数学杂志  2014, Vol. 34 Issue (3): 521-528   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
陈化
杨飞
吴少华
一类抛物型趋化模型的解的存在性
陈化, 杨飞, 吴少华    
武汉大学数学与统计学院, 湖北 武汉 430072
摘要:本文研究了一类抛物型趋化模型的解的存在性问题.利用算子半群理论, Sobolev嵌入定理及不等式技巧对解进行一些重要的先验估计, 然后构造压缩映射证明了模型存在局部解.进一步构造迭代估计来说明不可能存在爆破, 从而证明全局解的存在.
关键词趋化模型    先验估计    不动点    局部解    全局解    
EXISTENCE OF SOLUTION TO A PARABOLIC CHEMOTAXIS MODEL
CHEN Hua, YANG Fei, WU Shao-hua    
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract: In this paper, we study the existence of solution to a parabolic chemotaxis model. First, some crucial priori estimates have been gotten utilizing semigroup theory, Sobolev imbedding and technics in inequality, then flxed point theorem is applied to prove the existence of local solution by constructing a contraction mapping. At last, we prove the global existence by one iteration to show no blow-up occurring.
Key words: chemotaxis model     priori estimate     flxed point     local solution     global solution    
1 引言

近年来, 由Keller和Segel [1]提出的一类趋化模型(被称为K-S模型)引起众多生物及数学研究者的关注, 并取得了一些研究成果[2-9].本文在Hillen和Painter [9]的研究基础上, 考虑如下带双反应项的抛物趋化模型:

$ \begin{equation} \left\{ \begin{aligned} &u_t=\nabla(\nabla u-V(u, v)\nabla v)+f(u, v), \\ &v_t=\mu\triangle v+g(u, v), \\ &u(0, \cdot)=u_0, \\ &v(0, \cdot)=v_0. \end{aligned} \right. \end{equation} $ (1.1)

本文的主要工作是证明上述模型的解的存在性.为此, 先给出一些必要的假设条件及引理.

假设$V(u, v), f(u, v), g(u, v)$满足以下条件:

(A.1) $V(u, v)=u\beta(u)\chi(v), \beta, \chi\in C^3(\mathbb R^2)$且满足

(ⅰ) $\chi>0$;

(ⅱ) $\beta(0)>0, \mbox{存在}\bar{u}>0, \mbox{使}\beta(\bar{u})=0, $且对所有$u\in(0, \bar{u}), $都有$\beta(u)>0;$

(A.2) $f\in C^1(\mathbb R^2), \mbox{且}f(u, v)\leq0$;

(A.3) $\mu>0$为常数, $g\in C^2(\mathbb R^2), g(u, v)=g_1(u, v)u-g_2(u, v)v, \mbox{且有}g_1\geq0, g_2\geq\delta>0$.对固定的$t_0>0$, 定义空间

$ X_u:=C([0, t_0], W^{\sigma, p}(\textit{M})), ~~~~X_v:=C([0, t_0], W^{\sigma+\alpha, p}(M)), $

其中$\sigma, \alpha, p$满足

(A.4) $ 1<\sigma<2, ~1<\alpha<2, ~2<\sigma+\alpha<3, ~~\max\{\frac{n}{\sigma-1}, \frac{2n}{2-\sigma}\}<p$, 其中$M$是一个三次可微、无边的$n$维紧致黎曼流形.这样的流形很常见, 如一维开区间, 二维环面, $n$维球面.

本文的主要工作是在黎曼流形$M$上考虑抛物型趋化模型$(1.1)$在空间$X_u\times X_v$中解的存在性.

