数学杂志  2014, Vol. 34 Issue (4): 671-678   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
LI Xiao-xin
FAN Yi-zheng
WANG Yi
MINIMUM DISTANCE SPECTRAL RADIUS OF GRAPHS WITH GIVEN EDGE CONNECTIVITY
LI Xiao-xin1,2, FAN Yi-zheng2, WANG Yi2    
1. Department of Mathematics and Computer Sciences, Chizhou University, Chizhou 247000, China;
2. School of Mathematical Sciences, Anhui University, Hefei 230601, China
Abstract: In this paper we study the extremal graphs with minimum distance spectral radius among all connected graphs of order n and edge connectivity r.By using the combinatorial method, we determine that K(n-1, r) is the unique extremal graph, where K(n-1, r) is obtained from the complete graph Kn-1 by adding a vertex v together with edges joining v to r vertices of Kn-1.All the above generalize the related results of the extremal graph theory.
Key words: graph     distance matrix     spectral radius     edge connectivity    
给定边连通度的图的最小距离谱半径
李小新1,2, 范益政2, 汪毅2    
1. 池州学院数学与计算机科学系, 安徽 池州 247000;
2. 安徽大学数学科学学院, 安徽 合肥 230601
摘要:本文研究了边连通度为rn阶连通图中距离谱半径最小的极图问题.利用组合的方法, 确定了K(n-1, r)为唯一的极图, 其中K(n-1, r)是由完全图Kn-1添加一个顶点v以及连接vKn-1r个顶点的边所构成.上述结论推广了极图理论中的相关结果.
关键词    距离矩阵    谱半径    边连通度    
1 Introduction

Let $G$ be a connected simple graph with vertex set $V(G)$ and edge set $E(G)$. The distance between two vertices $u, v $ of $G$, denoted by $\text{dis}_{uv}$, is defined as the length of the shortest path between $u$ and $v$ in $G$. The distance matrix of $G$, denoted by $D(G)$, is defined by $D(G)=(\text{dis}_{uv})_{u, v \in V(G)}$. Since $D(G)$ is symmetric, its eigenvalues are all real. In addition, as $D(G)$ is nonnegative and irreducible, by Perron-Frobenius theorem, the spectral radius $\rho(G)$ of $D(G)$ (called the distance spectral radius of $G$), is exactly the largest eigenvalue of $D(G)$ with multiplicity one; and there exists a unique (up to a multiple) positive eigenvector corresponding to this eigenvalue, usually referred to the Perron vector of $D(G)$.

The distance matrix is very useful in different fields, including the design of communication networks [1], graph embedding theory [2-4] as well as molecular stability [5, 6]. Balaban et al. [7] proposed the use of the distance spectral radius as a molecular descriptor. Gutman et al. [8] used the distance spectral radius to infer the extent of branching and model boiling points of an alkane. Therefore, maximizing or minimizing the distance spectral radius over a given class of graphs is of great interest and significance. Recently, the maximal or the minimal distance spectral radius of a given class of graphs has been studied extensively (see e.g. [9-18]).

Recall that the edge connectivity of a connected graph is the minimum number of edges whose removal disconnects the graph. For convenience, denote by $\mathcal{G}_n^r$ the set of all connected graphs of order $n$ and edge connectivity $r$. Clearly, $1 \leq r \leq n-1$, and $\mathcal{G}_n^{n-1}$ consists of the unique graph $K_n$, where $K_n$ denotes a complete graph of order $n$. Let $K(p, q)(p \geq q \geq 1)$ be a graph obtained from $K_p$ by adding a vertex together with edges joining this vertex to $q$ vertices of $K_p$. Surely $K(n-1, r)\in \mathcal{G}_n^r$. In this paper we prove that $K(n-1, r)$ is the unique graph with minimum distance spectral radius in $\mathcal{G}_n^r$, where $1 \le r \le n-2$.

2 Main Results

Given a graph $G$ on $n$ vertices, a vector $x \in \mathbb{R}^n$ is considered as a function defined on $G$, if there is a 1-1 map $\varphi$ from $V(G)$ to the entries of $x$; simply written $x_u=\varphi(u)$ for each $u \in V(G)$. If $x$ is an eigenvector of $D(G)$, then it is naturally defined on $V(G)$, i.e., $x_u$ is the entry of $x$ corresponding to the vertex $u$. One can find that

$ x^{T}D(G)x = \sum\limits_{u, v \in V(G)}\text{dis}_{uv} x_u x_v, $ (2.1)

and $\lambda$ is an eigenvalue of $D(G)$ corresponding to the eigenvector $x$ if and only if $x \neq 0$ and

$ \lambda x_v = \sum\limits_{u \in V(G)} \text{dis}_{vu} x_u, \hbox{ for each vertex } v \in V(G). $ (2.2)

In addition, for an arbitrary unit vector $x \in {\mathbb R}^n$,

$ x^TD(G)x\leq \rho(G), $ (2.3)

with the equality holds if and only if $x$ is an eigenvector of $D(G)$ corresponding to $\rho(G)$.

