数学杂志  2014, Vol. 34 Issue (3): 406-416   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
SHI Zhong-rui
ZHANG Bo
THE NONSQUARE POINT OF GENERALIZED ORLICZ SEQUENCE SPACES WITH LUXEMBURG NORM
SHI Zhong-rui, ZHANG Bo    
Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract: In this article, we investigate the (J) nonsquare point of generalized Orlicz sequence spaces. Analysing and combining the structures of the classical Orlicz spaces and the generalized ones, we get sufficient and necessary conditions of this property by the generating function, which not only generalizes the results of the classical Orlicz sequence spaces but also is easy to use.
Key words: generalized Orlicz sequence spaces     Luxemburg norm     (J) nonsquare point    
关于赋Luxemburg范数广义Orlicz序列空间的 (J) 非方点
石忠锐, 张博    
上海大学数学系, 上海 200444
摘要:本文研究了赋Luxemburg范数广义Orlicz序列空间的 (J) 非方点.通过分析、综合经典Orlicz空间与广义Orlicz空间的结构, 给出了用生成函数表达该性质的充分必要条件.该结果不仅推广了经典空间的结果, 也是十分好用的.
关键词广义Orlicz序列空间    Luxemburg范数    (J) 非方点    
1 Introduction

James [1] introduced conception of (J) nonsquareness of linear normed spaces in 1964. Later, Schäffer [2] introduced conception of (S) nonsquareness of linear normed spaces. Then Chen [3] proved that the two conceptions of nonsquareness were equivalent. However, Wang and Shi [4] introduced (J) nonsquare point and (S) nonquare point and proved that they are not same. First, as an important property of linear normed spaces, the nonsquareness has a close relation with flatness, rotundity and basis. Second, it is "uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings" [5] that makes it play an important role in the application of approximation theory. On one hand, the nonsquare point is a meticulous depiction of nonsquareness. On the other hand, the nonsquare point is a powerful tool to study nonsquareness. So the research of nonsquare point of Banach space is very important. Because of the complication of generalized Orlicz sequence spaces, the discussion of nonsquare point has not be seen. In this article, we discuss the properties of generalized Orlicz sequence spaces and get the sufficient and necessary criterion of (J) nonsquare point as well.

In the sequel, let $\mathbb{N}$ be the set of all natural numbers, Card$I=$ Cardinal $I$ where $I$ is a subset of $\mathbb{N}$.

2 Some Lemmas

Definition 2.1 Let $M$ be an Orlicz function, that is to say $M:(-\infty,+\infty)\rightarrow [0,+\infty]$ $(M$ may reach the value of $+\infty)$ is convex, even, left-continued on $[0,+\infty)$ and $M(0)=0.$ For $u=\{u(i)\}_{i=1}^{\infty }$ is a sequence of real numbers, denote

${\rho _M}(u) = \sum\limits_{i = 1}^\infty M (u(i)), \widetilde{l_{M}}=\{u:\exists \lambda>0,\ \rho_{M}(\lambda u)<{+\infty}\}.$

Then we can prove that $\widetilde{l_{M}}$ is a linear set. Define the function

$\left\Vert u\right\Vert _{(M)}=\inf \{\lambda>0 :\rho _{M}(\frac{u}{\lambda })\leq 1\}$

on $\widetilde{l_{M}}$, then $\{{\widetilde{l_{M}},\ \left\Vert\cdot\right\Vert_{(M)}}\}$ is called generalized Orlicz sequence space. Denote

$ \alpha=\sup \left\{u\geq 0:M(u)=0 \right\} ,\ \beta=\sup \{u\geq 0:M(u)<+\infty\}.$

Remark 1$\forall 0<u_1<u_2$, since $M(u_1)=M(\frac{u_1}{u_2}u_2)\leq\frac{u_1}{u_2}M(u_2)\leq M(u_2)$, this yields that $M$ is non-decreasing on $[0,+\infty)$. Thus $\underset{u\rightarrow\infty}{\lim}M(u)$ exists $($may be $+\infty)$. Denote $M(\infty)=\underset{u\rightarrow\infty}{\lim}M(u)$.

Remark 2$\alpha=\beta=0$ $\Longleftrightarrow$ $ M(u) = \left\{ \begin{array}{ll} 0, u=0,\\ +\infty, u\neq 0. \end{array} \right. $ In fact, $\forall u>0$, $M(u)=+\infty$, we have $\beta=0$, thus $\alpha=\beta=0$. Conversely, when $\alpha=\beta=0$, $\forall u>0$, $M(u)=+\infty$. Since $M$ is even, then $\forall u\neq 0, M(u)=+\infty$, combining with $M(0)=0$, we get

$M(u) = \left\{ \begin{array}{l} 0,u = 0,\\ \infty ,u \ne 0, \end{array} \right.$

meantime, $\widetilde{{l_M}}=\{0\}$.

Remark 3$\alpha=\beta=+\infty\Longleftrightarrow M(u)\equiv 0$. In fact, $\forall u>0$, $M(u)=0$, we have $\alpha=+\infty$, thus $\alpha=\beta=+\infty$. Conversely, when $\alpha=\beta=+\infty$, $\forall u\geq 0$, $M(u)=0$. Noticing that $M$ is even, we get $M(u)\equiv 0$. In this case, $\widetilde{l_{M}}=s$ $($ the set of all sequence of real number$)$. Moreover $\forall u\in \widetilde{l_{M}}$, we have $\left\Vert u\right\Vert_{(M)}=0$, so $\left\Vert \cdot \right\Vert_{(M)}$ could not be a norm.