引理 1.1 [10] 设$e^{\Delta t}$是热方程$u_t=\Delta u$的解半群, 对$\forall p\geq q>0, ~s\geq r$, 有

$ \begin{equation*} e^{\Delta t}:~W^{r, q}(M)\rightarrow W^{s, p}(M), \end{equation*} $

且算子$e^{\Delta t}$的范数为$C_{\kappa}t^{-\kappa}$, 其中

$ \kappa=\frac{n}{2}(\frac{1}{q}-\frac{1}{p})+\frac{1}{2}(s-r), ~~C_{\kappa}=C_\kappa(r, s, p, q). $
2 主要结果及证明

借助$V(u, v)$有两个零点, 可以在$\mathbb R^2$上定义$(u, v)$的一个不变区域, 这是证明全局解的关键.首先给出这样一个区域, 然后证明它是一个不变区域.定义

$ \Gamma:={(u, v)\in\mathbb R^2:0\leq u\leq\bar{u}, 0\leq v\leq\bar{v}}. $

引理 2.1  若$(u, v)\in X_u\times X_v$是问题$(1.1)$的解, 且$(u_0, v_0)\in \Gamma$, 则$(u, v)\in\Gamma$.称$\Gamma$为问题$(1.1)$解的不变区域.

引理 2.2  设$(u, v)\in X_u\times X_v$$(u(t, x), v(t, x))\in\Gamma, \forall t\in[0, t_0], x\in M$, 若$(u, v)$是问题$(1.1)$的解, 则

$ \begin{equation} \parallel v\parallel_{X_v}\leq\parallel v_0\parallel_{\sigma+\alpha, p}+C_0t_0^{1-\tau} (\parallel u\parallel_{X_u}+\parallel u\parallel_{X_u}^2+ \parallel v\parallel_{X_v}), \end{equation} $ (2.1)

其中$\tau=\frac{1}{2}(\sigma+\alpha-1), ~~C_0=C_0(\sigma, \alpha, p, \bar u, \parallel g_1\parallel_{C^1(\Gamma)})$.

  引理2.1-2.2类似文献[9]中定理2.1-2.2的证明, 此处略.

推论 2.3  假设引理2.2的条件成立, 若选择$t_0\leq(\frac{1}{2C_0})^{\frac{1}{1-\tau}}$, 则有

$ \begin{equation} \parallel v\parallel_{X_v}\leq C_1(\parallel v_0\parallel_{\sigma+\alpha, p} +\parallel u\parallel_{X_u}+\parallel u\parallel_{X_u}^2), \end{equation} $ (2.2)

其中$C_1=2\max\{1, C_0t_0^{1-\tau}\}$.

引理 2.4  设$\phi_1, \phi_2\in X_u$$\phi_1(t, x), \phi_2(t, x)\in\Gamma$, $~v_j=v_j(\phi_j)$

$ \begin{equation*} v_{j, t}=\mu\Delta v_j+g(\phi_j, v_j), ~v_j(0)=v_0~~~(j=1, 2) \end{equation*} $

的解, 那么对充分小$t_0$, 存在$C_2=C_2(\sigma, p, \parallel g\parallel_{C^1(\Gamma)}, t_0)$, 使

$ \begin{equation}\label{eq:8} \parallel v_1-v_2\parallel_{X_v}\leq C_2\parallel\phi_1-\phi_2\parallel_{X_u}. \end{equation} $ (2.3)

  由条件可得

$ \begin{equation*} (v_1-v_2)_t=\mu\Delta(v_1-v_2)+g(\phi_1, v_1)-g(\phi_2, v_2), \end{equation*} $

$(v_1-v_2)(0)=0$, 而

$ \begin{equation*} g(\phi_1, v_1)-g(\phi_2, v_2)=g(\phi_1, v_1)-g(\phi_2, v_1)+g(\phi_2, v_1)-g(\phi_2, v_2), \end{equation*} $

结合中值定理, 有

$ \begin{equation*} v_1-v_2=\int_0^tT_\mu(t-s)g_u(\tilde\phi, v_1)(\phi_1-\phi_2)ds+\int_0^tT_\mu(t-s)g_v(\phi_2, \tilde v)(v_1-v_2)ds, \end{equation*} $

