数学杂志  2014, Vol. 34 Issue (3): 509-514   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张慧明
李建俊
段继光
x∣在调整的第二类Chebyshev结点组的有理插值
张慧明1, 李建俊2, 段继光2    
1. 石家庄经济学院数理学院, 河北 石家庄 050031;
2. 河北师范大学附属民族学院, 河北 石家庄 050091
摘要:本文研究了Newman型有理算子逼近∣x∣的收敛速度, 插值结点组X取调整的第二类Chebyshev结点组.利用上界估计得到确切的逼近阶为$O\left(\frac{1}{n^{2}}\right)$.这个结果优于结点组取作第一、二类Chebyshev结点组、等距结点组和正切结点组.
关键词调整的第二类Chebyshev结点    有理插值    Newman型有理算子    逼近阶    
ON RATIONAL INTERPOLATION TO ∣x∣ AT THE ADJUSTED CHEBYSHEV NODES OF THE SECOND KIND
ZHANG Hui-ming1, LI Jian-jun2, DUAN Ji-guang2    
1. School of Mathematics and Physics, Shijiazhuang University of Economics, Shijiazhuang 050031, China;
2. A-liated College of Minority Education, Hebei Normal University, Shijiazhuang 050091, China
Abstract: In this paper, we consider the rate of convergence of Newman-type rational operator approximation to ∣x∣, it is based on the adjusted Chebyshev nodes of the second kind. The upper bound estimation are used to obtain the exact order of approximation to be $O\left(\frac{1}{n^{2}}\right)$. The result is better than which of the nodes taking for the Chebyshev nodes of the flrst kind, the Chebyshev nodes of the second kind, equidistant nodes and the tangent nodes.
Key words: the adjusted Chebyshev nodes of the second kind     rational interpolation     Newman-type rational operators     order of approximation    
1 引言

众所周知, 最早研究$|x|$的逼近问题是Bernstein[1], 他在1913年用代数多项式对$|x|$进行逼近, 得到$n$次代数多项式对$|x|$的逼近阶$E_{n}(|x|)=O(\frac{1}{n})$, 且不能改善.

1964年, Newman[2]发现$R_{n}(|x|)=\min \limits_{r_{n}(x) \in R_{n}^{n}}\left\| |x|-r_{n}(x) \right\|$远远优于其多项式的最佳逼近$E_{n}(x)$.

$p(x)=\prod\limits_{k=1}^{n-1}(x+a^{k})$, 其中$a=e^{-\frac{1}{\sqrt{n}}}$.定义了如下有理函数

$ r_{n}(x)=x\frac{p(x)-p(-x)}{p(x)+p(-x)}. $

建立了如下定理:当$n\geq5$时, 有下式成立

$ \frac{1}{2}e^{-9\sqrt{n}}\leq R_{n}(|x|)\leq 3e^{-\sqrt{n}}. $

1975年, Vjacheslavov[3]用复杂的方法获得精确不等式

$ e^{-\pi\sqrt{n+1}}\leq R_{n}(|x|)\leq C e^{-\pi\sqrt{n-1}}. $

有趣的是, Newman构造的$r_{n}(x)$具有与$|x|$共单调性质.这是1984年, Iliev和Opitz[4]证明的.他们还进一步证明了$|x|$的有理共单调逼近也满足上面的Vjacheslavov精确不等式.

1997年, Brutman和Passow[5]把上述有理函数进行推广.结点组可以取作$X=\{x_{k}:k=1, 2, \cdots, n, 0 < x_{1} < x_{2} < \cdots < x_{n}\leq 1\}$.令

$ p(x)=\prod\limits_{k=1}^{n}(x+x_{k}), $

则基于结点组$\{-x_{n}, \cdots, -x_{2}, -x_{1}, 0, x_{1}, x_{2}, \cdots, x_{n} \}$的Newman型有理算子定义为

$ r_{n}(X;x)=x\frac{p(x)-p(-x)}{p(x)+p(-x)}. $

在Newman之后, 有不少考虑了任意结点组(见文献[6-12])上的Newman型插值.