The following lemma is an immediate consequence of Perron-Frobenius theorem.

Lemma 2.1  Let $G$ be a connected graph with $u, v \in V(G)$. If $uv \notin E(G)$, then $\rho (G) > \rho (G+uv)$. If $uv \in E(G)$ and $G-uv$ is also connected, then $\rho (G) < \rho (G-uv)$.

By Lemma 2.1, for a connected graph $G$ on $n$ vertices, we have $\rho(G) \geq \rho(K_n)= n-1$, with equality holds if and only if $G=K_n$; and $\rho(G)\leq \rho(T_G)$, with equality holds if and only if $G=T_G$, where $T_G$ is a spanning tree of $G$.

Let $G$ be a graph and let $v$ be a vertex of $G$. Denote by $N(v)$ the set of neighbors of $v$ in $G$, and by $d_v$ the degree of $v$ in $G$ (i.e. the cardinality of $N(v)$).

Lemma 2.2   Let $G$ be a connected graph containing two vertices $u, v$, and let $x$ be a Perron vector of $D(G)$.

(1) If $N(u)\backslash \{v\}\subseteq N(v)\backslash \{u\}$, then $x_u \ge x_v$, with strict inequality if $N(u)\backslash \{v\}\subsetneq N(v)\backslash \{u\}$.

(2) If $N(u)\backslash \{v\} = N(v)\backslash \{u\}$, then $x_u = x_v$.

Proof  The second assertion follows from the first or can be found in [11]. So we only prove assertion (1). From (2.2), we have

$ \rho(G)x_u=\text{dis}_{uv}x_v+\sum\limits_{w \in V(G)\backslash \{u, v\}}\text{dis}_{uw} x_w, $ (2.4)
$ \rho(G)x_v=\text{dis}_{vu}x_u+\sum\limits_{w \in V(G)\backslash \{u, v\}}\text{dis}_{vw} x_w. $ (2.5)

Since $N(u)\backslash \{v\}\subseteq N(v)\backslash \{u\}$, for each $w \in V(G)\backslash \{u, v\}$, we have

$ \text{dis}_{uw} \geq \text{dis}_{vw}, $ (2.6)

and hence

$ \sum \limits_{w \in V(G)\backslash \{u, v\}}\text{dis}_{uw} x_w \ge \sum \limits_{w \in V(G)\backslash \{u, v\}}\text{dis}_{vw} x_w. $ (2.7)

By (2.4), (2.5) and (2.7), we get

$ (\rho(G)+ \text{dis}_{uv})x_u \ge (\rho(G) +\text{dis}_{uv})x_v. $

So $x_u \ge x_v$.

If $N(u)\backslash \{v\}\subsetneq N(v)\backslash \{u\}$, then there exists a vertex $w \in (N(v)\backslash \{u\}) \setminus (N(u)\backslash \{v\})$ such that $\text{dis}_{uw}> \text{dis}_{vw}=1$. So inequality (2.6) is strict for some vertex $w$ and hence (2.7) holds strictly, which implies $x_u > x_v$.

Let $G \in \mathcal{G}_n^r$. Then each vertex $v$ of $G$ holds $d_v \ge r$. If there exists some vertex $v$ of $G$ with $d_v=r$, we have the following result immediately.

Lemma 2.3  Let $G \in \mathcal{G}_n^r\;(1 \le r \le n-2)$, which contains a vertex of degree $r$. Then $\rho(G) \ge \rho(K(n-1, r))$, with equality if and only if $G=K(n-1, r)$.

Proof  Let $v$ be a vertex of $G$ such that $d_v=r$. Adding all possible edges within the subgraph of $G$ induced by the vertices of $V(G) \setminus \{v\}$, we will arrive at a graph $G'$, which is isomorphic to $K(n-1, r)$. If $G \ne G'$, then $\rho(G) > \rho(G')=\rho(K(n-1, r))$ by Lemma 2.1. The result follows.

