数学杂志  2014, Vol. 34 Issue (5): 931-940   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王玉红
侯国林
阿拉坦仓
一类3×3上三角算子矩阵的点谱和剩余谱
王玉红1,2, 侯国林1, 阿拉坦仓1    
1. 内蒙古大学数学科学学院, 内蒙古 呼和浩特 010021;
2. 赤峰学院数学学院, 内蒙古 赤峰 024000
摘要:本文完全描述了一类3×3上三角算子矩阵的点谱和剩余谱, 并将剩余谱表示为一些互不相交子集合的并集, 在l2×l2×l2中构造了具体例子说明该算子的剩余谱可能非空, 从而验证了所得结果的有效性.
关键词Hilbert空间    上三角算子矩阵    点谱    剩余谱    
ON THE POINT SPECTRUM AND RESIDUAL SPECTRUM FOR A CLASS OF 3×3 UPPER TRIANGULAR OPERATOR MATRICES
WANG Yu-hong1,2, HOU Guo-lin1, Alatancang1    
1. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China;
2. School of Mathematics, Chifeng University, Chifeng 024000, China
Abstract: In this paper, the point spectrum and residual spectrum for a class of 3×3 upper triangular operator matrices are described completely, and the residual spectrum of the operator is divided into some disjoint subsets. Moreover, some examples of l2×l2×l2 are constructed to show that the residual spectrum of the operator may be nonempty, which verifies the effectiveness of the result.
Key words: Hilbert space     upper triangular operator matrices     point spectrum     residual spectrum    
1 引言

算子矩阵的谱问题是近年来线性算子理论中较为活跃的研究课题之一, 许多学者对其进行过研究, 参见文献[1-4]及其所引文献.我们知道, 如果$M$是Hilbert空间$X$上线性算子$T$的不变子空间, 在空间分解$X=M\oplus M^{\bot}$下, 线性算子$T$有如下上三角矩阵表示:

$ T=\left( \begin{array}{cc} \ast & \ast \\ 0 & \ast \\ \end{array} \right): M\oplus M^{\bot}\rightarrow M\oplus M^{\bot}. $

国内外许多学者对$2\times 2$上三角算子矩阵的补问题和Weyl定理进行了研究, 取得了丰硕的研究成果[5-8].近来, $3\times 3$算子矩阵的扰动问题引起了一些学者的兴趣, 文献[9]通过对角元的信息给出了所有以这些算子为对角元的算子矩阵的Weyl型定理, 文献[10]则给出了对角元给定的所有$3\times 3$算子矩阵的可能点谱、可能剩余谱、可能连续谱和可能谱的刻画.文献[11]研究了一类$3\times 3$算子矩阵的本质谱.我们考虑$3\times3$上三角算子矩阵的点谱和剩余谱, 推广了文献[12]的结论, 给出了一类无界$3\times3$上三角算子矩阵点谱和剩余谱的完全描述, 并且在$l^{2}\times l^{2}\times l^{2}$中构造了一些剩余谱非空的上三角算子矩阵实例, 为进一步研究$3\times3$上三角算子矩阵的谱理论提供了重要事实.

2 预备知识

除非特别说明, 本文始终用$X$表示Hilbert空间.为了简洁, $X$和乘积空间$X\times X\times X$中的单位算子均用$I$表示.若$A$是Hilbert空间中的线性算子, 我们用$D(A)$$R(A)$$A^{\ast}$分别表示$A$的定义域、值域和共轭算子; $N(A)$表示$A$的零空间, 即$N(A)=\{x\in D(A)|Ax=0\}$. $W^{c}$表示集合$W$相对于复数域$\mathbb{C}$的补集, $\emptyset$表示空集.

定义2.1 若$W_{1}$$W_{2}$$X$的子集, 则$W_{1}+W_{2}$定义为

$W_{1}+W_{2}=\{x+y\in X|x\in W_{1}, y\in W_{2}\}, $

$W_{1}, W_{2}$中有一个为$\emptyset$, 约定$W_{1}+W_{2}=\emptyset$.

