数学杂志  2014, Vol. 34 Issue (3): 515-520   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
崔艳艳
王朝君
复Banach空间上推广的Roper-Sufiridge延拓算子
崔艳艳, 王朝君    
周口师范学院数学与信息科学系, 河南 周口 466001
摘要:本文研究了推广的Roper-Suffridge算子保持一些双全纯映照子族的性质.利用一些双全纯映照子族的定义, 得到了推广后的Roper-Suffridge算子在复Banach空间单位球上保持$\rho$次抛物形$\beta$型螺形映照及强$\alpha$次殆星形映照的性质, 由此得到复Hilbert空间上推广的Roper-Suffridge算子的相应性质, 推广了已有的结论.
关键词Roper-Sufiridge算子    ρ次抛物形β型螺形映照    α次殆星形映照    
THE GENERALIZED ROPER-SUFFRIDGE EXTENSION OPERATORS IN COMPLEX BANACH SPACE
CUI Yan-yan, WANG Chao-jun    
Department of Mathematics, Zhoukou Normal University, Zhoukou 466001, China
Abstract: In this paper, the authors prove that the extended Roper-Suffridge operators preserve the properties of some subclasses of biholomorphic mappings. By the definitions of some subclasses of biholomorphic mappings, we prove that the extended Roper-Suffridge operators preserve the properties of parabolic and spiralike mappings of type $\beta$ and order $\rho$, strongly and almost starlike mappings of order $\alpha$ on the unit ball in complex Banach spaces, and thus we obtain the corresponding properties of the extended Roper-Suffridge operators in complex Hilbert spaces, which extend the known results.
Key words: Roper-Sufiridge operators     parabolic and spiralike mappings of type β and order ρ     strongly and almost starlike mappings of order α    
1 引言

1995年Roper-Suffridge算子的引入, 为在多复变中构造具有特殊几何性质的双全纯映照提供了强有力工具, 因此许多人都致力于研究它.近年来在不同空间及不同域上对Roper-Suffridge算子的推广及其性质的讨论有许多很好的结果[1-8].

2005年刘名生和朱玉灿将Roper-Suffridge算子推广为

$ F(x)=\Phi_{\beta_{2}, \cdot\cdot\cdot, \beta_{n-1}, 0}(f)(x)=\sum\limits_{j=1}^{n-1}(\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)})^{\beta_{j}} T_{x_{j}}(x)x_{j}+x-\sum\limits_{j=1}^{n-1}T_{x_{j}}(x)x_{j}, $

并讨论了该算子的一些性质[9].

2010年邹娟[10]定义了算子

$ \phi_{\beta, \gamma}(f)(x)=f(T_{x_{1}}(x))x_{1}+(\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)})^{\beta} (f^{'}(T_{x_{1}}(x)))^{\gamma}(x-T_{x_{1}}(x)x_{1}). $

并证明了该算子在一定区域上保持$\beta$型螺型性质以及当$\gamma=0$时保持$\alpha$次星形性.

本文旨在讨论文献[5]中的算子保持双全纯映照子族的其它性质.在全文中, $D$表示单位圆盘, $X$为复Banach空间, $B=\{x\in X:\|x\|<1\}$表示$X$中单位球, $X^{\ast}$$X$的对偶空间, 对任意的$x\in X\backslash\{0\}$, $T_{x}=\{T_{x}\in X^{\ast}:\|T_{x}\|=1, T_{x}(x)=\|x\|\}$为连续线性泛函, 由Hahn-Banach定理知此集合非空.

定义 1.1[11] 若$f$同上, $\rho\in{[0, 1)}$, $\beta\in{(-\displaystyle\frac{\pi}{2}, \displaystyle\frac{\pi}{2})}$,

$ |\displaystyle\frac{e^{-i\beta}}{\|x\|}T_{x}[(Df(x))^{-1}f(x)]-(1-i\sin\beta)| <(1-2\rho)+{\hbox{Re}}\{\displaystyle\frac{e^{-i\beta}}{\|x\|}T_{x}[(Df(x))^{-1}f(x)]\}, \quad\\ x\in B, $

则称$f$$B$$\rho$次抛物形$\beta$型螺形映照.

