SOME IDENTITIES RELATED TO CHEBYSHEF POLYNOMIALS AND THEIR APPLICATIONS
Department of Common Course, Xi'an Medical University, Xi'an 710021, China;
Department of Mathematics, Northwest University, Xi'an 710069, China
Received date: 2012-03-12; Accepted date: 2012-06-20
Foundation item: Supported by Scientiflc Research Foundation of Shaanxi Provincial Education Department(2013JK0561); Doctor Foundation of Xi'an Medical University (2012DOC14)
Biography: Pan Xiaowei(1982-), female, born at Xi'an, Shaanxi, lecture, major in analytic number theory research
西安医学院公共课部, 陕西 西安 710021;
西北大学数学系, 陕西 西安 710069
1 Introduction
In references [1] and [6], Zhang and Ma studied the properties of the Chebyshef polynomials, and obtained some identities involving the Fibonacci numbers and the Lucas numbers. The main results in [1] were the following two identities:
$
\begin{eqnarray} x^{2n}&=&
\frac{(2n)!}{4^n(n!)^2}T_0(x)+
\frac{2(2n)!}{4^n}\sum\limits_{k=1}^{n}\frac{1}{(n-k)!(n+k)!}T_{2k}(x)\nonumber\\
&=&\frac{(2n)!}{4^n}\sum\limits_{k=0}^{n}\frac{2k+1}{(n-k)!(n+k+1)!}U_{2k}(x)\end{eqnarray}
$ |
(1.1) |
and
$
\begin{eqnarray}
x^{2n+1}&=&
\frac{(2n+1)!}{4^n}\sum\limits_{k=0}^{n}\frac{1}{(n-k)!(n+k+1)!}T_{2k+1}(x)\nonumber\\
&
=&\frac{(2n+1)!}{4^n}\sum\limits_{k=0}^{n}\frac{k+1}{(n-k)!(n+k+2)!}U_{2k+1}(x), \end{eqnarray}
$ |
(1.2) |
where $T_n(x)$ is the Chebyshef polynomials of the first kind, and $U_n(x)$ is the Chebyshef polynomials of the second kind, defined respectively by
$
T_n(x)=\frac{1}{2}\left[\left(x+ \sqrt{x^2-1}\right)^n+ \left(x-
\sqrt{x^2-1}\right)^n\right]
$ |
and
$
U_n(x)=\frac{1}{2\sqrt{x^2-1}}\left[\left(x+
\sqrt{x^2-1}\right)^{n+1}-\left(x-
\sqrt{x^2-1}\right)^{n+1}\right].
$ |
On the other hand, in a private communication with Cooper, Melham suggested that it would be interesting to discover an explicit expansion for
$\begin{eqnarray*}
L_1L_2\cdots L_{2m+1}\sum\limits_{k=1}^nF_{2k}^{2m+1}\end{eqnarray*}
$ |
as a polynomial in $F_{2n+1}$, where $F_n$ and $L_n$ denote the Fibonacci number and Lucas number respectively. Melham [5] also proposed following two conjectures:
Conjecture 1.1 Let $m\geq 1$ be a positive integer. Then the sum
$\begin{eqnarray*}
L_1L_3L_5\cdots L_{2m+1}\sum\limits_{k=1}^nF_{2k}^{2m+1}\end{eqnarray*}
$ |
(1.3) |
can be expressed as $\left(F_{2n+1}-1\right)^2 P_{2m-1}\left(F_{2n+1}\right)$, where $P_{2m-1}(x)$ is a polynomial of degree $2m-1$ with integer coefficients.
Conjecture 1.2 Let $m\geq 0$ be an integer. Then the sum
$\begin{eqnarray*}
L_1L_3L_5\cdots L_{2m+1}\sum\limits_{k=1}^nL_{2k}^{2m+1}\end{eqnarray*}
$ |
(1.4) |
can be expressed as $\left(L_{2n+1}-1\right) Q_{2m}\left(L_{2n+1}\right)$, where $Q_{2m}(x)$ is a polynomial of degree $2m$ with integer coefficients.