定义2.2 [13] $X$中的线性算子$T$的谱$\sigma(T)$可分为三个互不相交的集合的并集, 即

$\sigma(T)=\sigma_{p}(T)\cup\sigma_{r}(T)\cup\sigma_{c}(T),$

其中

1) 称$\lambda$$T$的点谱, 如果$\lambda I-T$不是单射.点谱的全体记为$\sigma_{p}(T)$, 即

$\sigma_{p}(T)=\{\lambda\in \mathbb{C}: \lambda I-T {\hbox{不是单射}}\};$

2) 称$\lambda$$T$的剩余谱, 如果$\lambda I-T$是单射并且$\overline{R(\lambda I-T)}\neq X$.剩余谱的全体记为$\sigma_{r}(T)$, 即

$\sigma_{r}(T)=\{\lambda\in \mathbb{C}: \lambda I-T {\hbox{是单射}}, \overline{R(\lambda I-T)}\neq X\};$

3) 称$\lambda$$T$的连续谱, 如果$\lambda I-T$是单射, $\overline{R(\lambda I-T)}= X$, 并且它的逆算子不连续.连续谱的全体记为$\sigma_{c}(T)$, 即

$\sigma_{c}(T)=\{\lambda\in \mathbb{C}: \lambda I-T{\hbox{是单射}}, \overline{R(\lambda I-T)}= X, {\hbox{但}}(\lambda I-T)^{-1}{\hbox{不连续}}\}.$
3 主要结果

定理3.1 设$H= \left( \begin{array}{ccc} A & E & F \\ 0 & B & 0\\ 0 & 0 & C \\ \end{array} \right)$是Hilbert空间$X\times X\times X$中的稠定闭线性算子, $D(B)\subset D(E),D(C)\subset D(F)$, 则

$\begin{eqnarray*}\sigma_{p}(H)&=&\{\lambda\in C:\lambda\in\sigma_{p}(A)\}\\ &&\cup\{\lambda\in C:\lambda\in\sigma_{p}(B),R(E_{1})\cap R(\lambda I-A)\neq\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\in\sigma_{p}(C),R(F_{1})\cap R(\lambda I-A)\neq\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\in\sigma_{p}(B),\lambda\in\sigma_{p}(C),R(E_{1})\cap R(\lambda I-A) =\emptyset, \\ && R(F_{1})\cap R(\lambda I-A)=\emptyset, R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))\neq\emptyset\},\end{eqnarray*}$

其中$E_{1}=E|_{N(\lambda I-B)\setminus\{0\}}$$E$$N(\lambda I-B)\setminus\{0\}$的限制, $F_{1}=F|_{N(\lambda I-C)\setminus\{0\}}$$F$$N(\lambda I-C)\setminus\{0\}$的限制.

 由$D(B)\subset D(E),D(C)\subset D(F)$, 可知$D(H)=D(A)\times D(B)\times D(C).$为叙述简洁, 令

$\begin{eqnarray*} M&=&\{\lambda \in C :\lambda\in\sigma_{p}(B),R(E_{1})\cap R(\lambda I-A)\neq\emptyset\},\\ N&=&\{\lambda\in C:\lambda\in\sigma_{p}(C),R(F_{1})\cap R(\lambda I-A)\neq\emptyset\}, \\ Q&=&\{\lambda\in C:\lambda\in\sigma_{p}(B),\lambda\in\sigma_{p}(C),R(E_{1})\cap R(\lambda I-A)=\emptyset,R(F_{1})\cap R(\lambda I-A)=\emptyset,\\ && R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))\neq\emptyset\}.\end{eqnarray*}$

先证$\sigma_{p}(A)\cup M\cup N\cup Q\subset\sigma_{p}(H)$.若$\lambda\in\sigma_{p}(A)$, 则存在$x_{0}\in D(A)$$x_{0}\neq0$, 有$(\lambda I-A)x_{0}=0$.从而

$\left( \begin{array}{c} x_{0} \\ 0\\ 0 \\ \end{array} \right) \in D(H){\hbox{且}} \left( \begin{array}{c} x_{0} \\ 0\\ 0 \\ \end{array} \right)\neq0,$

满足如下的算子方程组

$\begin{align} \left\{ \begin{array}{c r} (\lambda I-A)x- Ey- Fz=0 ,\\ (\lambda I-B)y=0,\\ (\lambda I-C)z=0,\\ \end{array} \right. \end{align}$ (3.1)

$\lambda\in\sigma_{p}(H)$.

$\lambda\in M$, 则有$\lambda\in\sigma_{p}(B)$, 从而$N(\lambda I-B)\setminus\{0\}\neq\emptyset$, 又由$R(E_{1})\cap R(\lambda I-A)\neq\emptyset$, 则存在$x_{0}\in D(A)$$y_{0}\in N(\lambda I-B)\setminus\{0\}$使得

$\begin{equation} E_{1}y_{0}=(\lambda I-A)x_{0}, \end{equation}$ (3.2)

从而$Ey_{0}=(\lambda I-A)x_{0}$, 又由$y_{0}\in N(\lambda I-B)\setminus\{0\}$, 自然有$y_{0}\neq0$$(\lambda I-B)y_{0}=0$, 从而对上面存在的$x_{0},y_{0}$, 有$\left( \begin{array}{c} x_{0} \\ y_{0} \\ 0 \\ \end{array} \right) \in D(H)$且满足方程组$(3.1)$, 因此$\lambda\in\sigma_{p}(H)$.同理可证$\lambda\in N$时, $\lambda\in\sigma_{p}(H)$.