In the following we discuss the graph $G \in \mathcal{G}_n^r$ each vertex of which has degree greater than $r$. We will formulate two lemmas about the behaviors of the distance spectral radius under some graph transformations, and then establish the main result of this paper.

Lemma 2.4  Let $G$ be a graph obtained from $K_{n_1} \cup K_{n_2}$ by adding $r\;(\ge 1)$ edges between $u_1$ and $v_1, v_2, \cdots, v_r$, where $V(K_{n_1})=\{u_1, u_2, \cdots, u_{n_1}\}$, $V(K_{n_2})=\{v_1, v_2, \cdots, v_{n_2}\}$, $\min\{n_1, n_2\} \ge r+2$. Let $\tilde{G}$ be the graph obtained from $G$ by deleting the edges of $K_{n_1}$ incident to $u_1$ and adding all possible edges between the vertices of $V(K_{n_1})\backslash \{u_1\}$ and those of $V(K_{n_2})$. Then $\rho(G) > \rho (\tilde{G})$.

Proof  Arrange in order the vertices of $\tilde{G}$ as $u_1, u_2, \cdots, u_{n_1}, v_1, \cdots, v_r, v_{r+1}, \cdots, v_{n_2}$. Let $x$ be the unit Perron vector of $D(\tilde{G})$. By Lemma 2.2, $x$ may be written as

$ x=(x_1, \underbrace{x_2, \cdots, x_2}\limits_{n_1-1}, \underbrace{x_3, \cdots, x_3}\limits_r, \underbrace{x_2, \cdots, x_2}\limits_{n_2-r})^T, $ (2.8)
Figure 2.1 The graphs $G$ (left) and $\tilde{G}$ (right) in Lemma 2.4, where $\vee$ means joining each vertex of $K_{n_1-1}$ and each of $K_{n_2}$

where $x_3 < x_2 < x_1$. Notice that the transformation from $G$ to $\tilde{G}$ leads to the distance between $u_1$ and $u_i \;(i=2, \cdots, n_1)$ increasing by 1, the distance between $u_i \;(i=2, \cdots, n_1)$ and $v_j \;(j=1, \cdots, r)$ decreasing by 1, and the distance between $u_i \;(i=2, \cdots, n_1)$ and $v_j \;(j=r+1, \cdots, n_2)$ decreasing by 2, while the distance between any other two vertices having no change. Thus by (2.1) and (2.8),

$ \begin{eqnarray} x^TD(G)x-x^TD(\tilde{G})x& = &-2\sum\limits_{i=2, \cdots, n_1}x_{u_1}x_{u_i}+ 2 \sum\limits_{i=2, \cdots, n_1, \atop j=1, \cdots, r} x_{u_i}x_{v_j}+ 4 \sum\limits_{i=2, \cdots, n_1, \atop j=r+1, \cdots, n_2} x_{u_i}x_{v_j}\nonumber\\ &=& -2(n_1-1)x_1x_2+2r(n_1-1)x_2x_3+4(n_1-1)(n_2-r)x_2^2\nonumber \\ & = &2(n_1-1)x_2[-x_1+rx_3+2(n_2-r)x_2]. \end{eqnarray} $ (2.9)

Considering (2.2) on the vertex $u_1$ of $\tilde{G}$, we get

$ \rho(\tilde{G})x_1=\rho(\tilde{G})x_{u_1} = \sum\limits_{i=1}^r x_{v_i}+\sum\limits_{j=r+1}^{n_2}2x_{v_j}+\sum\limits_{k=2}^{n_1}2x_{u_k}=rx_3+2(n_1+n_2-r-1)x_2. $ (2.10)

Noting that $\rho(\tilde{G})> n_1+n_2-1$, from (2.10) we have

$ x_1 = \frac{1}{\rho(\tilde{G})}[rx_3+2(n_1+n_2-r-1)x_2] < rx_3+2(n_2-r)x_2. $ (2.11)

By (2.9) and (2.11), we get $x^TD(G)x-x^TD(\tilde{G})x > 0.$ So according to (2.3) we get

$ \rho(G)\geq x^TD(G)x > x^TD(\tilde{G})x = \rho (\tilde{G}). $

Lemma 2.5  Let $G$ be a graph obtained from $K_{n_1} \cup K_{n_2}$ by adding $t \;(\ge 1)$ edges between $u_1$ and $v_1, v_2, \cdots, v_t$ and $r-t \;(\ge 1)$ edges between some vertices of $V(K_{n_1})\setminus \{u_1\}$ and some vertices of $V(K_{n_2})$, where $V(K_{n_1})=\{u_1, u_2, \cdots, u_{n_1}\}$, $V(K_{n_2})=\{v_1, v_2, \cdots, u_{n_2}\}$, $\min\{n_1, n_2\} \ge r+2$. Let $\tilde{G}$ be a graph obtained from $G$ by deleting $n_1-(r+1-t)$ edges of $K_{n_1}$ between $u_1$ and $u_i$ for $i=2, \cdots, n_1-(r-t)$, and adding all possible edges between the vertices of $V(K_{n_1})\backslash \{u_1\}$ and those of $V(K_{n_2})$. Then $\rho(G) > \rho(\tilde{G})$.