利用引理1.1, 则

$ \begin{equation} \begin{aligned} \parallel v_1-v_2\parallel_{X_v}\leq& C_\sigma t_0^{1-\frac{\sigma}{2}}\sup\limits_{0\leq t\leq t_0}\parallel g_u(\tilde\phi, v_1)(\phi_1-\phi_2)\parallel_p\\ &+C_\sigma t_0^{1-\frac{\sigma}{2}}\sup\limits_{0\leq t\leq t_0}\parallel g_v(\phi_2, \tilde v)(v_1-v_2)\parallel_p\\ \leq &C_\sigma t_0^{1-\frac{\sigma}{2}}\parallel g\parallel_{C^1(\Gamma)}\sup\limits_{0\leq t\leq t_0}\parallel\phi_1-\phi_2\parallel_p\\ &+C_\sigma t_0^{1-\frac{\sigma}{2}}\parallel g\parallel_{C^1(\Gamma)}\sup\limits_{0\leq t\leq t_0}\parallel v_1-v_2\parallel_p\\ \leq& C_\sigma t_0^{1-\frac{\sigma}{2}}\parallel g\parallel_{C^1(\Gamma)}(\parallel\phi_1-\phi_2\parallel_{X_u}+\parallel v_1-v_2\parallel_{X_v}). \end{aligned} \end{equation} $ (2.4)

选择充分小$t_0$, 使$C_\sigma t_0^{1-\frac{\sigma}{2}}\parallel g\parallel_{C^1(\Gamma)}<\frac{1}{2}$.即有

$ \begin{equation*} \parallel v_1-v_2\parallel_{X_v}\leq C_2\parallel\phi_1-\phi_2\parallel_{X_u}, \end{equation*} $

其中$C_2=C_2(\sigma, p, \parallel g\parallel_{C^1(\Gamma)}, t_0)$.

引理 2.5  假设$(u, v)\in X_u\times X_v$为问题$(1.1)$的解, 且$(u(t, x), v(t, x))\in\Gamma$, 那么存在常数$C_3, C_4, C_5, C_6$, 使

$ \begin{equation} \begin{aligned} \parallel u\parallel_{X_u}\leq2(\parallel u_0\parallel_{\sigma, p}&+C_3t_0^{1-\frac{\sigma}{2}}\parallel v\parallel_{X_v}+C_4t_0^{1-\vartheta}\parallel v\parallel_{X_v}^2\\ &+C_5t_0^{\frac{\sigma(1-\iota)}{\sigma-1}}\parallel v\parallel_{X_v}^{\frac{\sigma}{\sigma-1}}+C_6t_0^{1-\frac{\sigma}{2}}). \end{aligned} \end{equation} $ (2.5)

  记$T(t):=e^{\Delta t}$, 那么

$ \begin{align} u(t)=&T(t)u_0-\int_0^tT(t-s)V(u, v)\Delta vds \end{align} $ (2.6)
$ \begin{align} &-\int_0^tT(t-s)V_v(u, v)(\nabla v)^2ds \end{align} $ (2.7)
$ \begin{align} &-\int_0^tT(t-s)V_u(u, v)\nabla v\nabla vds \end{align} $ (2.8)
$ \begin{align} &+\int_0^tT(t-s)f(u, v)ds. \end{align} $ (2.9)

下面逐次估计$(2.6)-(2.9)$项.对于$(2.6)$项,

$ \begin{equation} \begin{aligned} \parallel\int_0^tT(t-s)V\Delta vds\parallel_{\sigma, p}&\leq C_{\sigma}t_0^{1-\frac{\sigma}{2}}\sup\limits_{0\leq t\leq t_0}\parallel V\Delta v\parallel_p\\ &\leq C_{\sigma}t_0^{1-\frac{\sigma}{2}}\parallel V\parallel_{C(\Gamma)}\sup\limits_{0\leq t\leq t_0}\parallel v(t, \cdot)\parallel_{2, p}\\ &\leq C_{\sigma}t_0^{1-\frac{\sigma}{2}}\parallel V\parallel_{C(\Gamma)}\parallel v\parallel_{X_v}\\ &\leq C_3t_0^{1-\frac{\sigma}{2}}\parallel v\parallel_{X_v}, \end{aligned} \end{equation} $ (2.10)

其中$C_3=C_{\sigma}\parallel V\parallel_{C(\Gamma)}$.对于(2.7) 项, 根据引理1.1,

$ \begin{equation} T(t):~L^{\frac{p}{2}}(M)\rightarrow W^{\sigma, p}(M), \end{equation} $ (2.11)