$\lambda\in Q$, 则$\lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C)$, 从而$N(\lambda I-B)\setminus\{0\}\neq\emptyset$, $N(\lambda I-C)\setminus\{0\}\neq\emptyset$, 又由$R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))\neq\emptyset$, 故存在$x_{0}\in D(A)$, $y_{0}\in N(\lambda I-B)\setminus\{0\}$, $z_{0}\in N(\lambda I-C)\setminus\{0\}$, 使得

$\begin{equation} (\lambda I-A)x_{0}=E_{1}y_{0}+F_{1}z_{0}, \end{equation}$ (3.3)

从而$(\lambda I-A)x_{0}-Ey_{0}-Fz_{0}=0$, 又由$y_{0}\in N(\lambda I-B)\setminus\{0\}$, $z_{0}\in N(\lambda I-C)\setminus\{0\}$, 自然有$(\lambda I-B)y_{0}=0,(\lambda I-C)z_{0}=0$, 即$\left( \begin{array}{c} x_{0} \\ y_{0} \\ z_{0}\\ \end{array} \right) \in D(H)$$\left( \begin{array}{c} x_{0}\\ y_{0} \\ z_{0}\\ \end{array} \right)\neq0$满足方程组$(3.1)$, 即$\lambda\in \sigma_{p}(H)$.进而证明了$\sigma_{p}(A)\cup M\cup N\cup Q\subset \sigma_{p}(H)$.

下面证明$\sigma_{p}(H)\subset \sigma_{p}(A)\cup M\cup N\cup Q $.对于任意$\lambda\in \sigma_{p}(H)$, 存在

$\left( \begin{array}{c} x_{0} \\ y_{0} \\ z_{0} \\ \end{array} \right)\in D(H){\hbox{ 且}}\left( \begin{array}{c} x_{0} \\ y_{0} \\ z_{0} \\ \end{array} \right)\neq0, $

满足方程组$(3.1)$.以下分四种情况讨论:

1) 若$y_{0}=0, z_{0}=0$, 则必有$x_{0}\neq0$, 此时方程$(\lambda I-A)x_{0}-Ey_{0}-Fz_{0}=0$变为$(\lambda I-A)x_{0}=0$, 这意味着$\lambda\in\sigma_{p}(A)$.

2) 若$y_{0}=0, z_{0}\neq0$, 则由$(\lambda I-C)z_{0}=0$可得$\lambda\in\sigma_{p}(C)$$z_{0}\in N(\lambda I-C)\setminus\{0\}$, 此时方程组的第一个方程变为$(\lambda I-A)x_{0}-Fz_{0}=0$, 从而$(\lambda I-A)x_{0}=F_{1}z_{0}$, 即

$R(\lambda I-A)\cap R(F_{1})\neq\emptyset,$

$\lambda\in N$.

3) 若$y_{0}\neq0, z_{0}=0$, 类似前面的证明可知$\lambda\in\sigma_{p}(B)$$R(E_{1})\cap R(\lambda I-A)\neq\emptyset$, 因此$\lambda\in M$.

4) 若$y_{0}\neq0, z_{0}\neq0$, 则$\lambda\in\sigma_{p}(B)$, $\lambda\in\sigma_{p}(C)$, 并且有$y_{0}\in N(\lambda I-B)\setminus\{0\}$, $z_{0}\in N(\lambda I-C)\setminus\{0\}$, 且$(\lambda I-A)x_{0}=E_{1}y_{0}+F_{1}z_{0}$, 从而

$R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))\neq\emptyset.$

$E_{1}y_{0}\in R(\lambda I-A)$$F_{1}z_{0}\in R(\lambda I-A)$, 则$\lambda\in M\cap N$, 从而$\lambda\in M\cup N$.若$E_{1}y_{0}\overline{\in}R(\lambda I-A)$$F_{1}z_{0}\overline{\in}R(\lambda I-A)$, 即$R(\lambda I-A)\cap R(E_{1})=\emptyset$, $R(\lambda I-A)\cap R(F_{1})=\emptyset$, 此时$\lambda\in Q$.

综上所述$\lambda\in\sigma_{p}(H)$, 则$\lambda\in\sigma_{p}(A)\cup M\cup N\cup Q$.证毕.