Figure 2.2 The graphs $G$ (left) and $\tilde{G}$ (right) in Lemma 2.5, where $\vee$ means joining each vertex of $K_{n_1-1}$ and each of $K_{n_2}$

Proof   Arrange in order the vertices of $V(\tilde{G})$ as $u_1, u_2, \cdots, u_{n_1-(r-t)}$, $u_{n_1-(r-t)+1}, \cdots, u_{n_1}$, $v_1, \cdots, v_t$, $v_{t+1}, \cdots, v_{n_2}$. Let $x$ be the unit Perron vector of $D(\tilde{G})$. By Lemma 2.2, $x$ may be written as

$ x=(x_1, \underbrace{x_2, \cdots, x_2}\limits_{n_1-(r+1-t)}, \underbrace{x_3, \cdots, x_3}\limits_{r-t}, \underbrace{x_3, \cdots, x_3}\limits_t, \underbrace{x_2, \cdots, x_2}\limits_{n_2-t})^T, $ (2.12)

where $x_3 < x_2 < x_1$. Let

$ U_1=\{u_2, \cdots, u_{n_1-(r-t)}\}, U_2=\{u_{n_1-(r-t)+1}, \cdots, u_{n_1}\}, V_1=\{v_1, \cdots, v_t\}, V_2=\{v_{t+1}, \cdots, v_{n_2}\}. $

Assume that in the graph $G$ there are $r_{ij}$ edges between $U_i$ and $V_j$ for $i, j=1, 2$. Surely, $r_{11}+r_{12}+r_{21}+r_{22}=r-t$. Denote by $F$ the set of order pairs $(u, v)$ such that $uv$ is an edge of $G$, where $u \in U_1 \cup U_2, v \in V_1 \cup V_2$, and by $(U_i, V_j)$ the set of order pairs $(u, v)$, where $u \in U_i, v \in V_j, i, j=1, 2$. Then by (2.1)

$ \begin{array}{lcl} \frac{1}{2}[x^TD(\tilde{G})x-x^TD(G)x] & =& \sum\limits_{u \in U_1} x_{u_1}x_u -\sum\limits_{(u, v) \in (U_1, V_1) \setminus F}x_ux_v -\sum\limits_{(u, v) \in (U_1, V_2) \setminus F}\delta_{uv}x_ux_v \\ & &-\sum\limits_{(u, v) \in (U_2, V_1) \setminus F}x_ux_v -\sum\limits_{(u, v) \in (U_2, V_2) \setminus F}\delta_{uv}x_ux_v, \end{array} $ (2.13)

where $\delta_{uv}=2$ if $u, v$ has distance $3$ in the graph $G$, and $\delta_{uv}=1$ otherwise. By (2.12) and (2.13), and taking $\delta_{uv}=1$, we have

$ \begin{eqnarray} &&\frac{1}{2}[x^TD(\tilde{G})x-x^TD(G)x] \le [n_1-1-(r-t)]x_1x_2 -\{[n_1-1-(r-t)]t-r_{11}\}x_2x_3 \nonumber\\ & &-\{[n_1-1-(r-t)](n_2-t)-r_{12}\}x_2^2 -[(r-t)t-r_{21}]x_3^2\nonumber\\ & &-[(r-t)(n_2-t)-r_{22}]x_2x_3\nonumber\\ &=& [n_1-1-(r-t)]x_1x_2 -\{[n_1-1-(r-t)]t+(r-t)(n_2-t)\}x_2x_3 \nonumber\\ && -\{[n_1-1-(r-t)](n_2-t)\}x_2^2 -(r-t)tx_3^2 \nonumber\\ && + (r_{11}+r_{22})x_2x_3+r_{12}x_2^2+r_{21}x_3^2\nonumber\\ & \le & [n_1-1-(r-t)]x_1x_2 -\{[n_1-1-(r-t)]t+(r-t)(n_2-t)\}x_2x_3 \nonumber\\ && -\{[n_1-1-(r-t)](n_2-t)\}x_2^2 -(r-t)tx_3^2 + (r-t)x_2^2\nonumber\\ &=& [n_1-1-(r-t)]x_1x_2 -\{[n_1-1-(r-t)]t+(r-t)(n_2-t)\}x_2x_3\nonumber\\ && -\{[n_1-1-(r-t)](n_2-t)-(r-t)\}x_2^2 -(r-t)tx_3^2. \end{eqnarray} $ (2.14)