1997年, Brutman和Passow[7]把结点组取作Chebyshev结点, 得到逼近阶为$O(\frac{1}{n\log n})$; 1998年, Brutman[8]把结点组取作调整Chebyshev结点

$ \widetilde{T}=\left\{x_{k}=\frac{1+\xi_{n-k+1}}{2}=\sin^{2}\frac{(2k-1)\pi}{4n}\right\}_{k=1}^{n}, $

其中$\xi_{k}=\cos\frac{(2k-1)\pi}{2n}, k=1, 2, \cdots, n$, 得到逼近阶为$O(\frac{1}{n^{2}})$.

最近张慧明等[11]把结点组取作与朱来义等[10]不同的形式的第二类Chebyshev结点, 用不同的方法得到逼近阶为$O(\frac{1}{n\log n})$.

我们是否可以类似于Brutman[8]把结点组取作调整第二类Chebyshev结点?

本文就研究插值结点组$X$取调整的第二类Chebyshev结点的Newman型有理插值算子逼近$|x|$, 得到逼近阶为$O(\frac{1}{n^{2}})$.

2 $r_{n}(X; x)$在调整的第二类Chebyshev结点组对$|x|$的有理逼近

首先我们来构造调整第二类Chebyshev结点.

我们把第二类Chebyshev多项式$U_{n-1}(x)=\frac{\sin(n\arccos x)}{\sqrt{1-x^2}}$的零点$\xi_k=\cos\frac{k\pi}{n}$ $(k=1, 2, 3, \cdots, n-1)$压缩到区间$[0, 1]$.即

$ \widetilde{U}=\left\{x_{k}=\frac{1+\xi_{n-k}}{2}=\cos^{2}\frac{(n-k)\pi}{2n}=\sin^{2}\frac{k\pi}{2n}\right\}_{k=1}^{n-1}. $

这就是我们来构造的调整第二类Chebyshev结点.

由于构造的结点组里有$n-1$个结点, 所以在本文我们把Newman型有理算子定义为

$ r_{n-1}(\widetilde{U};x)=x\frac{p(x)-p(-x)}{p(x)+p(-x)}. $

定理1  结点组$X$取调整第二类Chebyshev结点$\widetilde{U}$, 当$n>e^{3}+1$时, 有下式成立

$ |e_{n-1}(\widetilde{U}; x)|=\left||x|-r_{n-1}(\widetilde{U};x)\right|=O\left(\frac{1}{n^{2}}\right). $

  由于$r_{n-1}(\widetilde{U}; x)=x\frac{p(x)-p(-x)}{p(x)+p(-x)}$$|x|$都是偶函数, 只考虑区间$[0, 1]$即可.

1) 当$0\leq x \leq x_{1}=\sin^{2}\frac{\pi}{2n}$时, 当$t \in [0, \frac{\pi}{2}]$时, $\frac{2t}{\pi} \leq \sin t \leq t$,

$ \frac{4}{{{\pi ^2}}}{n^2} \le \sum\limits_{k = 1}^{n - 1} {\frac{1}{{{{(\frac{{k\pi }}{{2n}})}^2}}}} \le {A_{n - 1}}(x) = \sum\limits_{k = 1}^{n - 1} {\frac{1}{{{{\sin }^2}(\frac{{k\pi }}{{2n}})}}} \le \sum\limits_{k = 1}^{n - 1} {\frac{1}{{{{(\frac{k}{n})}^2}}}} \le 2{n^2}. $

由文献[5]定理2.7得$|e_{n-1}(\widetilde{U}; x)| \leq \frac{1}{A_{n-1}}\leq \frac{\pi^{2}}{4n^{2}}.$

2) 当$y_{1}=\frac{4\log (n-1)}{n-1} \leq x \leq 1(n>e^{3}+1)$时, $S_{1}=\sum\limits_{k=1}^{n-1}x_{k}=\frac{n-1}{2}.$

由文献[5]引理2.4得

$ |h_{n-1}(\widetilde{U};x)| \leq e ^{-y_{1}S_{1}} \leq e ^{-2 \log (n-1)}=\frac{1}{(n-1)^{2}} . $

所以

$ |e_{n-1}(\widetilde{U};x)| \leq \frac{2x|h_{n-1}(\widetilde{U};x)|}{1-h_{n-1}(\widetilde{U};x)} \leq \frac{3}{(n-1)^{2}}. $

3) 当$\sin\frac{\pi}{2n} \leq x \leq y_{1}$时,

$ \sin^{2}\frac{(k+1)\pi}{2n}-\sin^{2}\frac{k\pi}{2n}=\sin\frac{(2k+1)\pi}{2n}\sin\frac{\pi}{2n} \leq \sin\frac{\pi}{2n}. $