且算子$T(t)$的范数为$C_{\vartheta}t^{-\vartheta}$, 其中$\vartheta=\frac{n}{2p}+\frac{\sigma}{2}$.根据条件(A.4), 可知$0<\vartheta<1$, 则

$ \begin{equation} \begin{aligned} \parallel\int_0^tT(t-s)V_v(\nabla v)^2ds\parallel_{\sigma, p}&\leq C_{\vartheta}t_0^{1-\vartheta}\sup\limits_{0\leq t\leq t_0}\parallel V_v(\nabla v)^2\parallel_{\frac{p}{2}}\\ &\leq C_{\vartheta}t_0^{1-\vartheta}\parallel V\parallel_{C^1(\Gamma)}\sup\limits_{0\leq t\leq t_0}\parallel v(t, \cdot)\parallel_{1, p}^2\\ &\leq C_{\vartheta}t_0^{1-\vartheta}\parallel V\parallel_{C^1(\Gamma)}\parallel v\parallel_{X_v}^2\\ &\leq C_4t_0^{1-\vartheta}\parallel v\parallel_{X_v}^2, \end{aligned} \end{equation} $ (2.12)

其中$C_4=C_{\vartheta}\parallel V\parallel_{C^1(\Gamma)}$, 对于$(2.8)$项, 由Young不等式

$ \begin{align*} \parallel\nabla u\nabla v\parallel_{\frac{p}{\sigma}}&\leq\parallel \varepsilon(\nabla u)^\sigma+\frac{1}{q(\varepsilon\sigma)^{q/\sigma}}(\nabla v)^q\parallel_{\frac{p}{\sigma}}\\ &\leq\varepsilon\parallel u\parallel_{1, p}^\sigma+\frac{1}{q(\varepsilon\sigma)^{q/\sigma}}\parallel\nabla v\parallel_{\frac{p}{\sigma-1}}^{\frac{\sigma}{\sigma-1}}, \end{align*} $

其中$q=\frac{\sigma}{\sigma-1}, \varepsilon>0$.由内插不等式有

$ \begin{equation*} \parallel u\parallel_{\theta\sigma, p} \leq C(\theta)\parallel u\parallel_{\sigma, p}^\theta\parallel u\parallel_p^{1-\theta}, ~~\theta\in(0, 1). \end{equation*} $

特别地, 取$\theta=\frac{1}{\sigma}$, 有

$ \begin{equation*} \parallel u\parallel_{1, p}^\sigma\leq C(\sigma)\parallel u\parallel_{\sigma, p}\parallel u\parallel_p^{\sigma-1}, \end{equation*} $

由于$\Gamma$是有界不变区域, 存在常数$C=C(\sigma, p)$, 使

$ \begin{equation*} \parallel u\parallel_p^{\sigma-1}\leq C\bar u^{\sigma-1}, \end{equation*} $

根据引理1.1,

$ \begin{equation} T(t):~L^{\frac{p}{\sigma}}(M)\rightarrow W^{\sigma, p}(M), \end{equation} $ (2.13)

且算子$T(t)$的范数为$C_{\iota}t^{-\iota}$, 其中$\iota=\frac{n(\sigma-1)}{2p}+\frac{\sigma}{2}$.根据条件(A.4), 可证$0<\iota<1$, 则

$ \begin{equation} \begin{aligned} &\parallel\int_0^tT(t-s)V_u\nabla u\nabla vds\parallel_{\sigma, p}\\ &\leq C_\iota t_0^{1-\iota}\sup\limits_{0\leq t\leq t_0 }\parallel(V_u\nabla u\nabla v)(t, \cdot)\parallel_{\frac{p}{\sigma}}\\ &\leq C_\iota t_0^{1-\iota}\parallel V\parallel_{C^1(\Gamma)}\sup\limits_{0\leq t\leq t_0 }\{\frac{\varepsilon}{\sigma}\parallel u\parallel_{1, p}^\sigma+\frac{1}{q\varepsilon^{q/\sigma}}\parallel\nabla v\parallel_{\frac{p}{\sigma-1}}^{\frac{\sigma}{\sigma-1}}\}\\ &\leq Ct_0^{1-\iota}\sup\limits_{0\leq t\leq t_0 }\{\varepsilon\parallel u\parallel_{\sigma, p}+\frac{1}{q(\varepsilon\sigma)^{q/\sigma}}\parallel\nabla v\parallel_{\frac{p}{\sigma-1}}^{\frac{\sigma}{\sigma-1}}\}\\ &\leq Ct_0^{1-\iota}(\varepsilon\parallel u\parallel_{X_u}+\frac{1}{q(\varepsilon\sigma)^{q/\sigma}}\parallel v\parallel_{X_v}^{\frac{\sigma}{\sigma-1}}), \end{aligned} \end{equation} $ (2.14)