Wiemann and Cooper [2] obtained some divisibility properties in the study of some conjectures of Melham related to the sum $\sum_{k=1}^nF_{2k}^{2m+1}$. Ozeki [3] proved that
$
\begin{eqnarray*}
\sum\limits_{k=1}^nF_{2k}^{2m+1}=
\frac{1}{5^m}\sum\limits_{j=0}^{m}\frac{(-1)^j}{L_{2m+1-2j}}\left(^{2m+1}_{\
\ j}\right)\left(F_{(2m+1-2j)(2n+1)}- F_{2m+1-2j}\right).
\end{eqnarray*}
$ |
Prodinger [4] studied the more general summation $\sum_{k=0}^nF_{2k+\delta}^{2m+1+\epsilon}$, where $\delta, \ \epsilon \in \{0, \ 1\}$, and obtained many interesting identities, two of which are:
$
\begin{eqnarray*}
\sum\limits_{k=0}^nF_{2k+1}^{2m+1}=\sum\limits_{l=0}^{m}F_{2(n+1)}^{2l+1}\sum\limits_{j=0}^{m-l}
\frac{5^{l-m}}{L_{2m-2j+1}}\left(^{2m+1}_{\ \
j}\right)\left(^{m-j+l}_{m-j-l}\right)\frac{2m-2j+1}{2l+1}
\end{eqnarray*}
$ |
and
$
\begin{eqnarray*}
\sum\limits_{k=0}^nF_{2k}^{2m}=\frac{F_{2n+1}}{5^m}\sum\limits_{r=0}^{m-1}L_{2n+1}^{2r+1}\sum\limits_{j=0}^{m-r-1}
\left(^{2m}_{ \ j}\right)\left(^{\
m-j+r}_{m-j-r-1}\right)\frac{(-1)^j}{F_{2m-2j}}+
\frac{(-1)^m}{5^m}\left(^{2m}_{\
m}\right)\left(n+\frac{1}{2}\right).
\end{eqnarray*}
$ |
For the sum of powers of Lucas numbers, Prodinger [4] also obtained similar conclusions:
$\begin{eqnarray*}
\sum\limits_{k=0}^nL_{2k}^{2m+1}=\sum\limits_{r=0}^{m}L_{2n+1}^{2r+1}\sum\limits_{j=0}^{m-r}
\left(^{2m+1}_{\ \
j}\right)\left(^{m-j+r}_{m-j-r}\right)\frac{2m+1-2j}{2r+1}\frac{1}{L_{2m+1-2j}}+
4^m
\end{eqnarray*}
$ |
and
$
\begin{eqnarray*}
\sum\limits_{k=0}^nL_{2k+1}^{2m+1}&=&\sum\limits_{r=0}^{m}L_{2(n+1)}^{2r+1}\sum\limits_{j=0}^{m-r}
\left(^{2m+1}_{ \ \
j}\right)\left(^{m-j+r}_{m-j-r}\right)\frac{2m+1-2j}{2r+1}\frac{(-1)^{m-r}}{L_{2m+1-2j}}\\
&& - \sum\limits_{j=0}^{m}\left(^{2m+1}_{ \ \
j}\right)(-1)^j\frac{2}{L_{2m+1-2j}}.
\end{eqnarray*}
$ |
The main purpose of this paper is using the combination method to solve Conjecture 1.2 completely, and prove the following:
Theorem 1.3 Let $m\geq 0$ be an integer. Then the sum
$
\begin{eqnarray*}
L_1L_3L_5\cdots L_{2m+1}\sum\limits_{k=1}^nL_{2k}^{2m+1}
\end{eqnarray*}
$ |
can be expressed as $\left(L_{2n+1}-1\right) Q_{2m}\left(L_{2n+1}\right)$, where $Q_{2m}(x)$ is a polynomial of degree $2m$ with integer coefficients.