Summarily in the following we always assume: $\exists u_1>0, u_2>0$, s.t. $M(u_{1})>0, M(u_2)<\infty$. Then we can prove that $\{{\widetilde{l_{M}},\ \left\Vert\cdot\right\Vert_{(M)}}\}$ forms a Banach space, denoted by $l_{(M)}$ and $\left\Vert\cdot\right\Vert_{(M)}$ is called Luxemburg norm.

Definition 2.2 [1] Let $X$ be a norm linear space, $S(X)$ be the unit sphere. $x\in S(X)$ is called a (J) nonsquare point if $\forall y\in S(X), \min \{\left\Vert x+y\right\Vert ,\left\Vert x-y\right\Vert \}<2$.

Lemma 2.3 [6] $\forall s\in R$, $M(\frac{s}{2})=\frac{1}{2}M(s)\Leftrightarrow \forall \lambda\in (0,1), M(\lambda s)=\lambda M(s) $.

Proof See [6].

Denote $s_l=\sup\{s<\beta:M(\frac{s}{2})=\frac{1}{2}M(s)\}$.

Lemma 2.4 If $u\in S(l_{(M)})$ is a (J) nonsquare point, then

(a) Card$I_{\beta}(u)\leq 1$;

(b) $\exists \lambda_0>1, \underset{i\notin I_{\beta}(u)}{\sum \limits}M(\lambda_0 u(i))<\infty, $

where$\ \ I_{r}(u)=\{i\in \mathbb{N}: \left\vert u(i)\right\vert=r\}$.

Proof First, we will prove (a) is correct. Otherwise, assume Card$I_{\beta}(u)>1$, then $\exists i_1,i_2\in\mathbb{N} \ {\rm s.t.} \left\vert u(i_1)\right\vert=\left\vert u(i_2)\right\vert=\beta$.

Let

$v(i) = \left\{ {\begin{array}{*{20}{l}} {u({i_1}),i = {i_1},}\\ { - u({i_2}),i = {i_2},}\\ {u(i),{\rm{otherwise}}.} \end{array}} \right.$

Then $\left\Vert v\right\Vert_{(M)}=\left\Vert u\right\Vert_{(M)}=1.$ Since $\forall\lambda >1,\rho_M(\lambda\frac {u\pm v}{2})\geq M(\lambda \beta)=\infty(\beta>0).$ Therefore, $ \left\Vert \frac {u\pm v}{2}\right\Vert_{(M)}\geq \frac{1}{\lambda}$. Hence, $ \left\Vert \frac {u\pm v}{2}\right\Vert_{(M)}\geq 1$. Considering that $ \left\Vert \frac{u\pm v}{2}\right\Vert_{(M)}\leq 1$, we deduce$ \left\Vert \frac{u\pm v}{2}\right\Vert_{(M)}= 1$, which contradicts the fact that $u$ is a (J) nonsquare point.

Second, we are going to prove (b) is correct.

(b)1 Assume Card$I_{\beta}(u)=1$ ($\exists 1\left\vert u(i)\right\vert =\beta$) and $\forall \lambda >1, \underset {j\neq i}{\sum \limits}M(\lambda u(j))=\infty$. Set

$v(j) = \left\{ \begin{array}{ll} u(i), \textrm{j=i}, \\ -u(j), {\rm{j}} \ne {\rm{i}}. \end{array} \right.$

Then $\left\Vert v\right\Vert_{(M)}=\left\Vert u\right\Vert_{(M)}=1.$ Since $\forall \lambda >1, \rho_M(\lambda \frac{u+v}{2})=M(\lambda u(i))=M(\lambda \beta)=\infty(\beta>0).$

Thus $ \left\Vert \frac {u+v}{2}\right\Vert_{(M)}\geq 1$. Considering that $ \left\Vert \frac{u+v}{2}\right\Vert_{(M)}\leq 1$, we deduce $ \left\Vert \frac{u+v}{2}\right\Vert_{(M)}= 1$.

Since $\forall \lambda >1, \rho_M(\lambda \frac{u-v}{2})=\underset{j\neq i}{\sum \limits}M(\lambda u(j))=\infty.$ Then $ \left\Vert \frac {u-v}{2}\right\Vert_{(M)}\geq 1$. Considering that $ \left\Vert \frac{u-v}{2}\right\Vert_{(M)}\leq 1$, we have $\left\Vert \frac {u-v}{2}\right\Vert_{(M)}= 1$. So $\left\Vert \frac {u\pm v}{2}\right\Vert_{(M)}= 1$, which contradicts the fact that $u$ is a (J) nonsquare point.

(b)2 Assume Card$I_{\beta}(u)=0$ (i.e., $\forall i\in\mathbb{N}$, $\left\vert u(i)\right\vert<\beta$) and $\forall\lambda >1, \rho_M(\lambda u)=\infty$.

In case of $\beta>\alpha$, we claim that $\exists\lambda_0>1\ {\rm s.t.}\ $ $\forall i, \left\vert\lambda_0u(i)\right\vert<\beta$.

In fact, if $\beta=\infty$, since $\forall i\in\mathbb{N}$, $\left\vert u(i)\right\vert<\infty$, then $\left\vert\lambda_0u(i)\right\vert<\infty=\beta$.