其中$C=C(\iota, p, \sigma, \bar u, \parallel V\parallel_{C^1(\Gamma)})$.对于给定$t_0$, 取$\varepsilon=\frac{1}{2t_0^{1-\iota}C}$, 则由式(2.14) 有

$ \begin{equation} \parallel\int_0^tT(t-s)V_u\nabla u\nabla vds\parallel_{\sigma, p}\leq\frac{1}{2}\parallel u\parallel_{X_u}+C_5t_0^{\frac{\sigma(1-\iota)}{\sigma-1}}\parallel v\parallel_{X_v}^{\frac{\sigma}{\sigma-1}}, \end{equation} $ (2.15)

其中$C_5=\frac{\sigma-1}{2\sigma}(\frac{2C}{\sigma})^{\frac{1}{\sigma-1}}$, 对(2.9) 项,

$ \begin{equation} \begin{aligned} &\parallel\int_0^tT(t-s)f(u, v)ds\parallel_{\sigma, p} \leq C_{\sigma}t_0^{1-\frac{\sigma}{2}}\sup\limits_{0\leq t\leq t_0}\parallel f(u, v)\parallel_p\\ &\leq C_{\sigma}\parallel f\parallel_{C(\Gamma)}t_0^{1-\frac{\sigma}{2}} \leq C_6t_0^{1-\frac{\sigma}{2}}, \end{aligned} \end{equation} $ (2.16)

其中$C_6=C_{\sigma}\parallel f\parallel_{C(\Gamma)}$, 结合式(2.10), (2.12), (2.15), (2.16) 即得式(2.5).

有了前面的估计, 就可以证明局部解的存在性.

定理 2.6  假设$u_0\in W^{\sigma, p}(M), v_0\in W^{\sigma+\alpha, p}(M)$, 且$\forall x\in M$, 有$(u_0(x), v_0(x))\in\Gamma$, 则存在$t_0>0$, 问题$(1.1)$有唯一解$(u, v)\in X_u\times X_v$.

  设$\phi\in X_u, ~\phi(0)=u_0$.令$v=v(\phi)$表示$ v_t=\mu\Delta v+g(\phi, v), $ $v(0)=v_0$的解, 对上述$v$, 令$u=u(v(\phi))$表示

$ \begin{equation*} u_t=\nabla(\nabla u-V(u, v)\nabla v)+f(u, v), ~~u(0)=u_0=\phi(0) \end{equation*} $

的解.

定义映射

$ G:X_u\rightarrow X_u, ~G\phi:=u(v(\phi)). $

$m:=2\parallel u_0\parallel_{\sigma, p}+1$, 构造

$ B:=\{\phi\in X_u|\phi(t)\in B_m(0), 0\leq t\leq t_0\}, $

其中$B_m(0)$表示$M$中的球.