2 Several Lemmas
In this section, we shall give several simple lemmas which are necessary in the proof of our theorem. First we have the following:
Lemma 2.1 For any nonnegative integers $m$ and $n$, we have
$
\begin{eqnarray*}
\sum\limits_{k=1}^mT_{2k}^{2n}(x)=
m\frac{(2n)!}{4^n(n!)^2}+\frac{1}{4^n}\sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\frac{U_{4rm+2r-1}(x)-U_{2r-1}(x) }{U_{2r-1}(x)}
\end{eqnarray*}
$ |
and
$
\begin{eqnarray*}
\sum\limits_{k=0}^mT_{2k+1}^{2n}(x)=(m+1)\frac{(2n)!}{4^n(n!)^2}+
\frac{1}{4^n}\sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\frac{U_{4r(m+1)-1}(x)}{U_{2r-1}(x)}.
\end{eqnarray*}
$ |
Proof First we give a simple proof for (1.1) and (1.2). In fact, for any positive integer $n$ and real number $x\neq 0$, by using the familiar binomial expansion
$\begin{eqnarray*}
\left(x+\frac{1}{x}\right)^{n}= \sum\limits_{r=0}^n
\left(^n_r\right)x^{n-2r}, \end{eqnarray*}
$ |
we get
$\begin{eqnarray*}
\left(x+\frac{1}{x}\right)^{2n}= \frac{(2n)!}{(n!)^2} +
\sum\limits_{r=1}^{n} \left(^{\ 2n}_{n-r}\right)\left(x^{2r}
+\frac{1}{x^{2r}}\right)\end{eqnarray*}
$ |
(2.1) |
and
$\begin{eqnarray*}
\left(x+\frac{1}{x}\right)^{2n+1}=\sum\limits_{r=0}^{n}\left(^{ 2n+1}_{\
n-r}\right)\left(x^{2r+1}+ \frac{1}{x^{2r+1}}\right).\end{eqnarray*}
$ |
(2.2) |
From the properties of the Chebyshef polynomials we know that for any integer $n$,
$
T_n\left(\frac{1}{2}\left(x+ \frac{1}{x}\right)\right)=
\frac{1}{2}\left(x^{n}+\frac{1}{x^n}\right).
$ |
(2.3) |
Now substituting $\displaystyle\frac{1}{2}\left(x+\frac{1}{x}\right)$ by $y$ in (2.1) and (2.2), and combining (2.3) we may immediately deduce the identities
$\begin{eqnarray*}
y^{2n}= \frac{(2n)!}{4^n(n!)^2}T_0(y)+
\frac{2}{4^n}\sum\limits_{r=1}^{n}\left(^{\ 2n}_{n-r}\right)T_{2r}(y)\end{eqnarray*}
$ |
and
$\begin{eqnarray*}
y^{2n+1}= \frac{1}{4^n}\sum\limits_{r=0}^{n}\left(^{ 2n+1}_{\
n-r}\right)T_{2r+1}(y).\end{eqnarray*}
$ |
This proves formulas (1.1) and (1.2).