注3.1  定理3.1中的结论$\sigma_{p}(H)$可描述为七个互不相交的集合之并:

$\begin{eqnarray*}\sigma_{p}(H)&=&\{\lambda\in C:\lambda\in\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C)\}\\ &&\cup\{\lambda\in C:\lambda\in\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})\neq\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\in\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{1})\neq\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\in\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))\neq\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})\neq\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{1})\neq\emptyset\}\\ && \cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))\neq\emptyset\}.\end{eqnarray*}$

由定理3.1证明中的(3.2) 和(3.3) 两式可看出, 若去掉定理3.1中条件$D(B)\subset D(E), D(C)\subset D(F)$, 有如下结论:

推论3.1 设$X$是Hilbert空间, $H= \left( \begin{array}{ccc} A & E & F \\ 0 & B & 0\\ 0 & 0 & C \\ \end{array} \right)$$X\times X\times X$中的稠定闭线性算子, $D(H)=D(A)\times (D(E)\cap D(B))\times (D(F)\cap D(C))$, 则

$\begin{eqnarray*}\sigma_{p}(H)&=&\{\lambda\in C:\lambda\in\sigma_{p}(A)\}\\ && \cup\{\lambda\in C:\lambda\in\sigma_{p}(B), R(E_{2})\cap R(\lambda I-A)\neq\emptyset\}\\ && \cup\{\lambda\in C:\lambda\in\sigma_{p}(C), R(F_{2})\cap R(\lambda I-A)\neq\emptyset\}\\ && \cup\{\lambda\in C:\lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(E_{2})\cap R(\lambda I-A) =\emptyset, \\ && R(F_{2})\cap R(\lambda I-A)=\emptyset, R(\lambda I-A)\cap(R(E_{2})+R(F_{2}))\neq\emptyset\}, \end{eqnarray*}$

其中$E_{2}=E|_{(N(\lambda I-B)\cap D(E))\setminus\{0\}}$$E$$(N(\lambda I-B)\cap D(E))\setminus\{0\}$的限制,

$F_{2}=F|_{(N(\lambda I-C)\cap D(F))\setminus\{0\}}$

$F$$(N(\lambda I-C)\cap D(F))\setminus\{0\}$的限制.

定理3.2 设$X$是Hilbert空间, $H= \left( \begin{array}{ccc} A & E & F \\ 0 & B & 0\\ 0 & 0 & C \\ \end{array} \right)$$X\times X\times X$中的稠定闭线性算子, $D(B)\subset D(E), D(C)\subset D(F)$, 则

$\begin{eqnarray*}&& \sigma_{r}(H)=\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), \overline{R(\lambda I-A)+R(E_{3})+R(F_{3})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(C), \lambda\in\sigma_{r}(B)\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{r}(C)\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C),\\ && R(\lambda I-A)\cap R(F_{1})=\emptyset, \overline{R(\lambda I-A)+R(E_{3})+R(F_{3})} \neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{r}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{1})=\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{1})=\emptyset, \overline{R(\lambda I-C)}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), \\ && R(\lambda I-A)\cap R(E_{1})=\emptyset, \overline{R(\lambda I-A)+R(E_{3})+R(F_{3})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C),\\ && R(\lambda I-A)\cap R(E_{1})=\emptyset, \overline{R(\lambda I-B)}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{r}(C), R(\lambda I-A)\cap R(E_{1})=\emptyset\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})=\emptyset,\\ && R(\lambda I-A)\cap R(F_{1})=\emptyset, R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))=\emptyset,\\ && \overline{R(\lambda I-A)+R(E_{3})+R(F_{3})}\neq X\}\\ && \cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})=\emptyset,\\ && R(\lambda I-A)\cap R(F_{1})=\emptyset, R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))=\emptyset, \overline{R(\lambda I-B)}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})=\emptyset, \\ && R(\lambda I-A)\cap R(F_{1})=\emptyset, R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))=\emptyset, \overline{R(\lambda I-C)}\neq X\}, \end{eqnarray*}$

其中$E_{3}=E|_{D(B)}$$E$$D(B)$的限制, $F_{3}=F|_{D(C)}$$F$$D(C)$的限制. $E_{1}$$F_{1}$同定理3.1.