If $\beta<\infty$, assume $\forall\lambda>1, \exists i\in\mathbb{N}$$ \ {\rm s.t.} \ \left\vert \lambda u(i)\right\vert\geq\beta$.

For $\lambda_1=1+1, \exists i_1 \ {\rm s.t.} \ \left\vert \lambda_1 u(i_1)\right\vert\geq\beta$. By $I_{\beta}(u)=0$, $\exists 1<\lambda_1^\prime<\lambda_1 \ {\rm s.t.} \ $ $\forall i\leq i_1, \left\vert \lambda_1^\prime u(i)\right\vert<\beta$.

For $\lambda_2=\min\{1+\frac{1}{2}, \lambda_1^\prime \}, \exists i_2>i_1 \ {\rm s.t.} \ \left\vert \lambda_2 u(i_2)\right\vert\geq\beta$. By $I_{\beta}(u)=0$, $\exists 1<\lambda_2^\prime<\lambda_2 \ {\rm s.t.} \ \forall i\leq i_2, \left\vert \lambda_2^\prime u(i)\right\vert<\beta. $

Continuing this process in such a way, we get a sequence $\lambda_n\searrow 1, i_n\nearrow\infty \ {\rm s.t.} \ \left\vert \lambda_n u(i_n)\right\vert\geq\beta$. Then $\forall\lambda>1, \exists n_0 \ {\rm s.t.} \ \lambda>\lambda_{n_0}, \left\vert u(i_n)\right\vert\geq\frac{\beta}{\lambda_n}>\frac{\beta}{\lambda}, \text{while}\ \ n\geq n_0.$

Set $\varepsilon=\frac{\beta-\alpha}{2}, \eta=\frac{\beta}{\beta-\varepsilon},$ then $\eta>1$. So $\left\vert u(i_n)\right\vert>\frac{\beta}{\eta}=\beta-\varepsilon=\frac{\alpha+\beta}{2}>\alpha$, while $n\geq n_0$.

Therefore, $\rho_{M}(u)\geq \mathop {\mathop \sum \limits_{n = 1} }\limits^\infty M(u(i_{n})) \geq \mathop {\mathop \sum \limits_{n = {n_0}} }\limits^\infty M(u(i_{n})) \geq \mathop {\mathop \sum \limits_{n = {n_0}} }\limits^\infty M(\beta -\varepsilon )=\infty,$ a contradiction to $\rho_M(u)\leq 1$.

Take $\lambda_n\searrow 1,\lambda_1<\lambda_0$. Since $\rho_M(\lambda_1u)=\infty,$ then $\exists i_1>0\ {\rm s.t.} \ 1\leq\underset {i\leq i_1}{\sum \limits}M(\lambda_1u(i))<\infty, \underset {i> i_1}{\sum \limits}M(\lambda_1u(i))=\infty.$ Analogously, $\exists i_1^\prime>i_1\ {\rm s.t.}\ 1\leq\underset {i_1< i\leq i_1^\prime}{\sum \limits}M(\lambda_1u(i))<\infty.$ Since $\rho_M(\lambda_2 u)=\infty, \underset {i\leq i_1^\prime}{\sum \limits}M(\lambda_2u(i))<\infty,$ thus $\underset {i> i_1^\prime}{\sum \limits}M(\lambda_2u(i))=\infty.$ Then $\exists i_2>i_1^\prime\ {\rm s.t.}\ 1\leq\underset {i_1^\prime < i\leq i_2}{\sum \limits}M(\lambda_2u(i))<\infty, \underset {i> i_2}{\sum \limits}M(\lambda_2u(i))=\infty.$ Analogously, $\exists i_2^\prime>i_2\ {\rm s.t.} \ 1\leq\underset {i_2<i\leq i_2^\prime}{\sum \limits}M(\lambda_2u(i))<\infty.$ Continuing this process in such a way, we get a sequence $i_1<i_1^\prime<i_2<i_2^\prime<\cdots$ s.t.$1\leq\underset {i_{n-1}^\prime< i\leq i_n}{\sum \limits}M(\lambda_nu(i))<\infty, 1\leq\underset {i_n< i\leq i_n^\prime}{\sum \limits}M(\lambda_nu(i))<\infty, n=1,2,\cdots, \ \textrm{where} i_0^\prime=0.$ Set

$ v(i)=\left\{\begin{array}{ll} u(i),i_{n-1}^\prime< i\leq i_n,n=1,2,\cdots ,\\ 0, \textrm{otherwise}, \end{array}\right. \\ w(i)=\left\{\begin{array}{ll} u(i),i_{n}< i\leq i_n^\prime,n=1,2,\cdots, \\ 0, \textrm{otherwise}. \end{array}\right. $

Then $v+w=u$, $vw=0$, $\rho_M(v)\leq\rho_M(u)\leq 1$, $\rho_M(w)\leq\rho_M(u)\leq 1$. Hence $\left\Vert v\right\Vert _{(M)}\leq 1,$ $\left\Vert w\right\Vert _{(M)}\leq 1$. $\forall m\in\mathbb{N},$

$\rho _{M}(\lambda _{m}v)=\underset{n=1}{\overset{\infty }{\sum \limits}}{\underset{ i_{n-1}^\prime<i\leq i_n}{\sum \limits}}M(\lambda _{m}v(i))\geq \underset{n=m}{\overset {\infty }{\sum \limits}}\underset{i_{n-1}^\prime<i\leq i_n} {\sum \limits}M(\lambda _{n}v(i))\geq \underset{n=m}{\overset{\infty }{\sum \limits}}1=\infty .$

Therefore, $\left\Vert v\right\Vert _{(M)}\geq 1$, hence $\left\Vert v\right\Vert _{(M)}= 1$. Similarly, we get $\left\Vert w\right\Vert _{(M)}=1$.