Let $x=\left(y +\sqrt{y^2-1}\right)^k$ be in (2.1) and (2.2), and hence $\displaystyle\frac{1}{x}= \left(y-\sqrt{y^2-1}\right)^k$, $T_n(T_m(y))= T_{mn}(y)$. Then we have
$
\begin{eqnarray*}
T_{k}^{2n}(y)= \frac{(2n)!}{4^n(n!)^2}+
\frac{2}{4^n}\sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)T_{2rk}(y)\end{eqnarray*}
$ |
(2.4) |
and
$\begin{eqnarray*}
T_{k}^{2n+1}(y)= \frac{1}{4^n}\sum\limits_{r=0}^{n}\left(^{ 2n+1}_{\
n-r}\right)T_{k(2r+1)}(y).\end{eqnarray*}
$ |
(2.5) |
Now we prove Lemma 2.1. Let $\alpha=x+ \sqrt{x^2-1} $, $\beta=x- \sqrt{x^2-1}$. Then from (2.4) and note that $\alpha \cdot \beta=1$ we may get
$
\begin{eqnarray*}
&&\sum\limits_{k=1}^m T_{2k}^{2n}(x)= m\frac{(2n)!}{4^n(n!)^2}+
\frac{2}{4^n}\sum\limits_{r=1}^{n}\left(^{\ 2n}_{n-r}\right)\sum\limits_{k=1}^mT_{4rk}(x)\nonumber\\
&=&m\frac{(2n)!}{4^n(n!)^2}+ \frac{1}{4^n}\sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\sum\limits_{k=1}^m\left(\alpha^{4rk}+
\beta^{4rk}\right)\nonumber\\
&=& m\frac{(2n)!}{4^n(n!)^2}+ \frac{1}{4^n}\sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\left(\frac{\alpha^{4r}(\alpha^{4rm}-1)}{\alpha^{4r}-1}+
\frac{\beta^{4r}(\beta^{4rm}-1)}{\beta^{4r}-1}\right)\nonumber\\
&=&m\frac{(2n)!}{4^n(n!)^2}+ \frac{1}{4^n}\sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\frac{\alpha^{4r}+\beta^{4r}+
\alpha^{4rm}-\alpha^{4r(m+1)}+ \beta^{4rm}-\beta^{4r(m+1)}-2
}{2-\alpha^{4r}-\beta^{4r}}\nonumber\\
&=&m\frac{(2n)!}{4^n(n!)^2}+\frac{1}{4^n} \sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\frac{\left(\alpha^{4rm+2r}-\beta^{4rm+2r}\right)\left(\alpha^{2r}-\beta^{2r}\right)-\left(\alpha^{2r}-\beta^{2r}\right)^2
}{\left(\alpha^{2r}-\beta^{2r}\right)^2}
\nonumber\\
&=&m\frac{(2n)!}{4^n(n!)^2}+\frac{1}{4^n} \sum\limits_{r=1}^{n}\left(^{\
2n}_{n-r}\right)\frac{U_{4rm+2r-1}(x) - U_{2r-1}(x)}{U_{2r-1}(x)}.
\end{eqnarray*}
$ |
This proves the first formula of Lemma 2.1. Similarly, we can deduce the second one.
Lemma 2.2 For any nonnegative integers $m$ and $n$, we have
$
\begin{eqnarray*}
\sum\limits_{k=1}^mT_{2k}^{2n+1}(x)=\frac{1}{2}\sum\limits_{r=0}^{n}\frac{\left(^{
2n+1}_{\ n-r}\right)}{4^n} \frac{U_{4mr+2r+2m}(x)-
U_{2r}(x)}{U_{2r}(x) }
\end{eqnarray*}
$ |
and
$
\begin{eqnarray*}
\sum\limits_{k=0}^mT_{2k+1}^{2n+1}(x)=\frac{1}{2\cdot
4^n}\sum\limits_{r=0}^{n}\left(^{ 2n+1}_{\ n-r}\right)
\frac{U_{4mr+4r+2m+1}(x)}{U_{2r}(x) }.