1995年Chuaqui建立了$C^{n}$中单位球$B^{n}$上强$\alpha$次殆星形映照[12]的概念, 后来刘小松将其推广到复Banach空间单位球$B$上:

定义 1.2 [13] 若$f$同上, $\alpha\in{[0, 1)}$, $c\in{(0, 1)}$,

$ |\displaystyle\frac{1}{1-\alpha}\{\displaystyle\frac{1}{\|x\|}T_{x}[(Df(x))^{-1}f(x)]-\alpha\}-\displaystyle\frac {1+c^{2}}{1-c^{2}}|<\displaystyle\frac{2c}{1-c^{2}}, \quad x\in B\backslash\{0\}, $

则称$f$$B$上强$\alpha$次殆星形映照.

2 定理及其证明

引理 2.1 [9] 如果$f$$D$上正规化双全纯映照, 则

$ F(x)=\Phi_{\beta_{2}, \cdots, \beta_{n-1}, 0}(f)(x)=\sum\limits_{j=1}^{n-1}(\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)})^{\beta_{j}} T_{x_{j}}(x)x_{j}+x-\sum\limits_{j=1}^{n-1}T_{x_{j}}(x)x_{j} $

$B$上正规化双全纯映照, 其中$n\in N(n\geq2), \beta_{1}=1, 0\leq\beta_{j}\leq1, \quad j=2, \cdots, n-1$, 且$(\displaystyle\frac{f(z)}{z})^{\beta_{j}}|_{z=0}=1$, $j=1, \cdots, n-1$, $x_{1}\in\bar B$, $\|x_{1}\|=1$, 并且$x_{1}, \cdots, x_{n}\in X$线性无关, 对任意$x_{i}$, 选取$T_{x_{i}}\in X^{\ast}$, 使$\|T_{x_{i}}\|=1$, 且$T_{x_{i}}(x_{i})=1$, $T_{x_{i}}(x_{j})=0~~(i\neq j)$(由Hahn-Banach定理及其推论知此条件可取到).

引理 2.2 [10] 如果$x_{1}\in\bar B$, $\|x_{1}\|=1$, 则存在$T_{x_{1}}\in T(x_{1})$, $T_{x}\in T(x)$, 使得$\|x\|T_{x}(x_{1})=\overline{T_{x_{1}}(x)}. $

引理 2.3  $f$$D$上正规化双全纯映照, $F(x)$为引理2.1中定义的函数, 则

$ \|x\|T_{x}[(DF(x))^{-1}F(x)]=\|x\|^{2}+\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2} [\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]. $

  令$\omega=F(x)=\Phi_{\beta_{2}, \cdots, \beta_{n-1}, 0}(f)(x), $$\omega$关于$x$全纯, 且

$ T_{x_{1}}(\omega)=(\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)})^{1}T_{x_{1}}(x)T_{x_{1}}(x_{1}) +T_{x_{1}}(x)-T_{x_{1}}(x)=f(T_{x_{1}}(x)). $ (1)

同理有

$ T_{x_{j}}(\omega)=(\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)})^{\beta_{j}}T_{x_{j}}(x), $ (2)

$f$$D$上正规化双全纯映照, 则由式(1) 及(2) 知

$ T_{x_{1}}(x)=f^{-1}(T_{x_{1}}(\omega)), $ (3)
$ T_{x_{j}}(x)=(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega), $ (4)

将式(3) 及(4) 代入$\omega=F(x)=\Phi_{\beta_{2}, \cdots, \beta_{n-1}, 0}(f)(x)$

$ \omega=\sum\limits_{j=1}^{n-1}T_{x_{j}}(\omega)x_{j}+ [x-\sum\limits_{j=1}^{n-1}(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega)x_{j}], $
$ x=(\omega-\sum\limits_{j=1}^{n-1}T_{x_{j}}(\omega)x_{j})+ \sum\limits_{j=1}^{n-1}(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega)x_{j}, $ (5)