Take $u^\prime=v-w$, then $\forall i,\left\vert u^\prime(i)\right\vert=\left\vert u(i)\right\vert$, hence $\left\Vert u^\prime\right\Vert _{(M)}=\left\Vert u\right\Vert _{(M)}=1$. Then $\left\Vert\frac {u+u^\prime}{2}\right\Vert _{(M)}=\left\Vert v\right\Vert _{(M)}=1$, $\left\Vert\frac {u-u^\prime}{2}\right\Vert _{(M)}=\left\Vert w\right\Vert _{(M)}=1$, which contradicts the fact that $u$ is a (J) nonsquare point.

In case of $0<\beta=\alpha<+\infty$, firstly, we claim that $\forall \lambda >1,\exists i\in\mathbb{N}$ s.t. $\left\vert \lambda u(i)\right\vert>\alpha=\beta$. Otherwise, assume $\exists \lambda>1\ {\rm s.t.}\ \forall i\in\mathbb{N}, \left\vert \lambda u(i)\right\vert \leq\alpha.$ Then

$\rho_M(\lambda u)=\underset{i=1}{\overset{\infty}\sum \limits}M(\lambda u(i))\leq \underset{i=1}{\overset{\infty}\sum \limits}M(\alpha)=0,$

which contradicts $\left\Vert u \right\Vert_{(M)}=1$.

Take $ \lambda_n\searrow 1$, and $\{u(i_n)\}$, a sequence of$\{u(i)\}$ s.t. $\left\vert\lambda_nu(i_n)\right\vert\geq\beta=\alpha$. Then $\left\vert u(i_n)\right\vert\geq\frac{\beta}{\lambda_n}$. Thus $\underset{n\rightarrow\infty}{\lim}\left\vert u(i_n)\right\vert=\beta$. Therefore, $\forall\lambda>1, \exists n_0 {\rm s.t.} \left\vert\lambda u(i_n)\right\vert>\beta, \ \text{for}\ \ n\geq n_0.$

Let

$v(j) = \left\{ {\begin{array}{*{20}{l}} {{{( - 1)}^n}u({i_n}),j = {i_n},n = 1,2, \cdots ,}\\ {0,{\rm{otherwise}}.} \end{array}} \right.$

Hence $\forall \lambda >1,$

$\rho _{M}(\lambda v)=\underset{n=1}{\overset{\infty }{\sum \limits}}M(\lambda u(i_{n}))\geq\underset{n=n_0}{\overset{\infty }{\sum \limits}}M(\lambda u(i_n))=\infty,\\ \rho _{M}(\lambda \frac{u-v}{2})=\underset{n=1}{\overset{\infty }{\sum \limits}}M(\lambda u(i_{2n-1}))\geq\underset{n=n_0}{\overset{\infty }{\sum \limits}}M(\lambda u(i_{2n-1}))=\infty,\\ \rho _{M}(\lambda \frac{u+v}{2})=\underset{n=1}{\overset{\infty }{\sum \limits}}M(\lambda u(i_{2n}))\geq\underset{n=n_0}{\overset{\infty }{\sum \limits}}M(\lambda u(i_{2n}))=\infty,$

then $\left\Vert v\right\Vert_{(M)}>\frac{1}{\lambda},$ $\left\Vert \frac {u-v}{2}\right\Vert_{(M)}>\frac{1}{\lambda},$ $\left\Vert \frac {u+v}{2}\right\Vert_{(M)}>\frac{1}{\lambda},$ thus $\left\Vert v\right\Vert_{(M)}=\left\Vert \frac {u-v}{2}\right\Vert_{(M)}=\left\Vert \frac {u+v}{2}\right\Vert_{(M)}=1$, which contradicts the fact that $u$ is a (J) nonsquare point.

3 Main Results

Theorem 3.1 Given $M(s_l)=0$. $u\in S(l_{(M)})$ is a (J) nonsquare point $\Longleftrightarrow$

(a) Card$I_{\beta}(u)\leq 1$;

(b) $\exists \lambda_0>1, \underset{i\notin I_{\beta}(u)}{\sum \limits}M(\lambda_0 u(i))<\infty. $

ProofNecessity By Lemma 2.4, we can obtain the conclusion immediately.

Sufficiency From $M(s_l)=0$, we have $s_l\leq \sup\{s\geq 0: M(s)=0\}=\alpha$. Noticing that $M(\frac {\alpha}{2})=\frac {1}{2}M(\alpha)=0$, we have $\alpha\leq s_l$, hence $s_l=\alpha$.