\end{eqnarray*}
$ |
Proof From (2.5) we have
$
\begin{eqnarray*}
&&\sum\limits_{k=1}^m T_{2k}^{2n+1}(x)=
\frac{1}{4^n}\sum\limits_{r=0}^{n}\left(^{ 2n+1}_{\
n-r}\right)\sum\limits_{k=1}^m
T_{2k(2r+1)}(x)\nonumber\\
&=&\sum\limits_{r=0}^{n}\frac{\left(^{ 2n+1}_{\ n-r}\right)}{4^n}
\sum\limits_{k=1}^m\frac{1}{2}\left(\alpha^{2k(2r+1)} +
\beta^{2k(2r+1)}\right)\nonumber\\
&=&\frac{1}{2}\sum\limits_{r=0}^{n}\frac{\left(^{ 2n+1}_{\
n-r}\right)}{4^n}
\left(\frac{\alpha^{2(2r+1)}(\alpha^{2m(2r+1)}-1)}{\alpha^{2(2r+1)}-1}
+
\frac{\beta^{2(2r+1)}(\beta^{2m(2r+1)}-1)}{\beta^{2(2r+1)}-1}\right)\nonumber\\
&=&\frac{1}{2}\sum\limits_{r=0}^{n}\frac{\left(^{ 2n+1}_{\
n-r}\right)}{4^n} \left( \frac{\alpha^{(2m+1)(2r+1)}- \beta^{(2m+1)(2r+1)} -\alpha^{2r+1} + \beta^{2r+1}}{\alpha^{2r+1}-\beta^{2r+1} }\right)\nonumber\\
&=&\frac{1}{2}\sum\limits_{r=0}^{n}\frac{\left(^{ 2n+1}_{\
n-r}\right)}{4^n} \frac{U_{4mr+2r+2m}(x)- U_{2r}(x)}{U_{2r}(x) },
\end{eqnarray*}
$ |
where we have used the identity $\alpha \cdot \beta=1$. This proves the first formula of Lemma 2.2. Similarly, we can deduce the second formula of Lemma 2.2.
Lemma 2.3 For any positive integers $m$ and $n$, we have
$
\begin{eqnarray*}
\sum\limits_{r=1}^nL_{2r}^{2m+1}=\sum\limits_{k=0}^{m}\left(^{\ 2m+1}_{\
m-k}\right)\frac{L_{(2n+1)(2k+1)}-L_{2k+1} }{L_{2k+1}}.
\end{eqnarray*}
$ |
Proof Note that $\displaystyle T_{2k}\left(\frac{\sqrt{5}}{2}\right)= \frac{1}{2}L_{2k}$ and $\displaystyle U_{2r}\left(\frac{\sqrt{5}}{2}\right)= L_{2r+1}$, the Lucas number. From the first formula of Lemma 2.2 we may immediately deduce that
$
\begin{eqnarray*}
\sum\limits_{r=1}^nL_{2r}^{2m+1}=\sum\limits_{k=0}^{m}\left(^{\ 2m+1}_{\
m-k}\right)\frac{L_{(2n+1)(2k+1)}-L_{2k+1} }{L_{2k+1}}.
\end{eqnarray*}
$ |
This proves Lemma 2.3.
3 Proof of Theorem
Now we use Lemma 2.3 to prove Theorem 1.3. For any integer $k\geq 0$, applying mathematical induction we can prove that $L_{2n+1}-1$ divide $L_{(2n+1)(2k+1)} - L_{2k+1}$. In fact note that $L_1 = 1$, so $\left(L_{(2n+1)}-1\right)| \left(L_{(2n+1)(2k+1)} - L_{2k+1}\right)$ holds for $k=0$. If $k=1$, then note that $L^3_{2n+1}= L_{3(2n+1)}- 3L_{2n+1}$ (This identity can be deduced directly from the Binet formula) and $L_3=4$, we have
$
L_{3(2n+1)}- L_3= L^3_{2n+1}+ 3L_{2n+1}-4=
\left(L_{2n+1}-1\right)\left(L^2_{2n+1} + L_{2n+1} +4\right) .