接下来将在$B$上应用不动点定理.为此首先证明$G$$B$$B$.利用式(2.2) 和(2.5), 有

$ \begin{equation*} \begin{aligned} \parallel G\phi\parallel_{X_u}\leq&2(\parallel u_0\parallel_{\sigma, p}+C_3t_0^{1-\frac{\sigma}{2}}\parallel v\parallel_{X_v}+C_4t_0^{1-\vartheta}\parallel v\parallel_{X_v}^2\\ &+C_5t_0^{\frac{\sigma(1-\iota)}{\sigma-1}}\parallel v\parallel_{X_v}^{\frac{\sigma}{\sigma-1}}+C_6t_0^{1-\frac{\sigma}{2}})\\ \leq&2(\parallel u_0\parallel_{\sigma, p}+C_3C_1t_0^{1-\frac{\sigma}{2}}(\parallel v_0\parallel_{\sigma+\alpha, p}+\parallel\phi\parallel_{X_u}+\parallel\phi\parallel_{X_u}^2)\\ &+C_4C_1^2t_0^{1-\vartheta}(\parallel v_0\parallel_{\sigma+\alpha, p}+\parallel\phi\parallel_{X_u}+\parallel\phi\parallel_{X_u}^2)^2\\ &+C_5C_1^{\frac{\sigma}{\sigma-1}}t_0^{\frac{\sigma(1-\iota)}{\sigma-1}}(\parallel v_0\parallel_{\sigma+\alpha, p}+\parallel\phi\parallel_{X_u}+\parallel\phi\parallel_{X_u}^2)+C_6t_0^{1-\frac{\sigma}{2}}). \end{aligned} \end{equation*} $

选择充分小$t_0$, 可使$\parallel G\phi\parallel_{X_u}\leq2\parallel u_0\parallel_{\sigma, p}+1$.

再证明$G$是压缩映射.设$\phi_j\in X_u, V_j$是对应$v_{j, t}=\mu\Delta v+g(\phi_j, v), ~~~v_j(0)=v_0~~(j=1, 2)$的解, 则

$ \begin{align} G\phi_1-G\phi_2=&-\int_0^tT(t-s)(V_1\Delta v_1-V_2\Delta v_2)ds \end{align} $ (2.17)
$ \begin{align} &-\int_0^tT(t-s)(V_{1, v}(\nabla v_1)^2-V_{2, v}(\nabla v_2)^2)ds \end{align} $ (2.18)
$ \begin{align} &-\int_0^tT(t-s)(V_{1, u}\nabla u_1\nabla v_1-V_{2, u}\nabla u_2\nabla v_2)ds \end{align} $ (2.19)
$ \begin{align} &+\int_0^tT(t-s)(f(u_1, v_1)-f(u_2, v_2))ds, \end{align} $ (2.20)

其中

$ \begin{equation*} V_j=V(u_j, v_j), ~~u_j=G\phi_j~~, v_j=v_j(\phi_j)~~(j=1, 2). \end{equation*} $

综合引理2.4-2.5中技巧可逐项估计式(2.17), (2.18), (2.19), (2.20), 从而可说明当$t_0$充分小时, 可使$G$为压缩映射.故由压缩映射原理知, 问题(1.1) 存在唯一解.

仔细观察前面的估计, 不难发现估计的界都是至多$t_0$的代数次次数增长.利用这个条件, 反复利用引理1.1, 不断重复估计$u$$v$的界, 直至最终表明在有限时间内局部解会不会爆破.如果没有爆破, 局部解也是全局解.为了减少这种迭代估计的次数, 使结果更明了, 选择参数$\tilde\sigma>0, \gamma>0$, 满足

$ \begin{equation*} \begin{aligned} 2>\tilde\sigma>\max\{\sigma, \frac{5}{3}\}, \\ 2-\tilde\sigma<\gamma<\frac{\tilde\sigma-1}{2}, \\ 1-\gamma+\tilde\sigma=\sigma+\alpha. \end{aligned} \end{equation*} $ (A.4')

引理 2.7  存在常数$\kappa_1=\kappa_1(\tilde\sigma, \parallel g\parallel_{C(\Gamma)})$, 使定理2.6所确定的局部解满足

$ \begin{equation} \parallel v(t)\parallel_{\tilde\sigma, p}\leq\parallel v_0\parallel_{\tilde\sigma, p} +\kappa_1t_0^{1-\frac{\tilde\sigma}{2}}=:K_1(t_0). \end{equation} $ (2.21)

  根据引理1.1易得.