 为简便计, 令

$\begin{eqnarray*}&& S_{1}=\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C)\},\\ && S_{2}=\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{1})=\emptyset\},\\ && S_{3}=\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})=\emptyset\},\\ && S_{4}=\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{1})=\emptyset,\\ && R(\lambda I-A)\cap R(F_{1})=\emptyset, R(\lambda I-A)\cap(R(E_{1})+R(F_{1}))=\emptyset\}.\end{eqnarray*}$

根据定理3.1, 可知$(\sigma_{p}(H))^{c}=S_{1}\cup S_{2}\cup S_{3}\cup S_{4}$.注意到$\overline{R(\lambda I-H)}\neq X\times X\times X$当且仅当

$\overline{R(\lambda I-A)+R(E_{3})+R(F_{3})}\neq X,{\hbox{ 或}}\overline{R(\lambda I-B)}\neq X, {\hbox{或}}\overline{R(\lambda I-C)}\neq X.$

$ M=\{\lambda\in C:\overline{R(\lambda I-A)+R(E_{3})+R(F_{3})}\neq X, {\hbox{或}}\overline{R(\lambda I-B)}\neq X, {\hbox{或}} \overline{R(\lambda I-C)}\neq X\}.$

根据剩余谱的定义, 有

$\lambda\in\sigma_{r}(H)\Leftrightarrow\lambda\in(\sigma_{p}(H))^{c}\cap M\Leftrightarrow\lambda\in(S_{1}\cup S_{2}\cup S_{3}\cup S_{4})\cap M,$

利用结合的运算律, 便证明了定理3.2.

同推论3.1, 若去掉定理3.2中关于定义域的限制条件$D(B)\subset D(E), D(C)\subset D(F)$, 则有如下的结论:

推论3.2 设$X$是Hilbert空间, $H= \left( \begin{array}{ccc} A & E & F \\ 0 & B & 0\\ 0 & 0 & C \\ \end{array} \right)$$X\times X\times X$中的稠定闭线性算子, $D(H)=D(A)\times (D(E)\cap D(B))\times (D(F)\cap D(C))$, 则

$\begin{eqnarray*}&& \sigma_{r}(H)=\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), \overline{R(\lambda I-A)+R(E_{4})+R(F_{4})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), \overline{R(\lambda I-B_{1})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C)\overline{R(\lambda I-C_{1})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C),\\ && R(\lambda I-A)\cap R(F_{2})=\emptyset, \overline{R(\lambda I-A)+R(E_{4})+R(F_{4})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{2})=\emptyset, \overline{R(\lambda I-B_{1})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\overline{\in}\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(F_{2})=\emptyset, \overline{R(\lambda I-C_{1})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), R(\lambda I-A)\cap R(E_{2})=\emptyset,\\ && \overline{R(\lambda I-A)+R(E_{4})+R(F_{4})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), R(\lambda I-A)\cap R(E_{2})=\emptyset, \overline{R(\lambda I-B_{1})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\overline{\in}\sigma_{p}(C), R(\lambda I-A)\cap R(E_{2})=\emptyset, \overline{R(\lambda I-C_{1})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{2})=\emptyset, R(\lambda I-A)\cap R(F_{2})=\emptyset, \\ &&R(\lambda I-A)\cap(R(E_{2})+R(F_{2}))=\emptyset, \overline{R(\lambda I-A)+R(E_{4})+R(F_{4})}\neq X\}\\ &&\cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{2})=\emptyset, R(\lambda I-A)\cap R(F_{2})=\emptyset, \\ && R(\lambda I-A)\cap(R(E_{2})+R(F_{2}))=\emptyset, \overline{R(\lambda I-B_{1})}\neq X\}\\ && \cup\{\lambda\in C:\lambda\overline{\in}\sigma_{p}(A), \lambda\in\sigma_{p}(B), \lambda\in\sigma_{p}(C), R(\lambda I-A)\cap R(E_{2})=\emptyset, R(\lambda I-A)\cap R(F_{2})=\emptyset, \\ && R(\lambda I-A)\cap(R(E_{2})+R(F_{2}))=\emptyset, \overline{R(\lambda I-C_{1})}\neq X\}, \end{eqnarray*}$

其中$E_{4}=E|_{D(B)\cap D(E)}$$E$$D(B)\cap D(E)$的限制, $F_{4}=F|_{D(C)\cap D(F)}$$F$$D(C)\cap D(F)$的限制, $ B_{1}=B|_{D(B)\cap D(E)}$$B$$D(B)\cap D(E)$的限制, $C_{1}=C|_{D(C)\cap D(F)}$$C$$D(C)\cap D(F)$的限制. $E_{2}$$F_{2}$定义同推论3.1.

注3.2 若$A, B, C, E, F$$X$中的有界线性算子, 则$D(B)\subset D(E), D(C)\subset D(F)$自然成立, 故前文所有结论对于$X\times X\times X$上的有界算子矩阵$H$均适用.

