy不等式可得
将(4.10})式代入(4.9) 式有
由于$(u, v)$对所有的$t>0$都存在, 且在$\overline{D}$上是严格正的, 故对任意给定的$T>0$, 可以选择$n$充分大使得在$\overline{D}\times[0, T]$上
于是有
利用Young不等式, 可以对(4.12) 式右端第三项做如下估计:
将(4.13) 式代入(4.12) 式得
类似的, 我们可以得到
由于$u, v$在$\overline{D}\times[0, T]$上有严格正的上下界, 故我们可以选取$n$充分大使得
取$k=1+\theta$, 将(4.14) 和(4.15) 式相加, 并将(4.16) 式代入其中可得
令$H_n(t)=h_n(t)+w_n(t)$.由(4.17) 式可知, 对任意$0\leq t_1\leq t_2\leq T$有
对$H_n(t)$开$n$次方根并令$n\rightarrow\infty$可得
由于(4.18) 式不依赖于$T$, 故它对所有的$t>0$都成立.此外由(4.17) 式可知$H(t)$是单调递减的.
记$\lim\limits_{t\rightarrow\infty}H(t)=A$.如果$A>0$, 则$u$和$v$在$\overline{D}\times[0, \infty)$上是有界的.于是由(4.17) 式可知, 对充分大但是固定的$n$有$H^\prime_n(t)\leq-c_n$.这是一个矛盾, 因为此时$t$不可能趋于无穷大.如果$A=0$, 则对任意$N>1$, 存在充分大的$t_1$使得对所有的$t\geq t_1$都有
为了得到$(u, v)$在$D$上的正下界, 我们可以重新选择一个区域$D_1$满足$D\Subset D_1\Subset{\it \Omega}$, 使得对于满足$0<\widetilde{\theta}<\theta$的$\widetilde{\theta}$, $\lambda_1+\widetilde{\theta}$为$-\Delta$在$D$内齐次Dirichlet边值问题的第一特征值.用上述方法可以证明(4.19) 式在$D_1$上也是成立的.于是可以选取$N$充分大可知在$\overline{D}\times[t_1, \infty)$上$u, v\geq1$.不失一般性, 假设$p\leq q$.令$\delta^2=\min_{\overline{D}}\{\varphi^2+|\nabla\varphi|^2\}>0$, 则由(4.19) 和(4.17) 式可得
第二个不等式成立是因为$kp, kq\leq2$, $\varphi\leq1$.在(4.19) 式中选取$t_1$和$N$使得$\theta N^p\delta^2\geq1$, and $\theta N^\beta\delta^2>1$, 则由(4.20) 式可知对任意$t\geq t_1, $
由此可得对任意$t\geq t_1$, $H_n(t)\leq H_n(t_1)e^{-n(t-t_1)}$, 进而有$H(t)\leq H(t_1)e^{-(t-t_1)}$.类似于(4.19) 式, 我们得到
定义序列$\{t_i\}$满足$t_{i+1}=t_i+\frac{2^{2-i}}{p}$.易知当$i\rightarrow\infty$时, $t_i\rightarrow t_1+\frac{4}{p}$.将(4.21) 式代入(4.17) 式得
由此可得
或
假设对$i\leq2$, 有
重复上面的操作可得
进而有
于是由数学归纳法可知, (4.23) 式对所有的$i\geq2$都成立.取$t=t_0>t_1+\frac{4}{p}$并令$i\rightarrow\infty$可得矛盾.证毕.