定理 2.8  假设$u_0\in W^{\sigma, p}(M), v_0\in W^{\sigma+\alpha, p}(M)$, 且$\forall x\in M$, 有$(u_0(x), v_0(x))\in\Gamma$, 则问题(1.1) 有唯一全局解

$ \begin{equation*} (u, v)\in C([0, \infty), W^{\sigma, p}(M)\times W^{\sigma+\alpha, p}(M)). \end{equation*} $

  根据引理1.1,

$ \begin{equation*} \begin{aligned} T(t):~&W^{1-\gamma-\tilde\sigma, p}(M)\rightarrow W^{1-\gamma, p}(M), \\ T(t):~&L^p(M)\rightarrow W^{\tilde\sigma, p}(M), \end{aligned} \end{equation*} $

且算子$T(t)$的范数为$C_{\tilde\sigma}t^{-\frac{\tilde\sigma}{2}}$, 又

$ \begin{equation*} u(t)=T(t)u_0-\int_0^tT(t-s)\nabla(V\nabla v)ds+\int_0^tT(t-s)f(u, v)ds, \end{equation*} $

$ \begin{equation*} \begin{aligned} \parallel u(t)\parallel_{1-\gamma, p}&\leq\parallel u_0\parallel_{1-\gamma, p}+C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}\sup\limits_{0\leq\eta\leq t}\parallel\nabla(V\nabla)\parallel_{1-\gamma-\tilde\sigma, p}+C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}\sup\limits_{0\leq\eta\leq t}\parallel f(u, v)\parallel_p\\ &\leq\parallel u_0\parallel_{1-\gamma, p}+\parallel f\parallel_{C(\Gamma)}C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}+C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}\sup\limits_{0\leq\eta\leq t}\parallel\nabla(V\nabla)\parallel_{1-\gamma-\tilde\sigma, p}, \end{aligned} \end{equation*} $

由(A.4')有

$ \begin{equation*} -\frac{1}{2}<2-\gamma-\tilde\sigma<0, \end{equation*} $

则存在常数$C=C(\tilde\sigma, \gamma)$, 使

$ \begin{equation*} \parallel\nabla(V\nabla v)\parallel_{1-\gamma-\tilde\sigma, p} \leq C\parallel V(\nabla v)\parallel_{2-\gamma-\tilde\sigma, p}, \end{equation*} $

那么

$ \begin{equation*} \parallel u(t)\parallel_{1-\gamma, p}\leq\parallel u_0\parallel_{1-\gamma, p}+\parallel f\parallel_{C(\Gamma)}C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}+Ct^{1-\frac{\tilde\sigma}{2}} \parallel V\parallel_{C(\Gamma)}\sup\limits_{0\leq\eta\leq t}\parallel v\parallel_{1, p}, \end{equation*} $

再由引理2.7, 得

$ \begin{equation*} \parallel u(t)\parallel_{1-\gamma, p}\leq\parallel u_0\parallel_{1-\gamma, p}+\parallel f\parallel_{C(\Gamma)}C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}} +Ct^{1-\frac{\tilde\sigma}{2}}\parallel V\parallel_{C(\Gamma)}K_1(t_0)=:K_2(t_0). \end{equation*} $

同样利用引理1.1有

$ \begin{equation}\label{eq:37} T_\mu(t):~W^{1-\gamma-\tilde\sigma, p}(M)\rightarrow W^{1-\gamma, p}(M), \end{equation} $ (2.22)

且算子$T_\mu(t)$的范数为$C_{\tilde\sigma}t^{-\frac{\tilde\sigma}{2}}$.由条件(A.3), $g\in\mathbb R^2$, 结合$\Gamma$是有界闭区域, 知$h(u, v)=g_1(u, v)u$$C^2(\Gamma)$上一致有界, 从而映射

$ \begin{equation*} h:~~W^{1-\gamma, p}(M)\rightarrow W^{1-\gamma, p}(M) \end{equation*} $