Considering (2.2) on the vertex $u_1$ of $\tilde{G}$, we get

$ \rho(\tilde{G})x_1 = rx_3+2(n_1+n_2-r-1)x_2. $

So $x_1 = \frac{1}{\rho(\tilde{G})}[rx_3+2(n_1+n_2-r-1)x_2] < \frac{1}{n_1+n_2-1}[rx_3+2(n_1+n_2-r-1)x_2]$. Therefore,

$ \begin{eqnarray} \frac{1}{2}x^T[D(\tilde{G})-D(G)]x & < &\frac{n_1-1-(r-t)}{n_1+n_2-1}rx_2x_3+\frac{[n_1-1-(r-t)]\cdot2(n_1+n_2-r-1)}{n_1+n_2-1}x_2^2\nonumber\\ &&-\{[n_1-1-(r-t)]t+(r-t)(n_2-t)\}x_2x_3\nonumber\\ && -\{[n_1-1-(r-t)](n_2-t)-(r-t)\}x_2^2 -(r-t)tx_3^2. \end{eqnarray} $ (2.15)

Let $a, b, c$ be the coefficients of $x_2^2, x_2x_3, x_3^2$ in (2.15), respectively. Noting that $\min\{n_1, n_2\} \ge r+2$, we have

$ \begin{eqnarray*} a&=&2[n_1-1-(r-t)](1-\frac{r}{n_1+n_2-1})-\{[n_1-1-(r-t)](n_2-t)-(r-t)\}\\ &=&2[n_1-1-(r-t)](1-\frac{r}{n_1+n_2-1}-\frac{n_2-t}{2})+(r-t)\\ & < &2[n_1-1-(r-t)](1-\frac{n_2-t}{2})+(r-t)\\ &\leq&2[n_1-1-(r-t)]\frac{2-n_2+t}{2}+(n_2-2-t)\\ &=&-(n_2 -t-2)[n_1-2-( r-t)] < 0, \\ b&=&[n_1-1-(r-t)](\frac{r}{n_1+n_2-1}-t)-(r-t)(n_2-t) < 0, \\ c&=&-(r-t)t < 0. \end{eqnarray*} $

Thus $x^TD(\tilde{G})x-x^TD(G)x < 0$, and hence $\rho(G)\geq x^TD(G)x > x^TD(\tilde{G})x = \rho (\tilde{G}).$

Lemma 2.6  Let $G$ be a connected graph, and let $E_c$ be an edge cut set of $G$ of size $r \;(\ge 1)$ such that $G-E_c = K_{n_1} \cup K_{n_2}$, where $n_1 + n_2 = n$. If $d_v > r$ for each vertex $v \in V(G)$, then $n_1 \ge r+2, n_2 \ge r+2$.

Proof  If $n_1 \ge 2$; otherwise $K_{n_1}$ contains only one vertex of degree $r$, contradiction to the assumption on degrees. If $n_1 \le r$, then there exists a vertex $u$ of $K_{n_1}$ such that

$ d(u) \leq n_1-1+ \frac{r}{n_1} \le (n_1-1)\frac{r}{n_1} + \frac{r}{n_1} = r, $

a contradiction. If $n_1 = r+1$, then there exists a vertex $w$ not incident with any edges of $E_c$, which implies $d(u) = r$, also a contradiction. The discussion for the assertion on $n_2$ is similar.

Theorem 2.7  For each $r=1, 2, \cdots, n-2$, the graph $K(n-1, r)$ is the unique graph with minimum distance spectral radius in $\mathcal{G}_n^r$.

Proof  Let $G$ be a graph that attains the minimum distance spectral radius in $\mathcal{G}_n^r$. Note that each vertex of $G$ has degree not less than $r$. If there exists a vertex $u$ of $G$ with degree $r$, by Lemma 2.3, $\rho(G) \ge \rho(K(n-1, r))$, with equality if and only if $G=K(n-1, r)$. So the result follows in this case.