由文献[10]中

$ n = {2^{2(n - 1)}}\prod\limits_{k = 1}^{n - 1} {{{\cos }^2}} \frac{{k\pi }}{{2n}} = {2^{2(n - 1)}}\prod\limits_{k = 1}^{n - 1} {{{\sin }^2}} \frac{{k\pi }}{{2n}}, $

$ \begin{eqnarray*}\prod \limits_{k=1}^{n-1} \sin^{2}\frac{k\pi}{2n}&=&\frac{n}{2^{2(n-1)}},\\ p(x)&=& \prod\limits_{k=1}^{n-1}(x+x_{k}) \geq \prod\limits_{k=1}^{n-1}\left(\sin^{2}\frac{k\pi}{2n}+\sin\frac{\pi}{2n}\right) \\&\geq &\prod\limits_{k=1}^{n-1}\left(\sin^{2}\frac{(k+1)\pi}{2n}\right)= \prod\limits_{k=2}^{n}\left(\sin^{2}\frac{k\pi}{2n}\right)\\ & =& \frac{\prod\limits_{k=1}^{n-1}\left(\sin^{2}\frac{k \pi}{2n}\right)}{\sin^{2}\frac{\pi}{2n}} \geq \left(\frac{2n}{\pi}\right)^{2} \frac{n}{2^{2(n-1)}}=\frac{4n^{3}}{2^{2(n-1)} \pi^{2}},\\ \\ |p(-x)|&= & \prod\limits_{k=1}^{n-1}|x_{k}-x| = \prod\limits_{k=1}^{n-1}\left|\frac{1+\xi_{n-k}}{2}-x\right| \\ &= & \frac{1}{2^{n-1}}\prod\limits_{k=1}^{n-1}|1+\xi_{n-k}-2x|=\frac{2^{n-1}\prod\limits_{k=1}^{n-1}|2x-1-\xi_{n-k}|} {2^{2(n-1)}} \\& = & \frac{U_{n-1}(2x-1)}{2^{2(n-1)}}=\frac{|\sin n \arccos(2x-1)|}{2^{2(n-1)}\sqrt{1-(2x-1)^{2}}},\end{eqnarray*} $

其中$\sqrt{1-(2x-1)^{2}}=2\sqrt{x(1-x)} \geq 2\sqrt{\sin \frac{\pi}{2n}(1-\sin\frac{\pi}{2n})} \geq\sqrt{\sin \frac{\pi}{2n}} \geq \frac{1}{\sqrt{n}}.$ 由以上得

$ |h_{n-1}(\widetilde{U};x)|=\frac{|p(-x)|}{p(x)}\leq\frac{\pi^{2}\sqrt{n}}{4n^{3}}. $

由上式得

$ |e_{n-1}(\widetilde{U};x)|\leq\frac{2x|h_{n-1}(\widetilde{U};x)|}{1-|h_{n-1}(\widetilde{U};x)|} \leq3x|h_{n-1}(\widetilde{U};x)|\leq\frac{12\log(n-1)}{n-1}\frac{\pi^{2}\sqrt{n}}{4n^{3}} \leq\frac{1}{n^{2}}. $

4) 当$x_{1} \leq x \leq x_{m}=\sin^{2}\frac{m\pi}{2n}$ ($\exists m$使$\sin^{2}\frac{(m-1)\pi}{2n}\leq \sin\frac{\pi}{2n}\leq\sin^{2}\frac{m\pi}{2n}$)时, 对于某个$j, 1\leq j\leq m-1$, 有