是Lipschitz连续, Lipschitz常数$L:=\parallel h\parallel_{C^2(\Gamma)}$, 从而

$ \begin{equation} \begin{aligned} \parallel v(t)\parallel_{1-\gamma+\tilde\sigma, p}&\leq\parallel v_0\parallel_{1-\gamma+\tilde\sigma}+\int_0^t\parallel T_\mu(t-s)g_1(u, v)u\parallel_{1-\gamma+\tilde\sigma, p}ds\\ &\leq\parallel v_0\parallel_{1-\gamma+\tilde\sigma}+C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}\sup\limits_{0\leq\eta\leq t}\parallel h(u, v)\parallel_{1-\gamma, p}\\ &\leq\parallel v_0\parallel_{1-\gamma+\tilde\sigma}+C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}\parallel h\parallel_{C^2(\Gamma)}\sup\limits_{0\leq\eta\leq t}\parallel u\parallel_{1-\gamma, p}\\ &\leq\parallel v_0\parallel_{1-\gamma+\tilde\sigma}+C_{\tilde\sigma}t^{1-\frac{\tilde\sigma}{2}}LK_2(t_0). \end{aligned} \end{equation} $ (2.23)

注意到$1-\gamma+\tilde\sigma=\sigma+\alpha$, 结合式(2.23) 即得

$ \begin{equation} \parallel v\parallel_{X_v}\leq\parallel v_0\parallel_{\sigma+\alpha, p}+Ct_0^{1-\frac{\tilde\sigma}{2}}K_2(t_0)=K_3(t_0), \end{equation} $ (2.24)

那么$\parallel v\parallel_{X_v}$以时间的代数次数增长.另外, 回顾引理2.5的证明过程, 对每个$t_0>0$, 为了得到式(2.5), 除了选择$\varepsilon=\varepsilon(t_0)$外, 并没有对$t_0$有任何限制.

因而结合式(2.5) 和式(2.24), 有

$ \begin{equation} \begin{aligned} \parallel u\parallel_{X_u}\leq&2(\parallel u_0\parallel_{\sigma, p}+C_3t_0^{1-\frac{\sigma}{2}}K_3(t_0)+C_4t_0^{1-\vartheta}K_3(t_0)^2\\ &+C_5t_0^{\frac{\sigma(1-\iota)}{\sigma-1}}K_3(t_0)^{\frac{\sigma}{\sigma-1}}+C_6t_0^{1-\frac{\sigma}{2}}), \end{aligned} \end{equation} $ (2.25)

表明$\parallel u\parallel_{X_u}$亦以时间的代数次数增长.从式(2.24) 和(2.25) 可知, 在有限时间内, 局部解是不会爆破的, 这说明局部解也是全局解.

参考文献
[1] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability[J]. J. Theor. Biol., 1970, 26: 399–415. DOI:10.1016/0022-5193(70)90092-5
[2] Hillen T, Painter K. A user's guide to PDE models for chemotaxis[J]. J. Math. Biol., 2009, 58: 183–217. DOI:10.1007/s00285-008-0201-3
[3] Childress S, Percus J K. Nonlinear aspects of chemotaxis[J]. Math. Biosci., 1981, 56: 217–237. DOI:10.1016/0025-5564(81)90055-9
[4] Nagai T, Senba T, Yoshida K. Application of the Moser-Trudinger inequality to a parabolic system of chemotaxis[J]. Funkcial. Ekvac., 1997, 40: 411–433.
[5] Corrias L, Perthame B. Critical space for the parabolic-parabolic Keller-Segel model in $mathbb R^d$[J]. C. R. Math. Acad. Sci., 2006, 342: 745–750. DOI:10.1016/j.crma.2006.03.008
[6] Hillen T. Existence of weak solutions for a hyperbolic model of chemosensitive movement[J]. J. Math. Anal. Appl., 2001, 260: 173–199. DOI:10.1006/jmaa.2001.7447
[7] Wu Shaohua, Chen Hua. Nonlinear hyperbolic-parabolic system modeling some biological phenomena[J]. J. Partial Diff. Eqs., 2011, 24(1): 1–14.
[8] Schaaf R. Stationary solutions of chemotaxis systems[J]. Trans. Amer. Math. Soc., 1985, 292: 531–556. DOI:10.1090/S0002-9947-1985-0808736-1
[9] Hillen T, Painter K. Global existence for a parabolic chemotaxis model with prevention of overcrowding[J]. Adv. in Appl. Math., 2001, 26: 280–301. DOI:10.1006/aama.2001.0721
[10] Taylor M E. Partial differential equations Ⅲ(2ed.)[M]. New York: Springer, 2011.