Next we assume all vertices of $G$ have degrees greater than $r$. Let $E_c$ be an edge cut set of $G$ containing $r$ edges, and let $G_1, G_2$ be two components of $G-E_c$ with order $n_1, n_2$ respectively. We assert $G_1=K_{n_1}$ and $G_2=K_{n_2}$; otherwise adding all possible edges within $G_1, G_2$ we would get a graph with smaller distance spectral radius by Lemma 2.1. By Lemma 2.6, $n_1 \ge r+2, n_2 \ge r+2$. Let $u_1$ be a vertex of $G_1$ such that $u_1$ joins $t$ vertices of $G_2$, where $1 \le t \le r$. If $t=r$, by Lemma 2.4 there exists a graph $\tilde{G} \cong K(n-1, r)$ such that $\rho(G) > \rho (\tilde{G})$. If $1 \le t < r$, by Lemma 2.5 there also exists a graph $\tilde{G} \cong K(n-1, r)$, such that $\rho(G) > \rho (\tilde{G})$. This completes the proof.

References
[1] Graham R L, Pollak H O. On the addressing problem for loop switching[J]. Bell Sys. Tech. J., 1971, 50: 2495–2519. DOI:10.1002/bltj.1971.50.issue-8
[2] Edelberg M, Garey M R, Graham R L. On the distance matrix of a tree[J]. Discrete Math., 1976, 14: 23–29. DOI:10.1016/0012-365X(76)90003-0
[3] Graham R L, Lovasz L. Distance matrix polynomials of trees[J]. Adv. Math., 1978, 29: 60–88. DOI:10.1016/0001-8708(78)90005-1
[4] Graham R L, Pollak H O. On embedding graphs in squashed cubes[M]. Graph Theory and Appli cations, Berlin: Springer, 1973.
[5] Hosoya H, Murakami M, Gotoh M. Distance polynomial and characterization of a graph[J]. Natur. Sci. Rep. Ochanomizu Univ., 1973, 24: 27–34.
[6] Rouvray D H. The search for useful topological indices in chemistry[J]. Amer. Scientist, 1973, 61: 729–735.
[7] Balaban A T, Ciubotariu D, Medeleanu M. Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors[J]. J. Chem. Inf. Comput. Sci., 1991, 31: 517–523. DOI:10.1021/ci00004a014
[8] Gutman I, Medeleanu M. On structure-dependence of the largest eigenvalue of the distance matrix of an alkane[J]. Indian J. Chem. A, 1998, 37: 569–573.
[9] Bose S S, Nath M, Paul S. Distance spectral radius of graphs with r pendent vertices[J]. Linear Algebra Appl., 2011, 435: 2826–2836.
[10] Ilić A. Distance spectral radius of trees with given matching number[J]. Discrete Appl. Math., 2010, 158: 1799–1806. DOI:10.1016/j.dam.2010.06.018
[11] Liu Zhongzhu. On the spectral radius of the distance matrix[J]. Appl. Anal. Discrete Math., 2010, 4(2): 269–277. DOI:10.2298/AADM100428020L
[12] Nath M, Paul S. On the distance spectral radius of bipartite graphs[J]. Linear Algebra Appl., 2012, 436: 1285–1296. DOI:10.1016/j.laa.2011.07.031
[13] Stevanović D, Ilić A. Distance spectral radius of trees with flxed maximum degree[J]. Electron. J. Linear Algebra, 2010, 20: 168–179.
[14] Yu Guanglong, Jia Huicai, Zhang Hailian, et al. Some graft transformations and its application on a distance spectrum[J]. Appl. Math. Lett., 2012, 25: 315–319. DOI:10.1016/j.aml.2011.09.007
[15] Yu Guanglong, Wu Yarong, Shu Jinglong. Some graft transformations and its application on a distance spectrum[J]. Discrete Math., 2011, 311: 2117–2123. DOI:10.1016/j.disc.2011.05.040
[16] Zhang Xiaoling, Godsil C. Connectivity and minimal distance spectral radius[J]. Linear Multilinear Algebra, 2011, 59: 745–754. DOI:10.1080/03081087.2010.499512
[17] Zhou Bo. On the largest eigenvalue of the distance matrix of a tree[J]. MATCH Commun. Math. Comput. Chem., 2007, 58: 657–662.
[18] Zhou Bo, Trinajistić N. On the largest eigenvalue of the distance matrix of a connected graph[J]. Chem. Phys. Lett., 2007, 447: 384–387. DOI:10.1016/j.cplett.2007.09.048