由式(5) 知

$ \begin{eqnarray*}&& x=F^{-1}(\omega)=(\omega-\sum\limits_{j=1}^{n-1}T_{x_{j}}(\omega)x_{j})+ \sum\limits_{j=1}^{n-1}(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega)x_{j}, \\ && (DF(x))^{-1}\eta=DF^{-1}(\omega)\eta=(\eta-\displaystyle\sum\limits_{j=1}^{n-1}T_{x_{j}}(\eta)x_{j})\\ && +\displaystyle\sum\limits_{j=1}^{n-1}\{(-\beta_{j})(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}-1} \displaystyle\frac{T_{x_{1}}(\eta)f^{-1}(T_{x_{1}}(\omega))-T_{x_{1}}(\omega)(f^{-1})^{'}(T_{x_{1}}(\omega)) T_{x_{1}}(\eta)}{[f^{-1}(T_{x_{1}}(\omega))]^{2}}\\ && \cdot T_{x_{j}}(\omega)x_{j}+(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\eta)x_{j})\}. \end{eqnarray*} $

由式(4) 及(5) 知

$ \omega-\sum\limits_{j=1}^{n-1}T_{x_{j}}(\omega)x_{j}=x-\sum\limits_{j=1}^{n-1}(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega)x_{j} =x-\sum\limits_{j=1}^{n-1}T_{x_{j}}(x)x_{j}, $ (6)

由式(3) 知

$ (f^{-1})^{'}(T_{x_{1}}(\omega))=\displaystyle\frac{1}{f^{'}(T_{x_{1}}(x))}, $ (7)

则由式(1)、(3)、(4)、(6)、(7) 知

$ \begin{eqnarray*}&& (DF(x))^{-1}F(x)=x-\displaystyle\sum\limits_{j=1}^{n-1}T_{x_{j}}(x)x_{j}\\ && +\displaystyle\sum\limits_{j=1}^{n-1}\{(-\beta_{j})(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}} \displaystyle\frac{f^{-1}(T_{x_{1}}(\omega))-(f^{-1})^{'}(T_{x_{1}}(\omega)) T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))}T_{x_{j}}(\omega)x_{j}\\ &&+(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega)x_{j}\}\\ &=&\; x-\displaystyle\sum\limits_{j=1}^{n-1}T_{x_{j}}(x)x_{j}+\displaystyle\sum\limits_{j=1}^{n-1}\{(\displaystyle\frac{T_{x_{1}}(\omega)}{f^{-1}(T_{x_{1}}(\omega))})^{-\beta_{j}}T_{x_{j}}(\omega)x_{j} \{1+\beta_{j}[\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]\}\}\\ &=&\; x-\displaystyle\sum\limits_{j=1}^{n-1}T_{x_{j}}(x)x_{j}+\displaystyle\sum\limits_{j=1}^{n-1}\{T_{x_{j}}(x)x_{j} \{1+\beta_{j}[\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]\}\}\\ &=&\; x+\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}T_{x_{j}}(x)x_{j} [\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1], \end{eqnarray*} $

由引理2.2知

$ \begin{eqnarray*}&& \|x\|T_{x}[(DF(x))^{-1}F(x)]\\ & =&\; \|x\|^{2}+\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}T_{x_{j}}(x)\|x\|T_{x}(x_{j}) [\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]\\ &=&\;\|x\|^{2}+\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}[\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]. \end{eqnarray*} $

定理 2.4  $f$$D$$\rho$次抛物形$\beta$型螺形映照, $\rho\in{[0, 1)}$, $\cos\beta>\rho$, $F(x)$为引理2.1中定义的函数, 则$F(x)$$B$$\rho$次抛物形$\beta$型螺形映照.