4 例子

本节举例说明上三角算子矩阵$H$的剩余谱可以非空, 进而验证了定理3.2的有效性.

例1 设$X=l^{2}(0, \infty)$, 对于任意$x\in l^{2}$, $x=(x_{1}, x_{2}, x_{3}, x_{4},\cdots)$, 令

$\begin{align*} &Ax=(x_{1}+2x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Bx=(2x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Cx=(0, x_{1}, x_{2}, x_{3},\cdots),\\ &Ex=(4x_{1}, 2x_{1}, x_{2}, x_{3}, \cdots),\\ &Fx=(2x_{1}, x_{1}, x_{2}, x_{3}, \cdots). \end{align*}$

$H=\left( \begin{array}{lll} A & E & F \\ 0 &B & 0 \\ 0 &0& C\\ \end{array} \right),$

$-1\in\sigma_{r}(H)$, 从而$\sigma_{r}(H)$非空.

 经计算易知$-1\overline{\in}\sigma_{p}(A)$, $-1\overline{\in}\sigma_{p}(B)$, $-1\overline{\in}\sigma_{p}(C)$, $\forall x, y, z\in X$, 有

$\begin{eqnarray*}&&(-I-A)x-E_{3}y-F_{3}z \\ &=&(-2x_{1}-2x_{2}-4y_{1}-2z_{1}, -x_{1}-x_{2}-2y_{1}-z_{1},\\ &&-x_{3}-x_{2}-y_{2}-z_{2}, -x_{4}-x_{3}-y_{3}-z_{3}, \cdots).\end{eqnarray*}$

$M=\{x:x=(x_{1}, x_{2}, \cdots)\in l^{2}| x_{1}=2x_{2}\}.$

易证$M$$X$的真闭子空间, 又$R(-I-A)+R(E_{3})+R(F_{3})$包含于$M$中, 从而

$\overline{R(-I-A)+R(E_{3})+R(F_{3})}\neq X.$

综上, $-1\overline{\in}\sigma_{p}(A)$, $-1\overline{\in}\sigma_{p}(B)$, $-1\overline{\in}\sigma_{p}(C)$, $\overline{R(-I-A)+R(E_{3})+R(F_{3})}\neq X$.由定理3.2可知, $-1\in\sigma_{r}(H)$, 即$\sigma_{r}(H)$非空.

例2 设$X=l^{2}(0, \infty)$, 对于任意$x\in l^{2}$, $x=(x_{1}, x_{2}, x_{3}, \cdots)$, 令

$\begin{align*} &Ax=(2x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Bx=(x_{1}+2x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Cx=(0, x_{1}, x_{2}, x_{3}, \cdots),\\ &Ex=(2x_{1}+x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Fx=(x_{1}+x_{2}, x_{1}, x_{2}, x_{3}, \cdots) \end{align*}$

$H=\left( \begin{array}{lll} A & E & F \\ 0 &B & 0 \\ 0 &0& C \end{array} \right).$

经计算易知$-1\overline{\in}\sigma_{p}(A)$, $-1\in\sigma_{r}(B)$, $-1\overline{\in}\sigma_{p}(C)$, 由定理3.2可知, $-1\in\sigma_{r}(H)$, 于是$\sigma_{r}(H)$非空.

例3 设$X=l^{2}(0, \infty)$, 对于任意$x\in l^{2}$, $x=(x_{1}, x_{2}, x_{3}, \cdots)$, 令

$\begin{align*} &Ax=( 2x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Bx=(0, x_{1}, x_{2}, x_{3}, \cdots),\\ &Cx=(x_{2}, 2x_{1}+x_{3}, x_{4}, x_{5}, \cdots),\\ &Ex=(0, 0, 0, x_{1}, \cdots),\\ &Fx=(0, 0, x_{1}, x_{2}, \dots). \end{align*}$

通过计算, 有$ C=A^{\ast}$.令

$H=\left( \begin{array}{lll} A & E & F \\ 0 &B & 0 \\ 0 &0& C \end{array} \right),$

$\sigma_{r}(H)$非空.