(Ⅰ) If Card$I_{\beta}(u)=1$, i.e., $\exists 1 \left\vert u(i_0)\right\vert=\beta$. From (b), we know $\exists \lambda_0 >1 \ {\rm s.t.}\ \underset {i\neq i_0}{\sum \limits}M(\lambda_0 u(i))<\infty$. $\forall \lambda_n\searrow 1$, by dominated convergence theorem, $\underset{\lambda \rightarrow 1^+}{\lim}\underset{i\neq i_0}{\sum \limits}M(\lambda u(i))=\underset{i\neq i_0}{\sum \limits}M(u(i))$.

$\forall v\in S(l_{(M)})$, in case of $u(i_0)v(i_0)\geq 0$, let $\lambda <2$. Then

$\left\vert \frac{\lambda u(i_0)-v(i_0)}{2}\right\vert\leq \max\{\left\vert \frac{\lambda u(i_0)}{2}\right\vert, \left\vert \frac{v(i_0))}{2}\right\vert\}<\beta.$

Hence $\underset{\lambda \rightarrow 1^+}{\lim}M(\frac{\lambda u(i_0)-v(i_0)}{2})=M(\frac{u(i_0)-v(i_0)}{2}).$

When $\beta >\alpha$, then $\left\vert u(i_0)\right\vert=\beta>\alpha=s_l,$ hence $M(\frac{u(i_0)}{2})<\frac{1}{2}M(u(i_0)).$ Therefore,

$ \underset{\lambda\rightarrow 1^+}{\lim}\rho_M(\frac{\lambda u-v}{2}) =\underset{\lambda\rightarrow 1^+}{\lim}M(\frac{\lambda u(i_0)-v(i_0)}{2})+\underset{\lambda\rightarrow 1^+}{\lim}\underset{i\neq i_0}{\sum \limits}M(\frac{\lambda u(i)-v(i)}{2}) \\ \leq M(\frac{ u(i_0)-v(i_0)}{2})+\underset{\lambda\rightarrow 1^+}{\lim}\underset{i\neq i_0}{\sum \limits}[\frac{1}{2}M(\lambda u(i))+\frac{1}{2}M(v(i))] \\ \leq M(\frac{u(i_0)}{2})+M(\frac{v(i_0)}{2})+\frac{1}{2}\underset{i\neq i_0}{\sum \limits}[M(u(i))+M(v(i))] \\<\frac{1}{2}M(u(i_0))+\frac{1}{2}M(v(i_0))+\frac{1}{2}\underset{i\neq i_0}{\sum \limits}[M(u(i))+M(v(i))] = \frac{1}{2}[\rho_M(u)+\rho_M(v)] \leq 1.$ (*)

Hence $\exists \lambda >1 {\rm s.t.} \rho_M(\frac{\lambda u-v}{2})<1$. Then $\left\Vert\frac{\lambda u-v}{2}\right\Vert_{(M)}\leq 1$, i.e., $\left\Vert\frac{u-\frac{v}{\lambda}}{2}\right\Vert_{(M)}\leq\frac{1}{\lambda} $. Thus

$\left\Vert\frac{u-v}{2}\right\Vert_{(M)}\leq\left\Vert\frac{u-v}{2}-\frac{u-\frac{v}{\lambda}}{2}\right\Vert_{(M)}+\left\Vert\frac{u-\frac{v}{\lambda}}{2}\right\Vert_{(M)} \leq\frac{1}{2}(1-\frac{1}{\lambda})+\frac{1}{\lambda}=\frac{1}{2}(1+\frac{1}{\lambda})<1.$

When $0<\beta=\alpha<\infty$, then $\rho_M(u)\leq 0$.

Therefore,

$ \underset{\lambda\rightarrow 1^+}{\lim}\rho_M(\frac{\lambda u-v}{2}) \\=\underset{\lambda\rightarrow 1^+}{\lim}M(\frac{\lambda u(i_0)-v(i_0)}{2})+\underset{\lambda\rightarrow 1^+}{\lim}\underset{i\neq i_0}{\sum \limits}M(\frac{\lambda u(i)-v(i)}{2}) \\\leq M(\frac{ u(i_0)-v(i_0)}{2})+\underset{\lambda\rightarrow 1^+}{\lim}\underset{i\neq i_0}{\sum \limits}[\frac{1}{2}M(\lambda u(i))+\frac{1}{2}M(v(i))] \\\leq \frac{1}{2}M(u(i_0))+\frac{1}{2}M(v(i_0))+\frac{1}{2}\underset{i\neq i_0}{\sum \limits}[M(u(i))+M(v(i))] =\frac{1}{2}[\rho_M(u)+\rho_M(v)] \leq \frac{1}{2} < 1. $

Hence $\exists \lambda >1$ s.t. $\rho_M(\frac{\lambda u-v}{2})<1$. Thus $\left\Vert\frac{u-v}{2}\right\Vert_{(M)}<1$.