  由于$f$$D$$\rho$次抛物形$\beta$型螺形映照, 则

$ |e^{-i\beta}\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-(1-i\sin\beta)| <(1-2\rho)+{\hbox {Re}}\{e^{-i\beta}\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}\}, $

则由引理2.3知

$ \;\;\;\;|\displaystyle\frac{e^{-i\beta}}{\|x\|}T_{x}[(Df(x))^{-1}f(x)]-(1-i\sin\beta)|\\ =\; |e^{-i\beta}\{1+\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} [\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]\}-(1-i\sin\beta)|\\ =\; |e^{-i\beta}(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}}) +\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} [e^{-i\beta}\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-(1-i\sin\beta)]\\ \;\;\;\;+(\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}}-1)(1-i\sin\beta)|\\ =\; |(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}})(\cos\beta-1) +\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} [e^{-i\beta}\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}\\ -(1-i\sin\beta)]|\\ \leq\;(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}})(1-\cos\beta) +\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} |e^{-i\beta}\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}\\ -(1-i\sin\beta)|\\ <\;(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}})(1-\cos\beta) +\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} [(1-2\rho)+\\Re\{e^{-i\beta}\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}\}]\\ =\;(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}})(1-2\cos\beta) +\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} (1-2\rho)\\ \;\;\;\;+{\hbox{Re}}\{e^{-i\beta}\{1+\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} [\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]\}\}\\ <\;(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}})(1-2\rho) +\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} (1-2\rho)\\ \;\;\;\;+{\hbox{Re}}\{e^{-i\beta}\{1+\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}}{\|x\|^{2}} [\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]\}\}\\ =\;(1-2\rho)+{\hbox{Re}}\{\displaystyle\frac{e^{-i\beta}}{\|x\|}T_{x}[(Df(x))^{-1}f(x)]\}. $

由定义1.1知$F(x)$$B$$\rho$次抛物形$\beta$型螺形映照.

推论 2.5  $f$$D$$\rho$次抛物星形映照, $\rho\in{[0, 1)}$, $\cos\beta>\rho$, $F(x)$为引理2.1中定义的函数, 则$F(x)$$B$$\rho$次抛物星形映照.

定理 2.6  $f$$D$上强$\alpha$次殆星形映照, $\alpha\in{[0, 1)}$, $c\in{(0, 1)}$, $F(x)$为引理2.1中定义的函数, 则$F(x)$$B$上强$\alpha$次殆星形映照.

$ \begin{eqnarray*}&& |\displaystyle\frac{1}{1-\alpha}\{\displaystyle\frac{1}{\|x\|}T_{x}[(Df(x))^{-1}f(x)]-\alpha\}-\displaystyle\frac {1+c^{2}}{1-c^{2}}|\\ &\;=&\;|\displaystyle\frac{1}{1-\alpha}\{1+\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}} {\|x\|^{2}}[\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]-\alpha\}-\displaystyle\frac {1+c^{2}}{1-c^{2}}|\\ &=&\;\;\;\;|\displaystyle\frac{1}{1-\alpha}\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}} {\|x\|^{2}}[\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-1]+1-\displaystyle\frac {1+c^{2}}{1-c^{2}}|\\ &=&\;\;\;\;|\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}} {\|x\|^{2}}\{\displaystyle\frac{1}{1-\alpha}[\displaystyle\frac{f(T_{x_{1}}(x))}{T_{x_{1}}(x)f^{'}(T_{x_{1}}(x))}-\alpha] -\displaystyle\frac{1+c^{2}}{1-c^{2}}\}\\ &&+(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}} {\|x\|^{2}})(1-\displaystyle\frac{1+c^{2}}{1-c^{2}})|\\ &<&\;\;\;\;\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}} {\|x\|^{2}}\displaystyle\frac{2c}{1-c^{2}}+(1-\displaystyle\frac{\displaystyle\sum\limits_{j=1}^{n-1}\beta_{j}|T_{x_{j}}(x)|^{2}} {\|x\|^{2}})\displaystyle\frac{2c}{1-c^{2}} =\displaystyle\frac{2c}{1-c^{2}}.\end{eqnarray*} $

由定义1.2知$F(x)$$B$上强$\alpha$次殆星形映照, 当$\alpha=0$时即为强星形映照.