 经计算可知, $0\overline{\in}\sigma_{p}(A)$, $0\overline{\in}\sigma_{p}(B)$, $0\in\sigma_{p}(C)$

$N(\lambda I-C)\setminus\{0\}=\{(m_{1}, 0, -2 m_{1}, 0, 0, \cdots)^{T}\in X| m_{1}\neq0\}.$

于是$F_{1}m =(0, 0, m_{1}, 0, -2 m_{1}, \cdots)$, 由于$m_{1}\neq0$, 故$R(-A)\cap R(F_{1})=\emptyset$.对于任意$x, y, z\in X$, 有

$-Ax-E_{3}y-F_{3}z=(-2x_{2}, -x_{1}, -x_{2}-z_{1}, -x_{3}-y_{1}-z_{2}, \cdots),$

$-x_{2}-z_{1}=0 $, 显然$\overline{R(-A)+R(E_{3})+R(F_{3})}\neq X$.若$-x_{2}-z_{1}\neq0$, 取

$q=(m_{1}, 0, \frac{2\overline{x_{2}}m_{1}}{\overline{-x_{2}-z_{1}} }, 0, 0, \cdots), q\neq0, $

进而$-Ax-E_{3}y-F_{3}z$与非零元$q$正交, 因此$q \in (R(-A)+R(E_{3})+R(F_{3}))^{\perp}$, 所以$\overline{R(-A)+R(E_{3})+R(F_{3})}\neq X $.

综上所述,

$0\overline{\in}\sigma_{p}(A), 0\overline{\in}\sigma_{p}(B), 0\in\sigma_{p}(C), R(-A)\cap R(F_{1})=\emptyset, \overline{R(-A)+R(E_{3})+R(F_{3})}\neq X .$

由定理3.2可知$0\in\sigma_{r}(H)$, 即$\sigma_{r}(H)$非空.

例4 设$X=l^{2}(0, \infty)$, 对于任意$x\in l^{2}$, $x=(x_{1}, x_{2}, x_{3}, \cdots)$, 令

$\begin{align*} &Ax=(2x_{2}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Bx=(0, x_{1}, x_{2}, x_{3}, \cdots),\\ &Cx=(0, x_{2}, x_{3}, x_{4}, \cdots),\\ &Ex=(2x_{1}, x_{1}, x_{2}, x_{3}, \cdots),\\ &Fx=(0, 0, x_{1}, x_{2}, \cdots) \end{align*}$

$H=\left( \begin{array}{lll} A & E & F \\ 0 &B & 0 \\ 0 &0& C \end{array} \right),$

$\sigma_{r}(H)$非空.

 首先经计算, 我们有$0\overline{\in}\sigma_{p}(A)$, $0\overline{\in}\sigma_{p}(B)$, $0\in\sigma_{p}(C)$

$N(-C)\setminus\{0\}=\{m=(m_{1}, 0, 0, \cdots)^{T}\in X| m_{1}\neq0\}.$

于是$F_{1}m =(0, 0, m_{1}, 0, 0, \cdots)$, 进而$R(-A)\cap R(F_{1})=\emptyset$, 又因为$\overline{R(-C)}\neq X$.

综上$0\overline{\in}\sigma_{p}(A)$, $0\overline{\in}\sigma_{p}(B)$, $0\in\sigma_{p}(C)$, $R(-A)\cap R(F_{1})=\emptyset$, $\overline{R(-C)}\neq X$, 由定理3.2可知, $0\in\sigma_{r}(H)$, 即$\sigma_{r}(H)$非空.

例5 设$X=l^{2}(0, \infty)$, 对于任意$x\in l^{2}$, $x=(x_{1}, x_{2}, x_{3}, \cdots)$, 令

$\begin{align*} &Ax=(3x_{1}, 2x_{1}, x_{1}, x_{2}, \cdots),\\ &Bx=(x_{1}+x_{2}, 2x_{1}+x_{3}, x_{4}, x_{5}, \cdots),\\ &Cx=(x_{2}, 2x_{1}+x_{3}, x_{4}, x_{5}, \cdots),\\ &Ex=(0, x_{1}, 0, x_{2}, x_{3}, \cdots),\\ &Fx=(0, 0, x_{1}, x_{2}, \cdots) \end{align*}$

$H=\left( \begin{array}{lll} A & E & F \\ 0 &B & 0 \\ 0 &0& C \end{array} \right),$

$\sigma_{r}(H)$非空.

 经计算易知$0\overline{\in}\sigma_{p}(A)$, $0\in\sigma_{p}(B)$, $0\in\sigma_{p}(C)$

$\begin{eqnarray*}&& N(C)\setminus\{0\}=\{ m=(m_{1}, 0, -2 m_{1}, 0, 0, \cdots)^{T}\in X| m_{1}\neq0\},\\ && N(B)\setminus\{0\}=\{ n=(n_{1}, -n_{1}, -2 n_{1}, 0, 0, \cdots)\in X| n_{1}\neq0\}.\end{eqnarray*}$

于是$F_{1}m =(0, 0, m_{1}, 0, -2m_{1}, \cdots)$, 进而$R(-A)\cap R(F_{1})=\emptyset$.同理$R(-A)\cap R(E_{1})=\emptyset$.注意到$E_{1}n+F_{1}m=(0, n_{1}, m_{1}, -n_{1}, -2m_{1}-2 n_{1}, \cdots)$, 有$R(-A)\cap( R(E_{1})+R(F_{1}))=\emptyset$.