In case of $u(i_0)v(i_0)< 0$, then $-u(i_0)v(i_0)> 0,$ by the above arguments,

$\left\Vert\frac{u+v}{2}\right\Vert_{(M)}=\left\Vert\frac{(-u)-v}{2}\right\Vert_{(M)}<1.$

(Ⅱ) If Card$I_{\beta}(u)=0$, from (b), we know $\exists \lambda_0 >1$ $\ {\rm s.t.}\ \rho _{M}(\lambda_0 u)<\infty $. By dominated convergence theorem

$\underset{n\rightarrow\infty}{\lim}\rho_M{(\lambda_n u)}=\underset{i=1}{\overset{\infty}{\sum \limits}}\underset{n\rightarrow\infty}{\lim}M(\lambda_n u(i))=\underset{i=1}{\overset{\infty}{\sum \limits}}M(u(i))=\rho_M(u).$

From $\left\Vert u\right\Vert_{(M)}=1$, we have $\rho_M{(\lambda_n u)}>1$, then $\rho_M{(u)}\geq 1$, considering that $\rho_M{(u)}\leq 1$, then $\rho_M(u)=1$. Hence $\exists i_0\ {\rm s.t.}\ \left\vert u(i_0)\right\vert >\alpha$, then $M(\frac{u(i_0)}{2})<\frac{1}{2}M(u(i_0)).$ From $\underset{n\rightarrow\infty}{\lim}\rho_M{(\lambda_n u)}=\rho_M(u)$, we have $\underset{\lambda\rightarrow\ 1^+}{\lim}\rho_M{(\lambda u)}=\rho_M(u)$.

If $u(i_0)v(i_0)\geq 0$, let $\lambda <2$, then

$\left\vert \frac{\lambda u(i_0)-v(i_0)}{2}\right\vert\leq \max\{\left\vert \frac{\lambda u(i_0)}{2}\right\vert, \left\vert \frac{v(i_0))}{2}\right\vert\}<\beta.$

Hence

$\underset{\lambda \rightarrow 1^+}{\lim}M(\frac{\lambda u(i_0)-v(i_0)}{2})=M(\frac{u(i_0)-v(i_0)}{2}).$

Repeating the above argument of (*), we get

$\underset{\lambda\rightarrow 1^+}{\lim}\rho_M(\frac{\lambda u-v}{2})\leq 1,$

then $\left\Vert\frac{u-v}{2}\right\Vert_{(M)}<1$.

If $u(i_0)v(i_0)< 0,$ then $-u(i_0)v(i_0)> 0,$ by the above arguments,

$\left\Vert\frac{u+v}{2}\right\Vert_{(M)}=\left\Vert\frac{(-u)-v}{2}\right\Vert_{(M)}<1.$

Combining (Ⅰ) and (Ⅱ), we get that $u$ is a (J) nonsquare point.

Theorem 3.2 Given $M(s_l)>0$. $u\in S(l_{M})$ is a (J) nonsquare point $\Longleftrightarrow$

(a) Card$I_{\beta}(u)\leq 1$;

(b) $\exists \lambda_0>1, \underset{i\notin I_{\beta}(u)}{\sum \limits}M(\lambda_0 u(i))<\infty; $

(c) (1) $\rho _{M}(u)<1$; or (2) $\exists i \ {\rm s.t.}\ \left\vert u(i)\right\vert >s_l$; or (3) $M(s_l)$Card$I_\theta(u)<1$.

Proof Since $M(s_l)>0$, we claim $\alpha=0$. In fact, if $s_l=\infty$, by the hypothesis of $M$, $\exists u_1>0\ {\rm s.t.}\ M(u_1)>0$. Then $\forall s\in (0,u_1)$, $ M(\frac{s}{u_1}u_1)=\frac{s}{u_1}M(u_1)>0$, hence $\alpha=0$. If $s_l<\infty$, since $M(s_l)>0$, then $\forall s\in (0,s_l)$, $M(s)=M({\frac{s}{s_l}}s_l)=\frac{s}{s_l}M(s_l)>0$, thus $\alpha=0$.

Necessity By Lemma 2.4, (a) and (b) certainly hold.

Assume (c) does not hold, i.e., $\rho_M(u)=1,\ \forall i,\left\vert u(i)\right\vert\leq s_l$ and $ M(s_l)$Card$I_\theta(u)\geq 1$. Hence Card$I_\theta(u)>0$. Set $ I_\theta(u)=\{i_j\}$.

In case of $M(s_l)\geq 1$, we will deduce that $\exists s_1 {\rm s.t.} M(s_1)=1$.

If $M(s_l)=+\infty$, then $s_l=\infty$. In fact, assume $s_l<\infty$. $\forall \lambda\in(0,1)$, from Lemma 2.3, we have $M(\lambda s_l)=\lambda M(s_l)=\infty$, hence $\lambda s_l\geq\beta,$ then $s_l>\beta,$ a contradiction to $s_l\leq\beta$. Hence by Remark $1$, $\exists s\in (0,\infty) \ {\rm s.t.}\ 1<M(s)<\infty$. Take $\lambda=\frac{1}{M(s)}, s_1=\lambda s$, by Lemma 2.3, we get $M(s_1)=M(\lambda s)=\lambda M(s)=1$.

If $1<M(s_l)<+\infty$, then $s_l<\infty$. In fact, assume $s_l=\infty$. From Lemma 2.3, $s_l\leq\beta$, then $\beta=\infty$, noticing that $\alpha=0$, hence $\alpha<\beta$. By Remark 1, $M(s_l)=\underset{u\rightarrow \infty}{\lim}M(u)$, then $\exists s\in (\alpha,s_l) \ {\rm s.t.}\ 1<M(s)<\infty.$ Take $n\in\mathbb{N}\ {\rm s.t.} \ n>\frac{M(s_l)}{M(s)}$, then

$M(s_l)<nM(s)=nM(\frac{1}{n}ns)=n\frac{1}{n}M(ns)=M(ns).$

Noticing that $ns<s_l$, $M$ is non-decreased, hence $M(ns)\leq M(s_l)$, a contradiction to $M(ns)> M(s_l)$. Take $\lambda=\frac{1}{M(s_l)},s_1=\lambda s_l$, from Lemma 2.3, we have