$ \begin{eqnarray*} x_{j}&=&\sin^{2}\frac{j\pi}{2n} \leq x \leq \sin^{2}\frac{(j+1)\pi}{2n}=x_{j+1}, \sin^{2}\frac{(2j+1)\pi}{2n} \leq \sin^{2}\frac{2(j+1)\pi}{2n} \leq 1, \\ & &|r_{n-1}(\widetilde{U};x)|\\ & = &\left|x h_{n-1}(\widetilde{U};x)\right| =x \prod\limits_{k=1}^{n-1}\frac{|\sin^{2}\frac{k\pi}{2n}-x|} {\sin^{2}\frac{k\pi}{2n}+x} \leq x \frac{x-\sin^{2}\frac{j\pi}{2n}} {x+\sin^{2}\frac{j\pi}{2n}}\frac{\sin^{2}\frac{(j+1)\pi}{2n}-x} {\sin^{2}\frac{(j+1)\pi}{2n}+x} \\&\leq &x\left(\frac{\sin^{2}\frac{(j+1)\pi}{2n}-\sin^{2}\frac{j\pi}{2n}} {\sin^{2}\frac{(j+1)\pi}{2n}+\sin^{2}\frac{j\pi}{2n}} \right)^{2} \leq \sin^{2}\frac{(j+1)\pi}{2n}\frac{\sin^{2}\frac{(2j+1)\pi}{2n}\sin^{2}\frac{\pi}{2n}}{4\sin^{4}\frac{j\pi}{2n}}\\ &\leq &\frac{\sin^{2}\frac{(j+1)\pi}{2n}\sin^{2}\frac{2(j+1)\pi}{2n}}{4\sin^{4}\frac{j\pi}{2n}}\sin^{2}\frac{\pi}{2n}\leq \frac{4\sin^{4}\frac{(j+1)\pi}{2n}\cos^{2}\frac{(j+1)\pi}{2n}}{4\sin^{4}\frac{j\pi}{2n}}\sin^{2}\frac{\pi}{2n}\\&\leq &\left(\frac{\sin\frac{(j+1)\pi}{2n}}{\sin\frac{j\pi}{2n}} \right)^{4} \sin^{2}\frac{\pi}{2n}\leq 16 \left(\frac{\pi}{2n}\right)^{2}=\frac{4\pi^{2}}{n^{2}}=\frac{C}{A_{n-1}},\end{eqnarray*} $

$\max\limits_{x_{1} \leq x \leq x_{m} \leq x_{n-1}}|h_{n-1}(\widetilde{U}; x)|  1$, 由文献[9]中定理2.3得

$ \max\limits_{x_{1} \leq x \leq x_{m} \leq x_{n-1}}|e_{n-1}(\widetilde{U};x)|=O\left( \frac{1}{A_{n-1}}\right). $

综合上面四种情形有

$ |e_{n-1}(\widetilde{U};x)|=||x|-r_{n-1}(\widetilde{U};x)|=O\left(\frac{1}{n^{2}}\right). $

下面我们来说明这个逼近阶是不能改善的, 有以下定理:

定理2  取$x^{*}=\frac{1}{2n^{2}}$, 那么有下式成立:

$ |e_{n-1}(\widetilde{U};x^{*})|\geq \frac{1}{18n^{2}}. $

  当$n>e^{3}+1$时, $x^{*} \in [0, x_{1}]$$0\leq h_{n-1}(\widetilde{U}; x^{*})=\frac{p(-x^{*})}{p(x^{*})}\leq 1, $其中

$ \begin{eqnarray*}    h_{n-1}(\widetilde{U};x^{*})=\prod\limits_{k=1}^{n-1}\frac{x_{k}-x^{*}}{x_{k}+x^{*}} \geq 3^{-2x^{* }\sum\limits_{k=1}^{n-1}\frac{1}{x^{k}}}\geq 3^{-4x^{*}n^{2}} \geq \frac{1}{9}\left( \frac{x^{*}}{x_{1}}\leq \frac{1}{2}\right), \\    n^{2}|e_{n-1}(\widetilde{U};x^{*})|=\frac{h_{n-1}(\widetilde{U};x^{*})}{1+h_{n-1}(\widetilde{U};x^{*})} \geq \frac{1}{2}h_{n-1}(\widetilde{U};x^{*}) \geq \frac{1}{18}.\end{eqnarray*} $

定理得证.

3 分析总结

综上所述, 我们可以得到插值结点组$X$取作调整的第二类Chebyshev结点的Newman型有理算子逼近$|x|$的确切逼近阶为$O\left(\frac{1}{n^{2}} \right)$, 和结点组取作调整的第一类Chebyshev结点的结果相同.这个结果优于结点组取作第一类Chebyshev结点组[7]、第二类Chebyshev结点组[10, 11]、等距结点组[6]和正切结点组[12].