对于任意$x, y, z\in X$, 可得

$-Ax-E_{3}y-F_{3}z=(-3x_{1}, -2x_{1}-y_{1}, -x_{1}-z_{1}, -x_{2}-y_{2}-z_{2}, \cdots).$

$ -x_{1}-z_{1}=0$, 则$\overline{R(-A)+R(E_{3})+R(F_{3})}\neq X $.若$ -x_{1}-z_{1}\neq0$, 则取

$q=(m_{1}, 0, \frac{3\overline{x_{1}}m_{1}}{\overline{-x_{1}-z_{1}} }, 0, 0, \cdots)\neq 0,$

由于$-Ax-E_{3}y-F_{3}z$$q$正交, 所以, $\overline{R(-A)+R(E_{3})+R(F_{3})}\neq X $.综上$0\overline{\in}\sigma_{p}(A)$, $0\in\sigma_{p}(B)$, $0\in\sigma_{p}(C)$, $R(-A)\cap R(F_{1})=\emptyset$, $R(-A)\cap R(E_{1})=\emptyset$, $R(-A)\cap( R(E_{1})+R(F_{1})=\emptyset$, $\overline{R(-A)+R(E_{3})+R(F_{3})}\neq X $.由定理3.2可知, $0\in\sigma_{r}(H)$, 即$\sigma_{r}(H)$非空.

参考文献
[1] Atkinson F V, Langer H, Mennicken R, Shkalikov A A. The essential spectrum of some matrix operators[J]. Math. Nachr., 1994, 167: 5–20. DOI:10.1002/(ISSN)1522-2616
[2] Bátkai A, Binding P, Dijksma A, Hryniv R, Langer H. Spectral problems for operator matrices[J]. Math. Nachr., 2005, 278: 1408–1429. DOI:10.1002/(ISSN)1522-2616
[3] Jeribi A, Moalla N, Walha I. Spectra of some block operator matrices and application to transport operators[J]. J. Math. Anal. Appl., 2009, 351: 315–325. DOI:10.1016/j.jmaa.2008.09.074
[4] Hou G L, Alatancang. Spectrums of off-diagonal infinite-dimensional Hamiltonian operators and their applications to plane elasticity problems[J]. Commun. Theor. Phys., 2009, 51: 200–204. DOI:10.1088/0253-6102/51/2/02
[5] Du H K, Pan J. Perturbation of spectrums of $2 \times 2$ operator matrices[J]. Proc. Amer. Math. Soc., 1994, 121: 761–766.
[6] Han J K, Lee H Y, Lee W Y. Invertible completions of $2 \times 2$ upper triangular operator matrices[J]. Proc. Amer. Math. Soc., 2000, 128: 119–123. DOI:10.1090/S0002-9939-99-04965-5
[7] Sanchez-Perales S, Djordjevic S V. Continuity of spectrum and approximate point spectrum on operator matrices[J]. J. Math. Anal. Appl., 2011, 378: 289–294. DOI:10.1016/j.jmaa.2011.01.062
[8] Han Y M, Djordjevic S V. a-Weyl's theorem for operator matrices[J]. Proc. Amer. Math. Soc., 2001, 130: 715–722.
[9] 曹小红. $3 \times 3$上三角算子矩阵的Weyl型定理[J]. 数学学报(中文版), 2006, 49(3): 529–538.
[10] Hai G J, Alatancang. Possible spectrums of $3 \times 3$ upper triangular operator matrices[J]. Journal of Mathematical Research & Exposition, 2009, 29(4): 649–661.
[11] Amar A B, Jeribi A, Krichen B. Essential spectra of a $3 \times 3$ operator matrix and an application to three-group transport equations[J]. Integr. Equ. Oper. Theory, 2010, 68: 1–21. DOI:10.1007/s00020-010-1798-3
[12] 阿拉坦仓, 黄俊杰. $L^{2} \times L^{2}$中的一类无穷维Hamilton算子的剩余谱[J]. 数学物理学报, 2005, 25(A)7: 1040–1045. DOI:10.3321/j.issn:1003-3998.2005.z1.012
[13] 孙炯, 王忠. 线性算子的谱分析[M]. 北京: 科学出版社, 2005.