$M(s_1)=M(\lambda s_l)=\lambda M(s_l)=1.$

If $M(s_l)=1$, take $s_1=s_l$. Set

$v(i)=\left\{\begin{array}{ll} s_1, i = {i_j},j = 1, \\ 0, \textrm{otherwise}. \end{array}\right.$

Then $\rho_M(v)=M(s_1)=1$, $\forall\lambda >1, \rho_M(\lambda v)=M(\lambda s_1)>M(s_1)=1$, hence $\left\Vert v\right\Vert_{(M)}=1$. Since $\forall i, \left\vert v(i)\right\vert\leq s_l$, supp$u\bigcap$ supp$v=\emptyset$, thus $\forall \lambda \in (1,2)$,

$\rho _{M}(\lambda \frac{u\pm v}{2})=\underset{i\in\textrm{supp}u}{\sum \limits}M(\lambda \frac{u(i)}{2})+\underset{i\in\textrm{supp}v}{\sum \limits}M(\lambda \frac{v(i)}{2})= \frac{\lambda }{2}[\rho _{M}(u)+\rho _{M}(v)]=\lambda >1,$

then $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}\geq\frac{1}{\lambda}$, therefore, $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}\geq 1$, noticing that $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}\leq 1$, we deduce that $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}=1$, which contradicts the fact that $u$ is a (J) nonsquare point.

In case of $M(s_l)<1$, let $k=[\frac{1}{M(s_l)}]+1$, then $(k-1)M(s_l)\leq 1< kM(s_l)$.

(Ⅰ) If $(k-1)M(s_l)=1$, then Card$I_\theta(u)\geq\frac{1}{M(s_l)}=k-1$. Set

$v(i) = \left\{ {\begin{array}{*{20}{l}} {{s_l},i = {i_j},j = 1,2, \cdots ,k - 1,}\\ {0,{\rm{otherwise}}.} \end{array}} \right.$

Then $\rho_M(v)=(k-1)M(s_l)=1$,

$\forall\lambda >1, \rho_M(\lambda v)=(k-1)M(\lambda s_l)>(k-1)M(s_l)=1,$

hence $\left\Vert v\right\Vert_{(M)}=1$, since $\forall i, \left\vert v(i)\right\vert\leq s_l$, supp$v\in I_{\theta }(u)$. Repeating the above arguments, we get $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}=1$, which contradicts the fact that $u$ is a (J) nonsquare point.

(Ⅱ) If $(k-1)M(s_l)<1$, by the continuity of $M$ on $[0,s_l]$, $\exists s_1\in(0, s_l)\ {\rm s.t.}\ (k-1)M(s_l)+M(s_1)=1$. Then Card$ I_\theta(u)\geq\frac{1}{M(s_l)}>k-1$, hence Card$I_\theta(u)\geq k$. Set

$v(i) = \left\{ {\begin{array}{*{20}{l}} {{s_l},i = {i_j},j = 1,2, \cdots ,k - 1,}\\ {{s_1},i = {i_k},}\\ {0,{\rm{otherwise}}.} \end{array}} \right.$

Then $\rho_M( v)=kM(s_l)+M( s_1)=1$, $\forall \lambda >1,$

$ \rho_M(\lambda v)=kM(\lambda s_l)+M(\lambda s_1)>kM(s_l)+M(s_1)=1.$

Thus $\left\Vert v\right\Vert_{(M)}=1$, and supp$v\subset I_\theta(u)$, $\forall i,\left\vert v(i)\right\vert\leq s_l$. Repeating the above arguments, we get $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}=1$, which contradicts the fact that $u$ is a (J) nonsquare point.

Sufficiency$\forall v\in S(l_{(M)})$.

(Ⅰ) If supp$u\cap $supp$v\neq \emptyset $, take $i_{0}\in $supp$u\cap $supp$v$. From $\rho _{M}(\frac{u\pm v}{2})\leq 1$, we have

$\underset{i\rightarrow\infty }{\lim }M(\frac{u(i)\pm v(i)}{2})=0.$

Noticing that $\alpha=0$, then $\underset{i\rightarrow\infty }{\lim }\frac{u(i)\pm v(i)}{2}=0$. From $M(s_l)>0$, we get $s_l>0$, hence $\exists i^{\prime }>i_{0}$ s.t. $\left\vert {\frac{u(i)\pm v(i)}{2}}\right\vert <s_l, \forall i\geq i^{\prime }$. Then $\forall 1<\lambda<2$, $\left\vert\lambda\frac{u(i)\pm v(i)}{2}\right\vert<s_l$, when $ i\geq i^\prime.$ Therefore,

$M(\lambda\frac{u(i)\pm v(i)}{2})=\lambda\frac{1}{\lambda}M(\lambda\frac{u(i)\pm v(i)}{2})=\lambda M(\frac{1}{\lambda}\lambda\frac{u(i)\pm v(i)}{2}) =\lambda M(\frac{u(i)\pm v(i)}{2}).$

In case of $u(i_{0})v(i_{0})>0$.