  若$X$$n$维复Hilbert空间, 则由Riesz表示定理知$T_{x_{1}}(x)=\langle x, x_{1}\rangle$, 取$x_{1}=(1, \cdot\cdot\cdot, 0)$, 则$\|x\|=1$, $x=(z_{1}, \cdot\cdot\cdot, z_{n})=(z_{1}, z_{0})$, 则有$T_{x_{1}}(x)=z_{1}$, 于是引理2.1所定义的函数为:

$ F(z)=(f(z_{1}), (\displaystyle\frac{f(z_{1})}{z_{1}})^{\beta_{2}}z_{2}, \cdot\cdot\cdot, (\displaystyle\frac{f(z_{1})}{z_{1}})^{\beta_{n-1}}z_{n-1}, z_{n}). $ (8)

特别当$n=2$时有$F(z)=(f(z_{1}), z_{2}).$

推论 2.7  令$F(z)$为式(8) 定义的函数, 其中$n\in N(n\geq2), \beta_{1}=1, 0\leq\beta_{j}\leq1, \quad j=2, \cdot\cdot\cdot, n-1$, 且$(\displaystyle\frac{f(z)}{z})^{\beta_{j}}|_{z=0}=1$ $(j=1, \cdot\cdot\cdot, n-1)$, 则$F(x)$在复Hilbert空间单位球$B^{n}$上保持$\rho$次抛物形$\beta$型螺形映照及强$\alpha$次殆星形映照.

参考文献
[1] 赵艳辉. 单位球上Dirichlet型空间$D_{q}$$\beta^{p}$空间的加权Ces$\grave{a}$ro算子[J]. 数学杂志, 2012, 32(1): 157–162.
[2] Liu X S, Feng S X. A remark on the generalized Roper-Suffridge extension operator for spirallike mappings of type $\beta$ and order $\alpha$[J]. Chin Quart J of Math, 2009, 24(2): 310–316.
[3] Liu M S, Zhu Y C. On the extension operator in Banach spaces[J]. Advances in Math, 2005, 34(4): 506–508.
[4] 徐庆华, 刘太顺. 正规化双全纯映照的增长和掩盖定理[J]. 数学年刊, 2009, 30A(2): 213–220.
[5] 赵艳辉. 单位球上$F(p,q,s)$空间到$\beta_{u}$空间的加权Ces$\grave{a}$ro算子[J]. 数学杂志, 2011, 31(4): 722–728.
[6] 周泽华, 魏中齐. 多圆柱上的Bloch空间上的加权复合算子[J]. 数学杂志, 2005, 25(4): 435–440.
[7] 位瑞英, 张松艳, 李银. 关于分数次Marcinkiewicz积分在Hardy空间上的有界性[J]. 数学杂志, 2011, 31(1): 173–180.
[8] Li S S, Fei M G. Convergence of generalized fourier integral on the unit circle[J]. J. of Math., 2011, 31(2): 211–217.
[9] Liu M S, Zhu Y C. On the generalized Roper-Suffridge extension operator in Banach spaces[J]. Interna Iournal of Math. and Math. Sci., 2005, 8: 1171–1187.
[10] 邹娟. 复Banach空间中的Roper-Suffridge算子[J]. Acta Math Sci, 2010, 30A(6): 1582–1591.
[11] 冯淑霞, 张晓飞, 陈慧勇. 多复变数的抛物星形映射[J]. 数学学报(中文版), 2011, 54(3): 467–482.
[12] Chuaqui M. Applications of subordination chains to starlike mappings in $C^{n}$[J]. Pacif J. Math., 1995, 168: 33–48. DOI:10.2140/pjm
[13] 刘小松. 多复变数中两类双全纯映照子族之间的关系式[J]. 河南大学学报, 2010, 4(6): 556–559.