我们进一步分析:第一类Chebyshev结点组$\left\{ x_{k}=\cos\frac{(2k-1)\pi}{4n}\right\}_{k=1}^{n}$ (见文献[7]), 为了以下叙述方便, 我们把它记作:

$ T=\left\{ x_{k}=\sin\frac{(2k-1)\pi}{4n} =\cos\frac{(2n-2k+1)\pi}{4n}\right\}_{k=1}^{n}; $

第二类Chebyshev结点组记作: $U=\left\{ x_{k}=\sin\frac{k\pi}{2n} \right\}_{k=1}^{n-1}$ (见文献[11]).

调整第一类Chebyshev结点组$\widetilde{T}=\left\{ x_{k}=\frac{1+\xi_{n-k+1}}{2}=\sin^{2}\frac{(2k-1)\pi}{4n} \right\}_{k=1}^{n}$ (见文献[8]); 调整第二类Chebyshev结点组

$ \widetilde{U}=\left\{ x_{k}=\frac{1+\xi_{n-k}}{2}=\cos^{2}\frac{(n-k)\pi}{2n}=\sin^{2}\frac{k\pi}{2n} \right\}_{k=1}^{n-1}. $

通过观察以上四个结点组, 我们可以发现: $X$取两类调整Chebyshev结点组得到逼近阶为$O(\frac{1}{n^{2}})$, 和$X$$\left\{ x_{k}=\left(\frac{k}{n}\right)^{2} \right\}_{k=1}^{n}$ (见文献[9])得到的逼近阶一致; 而$X$取两类Chebyshev结点组得到逼近阶为$O(\frac{1}{n \log n})$, 和$X$取等距结点组(见文献[6])、正切节点组(见文献[12])得到的逼近阶一致.

另一方面, 第一类Chebyshev结点组和第二类Chebyshev结点组都是1点附近稠密、0点附近稀疏, 即:结点在区间$[0, 1]$内向1点集中, 得到确切的逼近阶为$O(\frac{1}{n \log n})$; 而调整的第一类Chebyshev结点组和调整的第二类Chebyshev结点组都是结点关于$\frac{1}{2}$对称, 且在0和1点附近稠密、$\frac{1}{2}$点附近稀疏, 即:结点在区间$[0, 1]$两端集中而中间分散, 得到确切的逼近阶为$O(\frac{1}{n^{2}})$.

参考文献
[1] Bernstein S N. Sur la meilleure approximation de |x| par des polynômes de degrés donnés[J]. Acta Math., 1913, 37: 1–57.
[2] Newman D J. Rational approximation to |x|[J]. Mich. Math. J., 1964, 11: 11–14. DOI:10.1307/mmj/1028999029
[3] Vjacheslavov N S. On the uniform approximation of |x| by rational functions[J]. Dokl. Akad. Nank SSSR, 1975, 220: 512–515.
[4] Iliev G I, Opitz U. Comonotone approximation of |x| by rational functions[J]. Serdica Bulgar. Math. Publ., 1984, 10(1): 88–105.
[5] Brutman L, Passow E. On rational interpolation to |x|[J]. Constr. Approx., 1997, 13: 381–391. DOI:10.1007/s003659900049
[6] Werner H. Rational interpolation von |x| in äquidistanten Punkten[J]. Math. Z., 1982, 180: 11–17. DOI:10.1007/BF01214996
[7] Brutman L, Passow E. Rational interpolation to |x| at the Chebyshev nodes[J]. Bull. Austral. Math. Soc., 1997, 56: 81–86. DOI:10.1017/S0004972700030756
[8] Brutman L. On rational interpolation to |x| at the adjusted Chebyshev nodes[J]. J. Approx. Theory, 1998, 95: 146–152. DOI:10.1006/jath.1998.3206
[9] Han Xuli. On the order of approximation for the rational interpolation to |x|[J]. Approximation Theory and Its Applications, 2002, 18(2): 58–64.
[10] Zhu Laiyi, Dong Zhaolin. On Newman-type rational interpolation to |x| at the Chebyshev nodes of the second kind[J]. Analysis in Theory and Applications, 2006, 22(3): 262–270. DOI:10.1007/s10496-006-0262-3
[11] 张慧明, 李建俊. |x|在第二类Chebyshev结点的有理逼近[J]. 郑州大学学报(理学版), 2010, 42(02): 1–3.
[12] 张慧明, 门玉梅, 李建俊. |x|在正切结点组的有理插值[J]. 天津师范大学学报(自然科学版), 2011, 31(04): 5–6. DOI:10.3969/j.issn.1671-1114.2011.04.002