$ |
So that $\left(L_{(2n+1)}-1\right)$ divide $\left(L_{3(2n+1)} - L_{3}\right)$. Suppose that
$
\left(L_{(2n+1)}-1\right)|
\left(L_{(2n+1)(2k+1)} - L_{2k+1}\right)
$ |
for all integers $k\leq m$. Then for $k = m+1$, note that
$
L_{2(2n+1)} L_{(2n+1)(2m+1)}=
L_{(2n+1)(2m+3)}+ L_{(2n+1)(2m-1)},
$ |
we have
$
\begin{eqnarray}
&&L_{(2n+1)(2m+3)} - L_{2m+3}= L_{2(2n+1)} L_{(2n+1)(2m+1)}-
L_{(2n+1)(2m-1)}-L_{2m+3}\nonumber\\
&=&\left(L_{2n+1}^2+2\right) L_{(2n+1)(2m+1)}-
\left(L_{(2n+1)(2m-1)}-
L_{2m-1}\right)-3L_{2m}-3L_{2m-1}\nonumber\\
&=&\left(L_{2n+1}^2-1\right) L_{(2n+1)(2m+1)}+3\left(
L_{(2n+1)(2m+1)}-L_{2m+1}\right)\nonumber\\
&&- \left(L_{(2n+1)(2m-1)}- L_{2m-1}\right).\end{eqnarray}
$ |
(3.1) |
Now our conclusion follows from (3.1) and the inductive hypothesis.
On the other hand, note that
$
\begin{eqnarray}L_{(2n+1)(2m+3)}& =&
L_{2(2n+1)}L_{(2n+1)(2m+1)}- L_{(2n+1)(2m-1)}\nonumber\\
&=&(L_{2n+1}^2+2) L_{(2n+1)(2m+1)}-L_{(2n+1)(2m-1)}, \end{eqnarray}
$ |
(3.2) |
so by mathematical induction we can also prove that
$
L_{(2n+1)(2m+1)}- L_{2m+1}=f_{2m+1}\left(L_{2n+1}\right),
$ |
where $f_{2m+1}(x)$ is a polynomial of degree $2m+1$ with integer coefficients. In fact if $m=0$, then $L_{(2n+1)(2m+1)}- L_{2m+1}=L_{(2n+1)}-L_1= f_{1}\left(L_{2n+1}\right)$, where $f_{1}(x)$ is a polynomial of degree $1$ with integer coefficients. Suppose that $L_{(2n+1)(2k+1)}- L_{2k+1}=f_{2k+1}\left(L_{2n+1}\right)$ for all integers $k\leq m$. Then for $k=m+1$, note that (3.2), we have
$
\begin{eqnarray*}&&L_{(2n+1)(2m+3)}- L_{2m+3} =(L_{2n+1}^2+2) L_{(2n+1)(2m+1)}-
L_{2m+3}-L_{(2n+1)(2m-1)}\\
& =&(L_{2n+1}^2+2)\left(f_{2m+1}(L_{2n+1})+ L_{2m+1}\right)-
L_{2m+3}-L_{(2n+1)(2m-1)} =f_{2m+3}(L_{2n+1}), \end{eqnarray*}
$ |
where $f_{2m+3}(x)$ is a polynomial of degree $2m+3$ with integer coefficients. This proves $L_{(2n+1)(2m+1)}- L_{2m+1}=f_{2m+1}\left(L_{2n+1}\right)$ for all integers $m\geq 0$.
Combining Lemma 2.3, $\left(L_{2n+1}-1\right)$ divide $\left(L_{(2n+1)(2k+1)} - L_{2k+1}\right)=f_{2k+1}\left(L_{2n+1}\right) $ and $\left(L_{2n+1}-1, \ L_{2n+1}\right)=1$, we may immediately deduce that
$
\begin{eqnarray*}
&& L_1L_3L_5\cdots L_{2m+1}\sum\limits_{k=1}^nL_{2k}^{2m+1}\\
&=& L_1L_3L_5\cdots L_{2m+1}\left(\sum\limits_{k=0}^{m}\left(^{\
2m+1}_{\ m-k}\right)\frac{L_{(2n+1)(2k+1)}-L_{2k+1} }{L_{2k+1}} \right)\\
&=& \left(L_{2n+1}-1\right) Q_{2m}\left(L_{2n+1}\right),
\end{eqnarray*}
$ |
where $Q_{2m}(x)$ is a polynomial of degree $2m$ with integer coefficients. This completes the proof of our theorem.