(ⅰ) If Card$I_\beta(u)=0$, then $\forall i,\left\vert u(i)\right\vert <\beta$. Therefore,

$\forall i, \left\vert \frac{u(i)-v(i)}{2}\right\vert\leq\left\vert \frac{u(i)}{2}\right\vert+\left\vert \frac{v(i)}{2}\right\vert<\frac{1}{2}\beta+\frac{1}{2}\beta=\beta(\beta>0) .$

Then

$\underset{\lambda\rightarrow 1^{+}}{\lim }\rho _{M}(\lambda \frac{u-v}{2}) =\underset{\lambda\rightarrow 1^{+}}{\lim }\underset{i< i^{\prime }}{\sum \limits} M(\lambda \frac{u(i)-v(i)}{2})+\underset{\lambda\rightarrow 1^{+}}{\lim }\underset{ i\geq i^{\prime }}{\sum \limits}M(\lambda \frac{u(i)-v(i)}{2}) \\=\underset{i< i^{\prime },i\neq i_{0}}{\sum \limits} M( \frac{u(i)-v(i)}{2})+M( \frac{u(i_{0})-v(i_{0})}{2})+ \underset{\lambda\rightarrow 1^{+}}{\lim }\underset{i\geq i^{\prime }}{\sum \limits}\lambda M( \frac{u(i)-v(i)}{2}) \\<\underset{i< i^{\prime },i\neq i_{0}}{\sum \limits} M( \frac{u(i)-v(i)}{2})+max\{M( \frac{u(i_{0})}{2}), M( \frac{v(i_{0})}{2})\}+\underset{ i\geq i^{\prime }}{\sum \limits}M(\frac{u(i)-v(i)}{2}) \\\leq\underset{i< i^{\prime },i\neq i_{0}}{\sum \limits} \frac{M(u(i))+M(v(i))}{2}+\frac{M(u(i_0))+M(v(i_0))}{2}+\underset{ i\geq i^{\prime }}{\sum \limits}\frac{M(u(i))+M(v(i))}{2} \\=\frac{1}{2}[\rho _{M}(u)+\rho _{M}(u)] \leq 1.$

Hence $\exists \lambda>1\ {\rm s.t.}\ \rho _{M}(\lambda \frac{u-v}{2})<1$, thus $\left\Vert \frac{u-v}{2}\right\Vert _{(M)}<1$.

(ⅱ) If Card$I_\beta(u)=1$, i.e., $\exists 1\left\vert u(i_1)\right\vert =\beta$. Then $\forall i\neq i_1,\left\vert u(i)\right\vert <\beta$.

When $i_1\notin $supp$u\cap $supp$v$, then $v(i_1)=0$, and $\left\vert \frac{u(i_1)-v(i_1)}{2}\right\vert=\frac{\beta}{2}<\beta(\beta>0)$. $\forall i\neq i_1$,

$\left\vert \frac{u(i)-v(i)}{2}\right\vert\leq\left\vert \frac{u(i)}{2}\right\vert+\left\vert \frac{v(i)}{2}\right\vert<\frac{1}{2}\beta+\frac{1}{2}\beta=\beta (\beta>0).$

Hence $\forall i\in\mathbb{N}$, $\left\vert \frac{u(i)-v(i)}{2}\right\vert<\beta $. By the progress of (ⅰ), we get $\left\Vert \frac{u-v}{2}\right\Vert _{(M)}<1$.

When $i_{1}\in $supp$u\cap $ supp $v$, without loss of generality, take $i_{0}=i_{1}$, then

$\left\vert \frac{u(i_{0})-v(i_{0})}{2}\right\vert\leq \max\{\left\vert \frac{u(i_0)}{2}\right\vert, \left\vert \frac{v(i_0)}{2}\right\vert\}=\frac{1}{2}\beta<\beta.$

$\forall i\neq i_0, \left\vert {u(i)}\right\vert<\beta $. Hence $\forall i, \left\vert \frac{u(i)-v(i)}{2}\right\vert<\beta $. By the progress of prove of (ⅰ), we get $\left\Vert \frac{u-v}{2}\right\Vert _{(M)}<1$.

In case of $u(i_0)v(i_0)< 0,$ then $-u(i_0)v(i_0)> 0,$

$\left\Vert\frac{u+v}{2}\right\Vert_{(M)}=\left\Vert\frac{(-u)-v}{2}\right\Vert_{(M)}<1.$

(Ⅱ) If supp$u\cap $supp$v=\emptyset $, i.e., supp$v\subset \mathbb{N} \setminus$ supp$u$.

While $\rho_M(u)<1$, then

$ \underset{\lambda \rightarrow 1^{+}}{\lim }\rho _{M}(\lambda \frac{u\pm v}{2 }) =\underset{\lambda \rightarrow 1^{+}}{\lim }\underset{i\in \textrm{supp}u}{\sum \limits}M(\lambda \frac{u(i)}{2})+\underset{\lambda \rightarrow 1^{+}}{ \lim }\underset{i\in\textrm{supp}v}{\sum \limits}M(\lambda \frac{v(i)}{2}) \\\leq\underset{\lambda \rightarrow 1^{+}}{\lim }\underset{i\in \textrm{supp}u}{\sum \limits}\frac{\lambda}{2}M( u(i))+\underset{\lambda \rightarrow 1^{+}}{\lim }\underset{i\in\textrm{supp}v}{\sum \limits}\frac{\lambda}{2}M( v(i)) \\ = \underset{\lambda \rightarrow 1^{+}}{\lim } \frac{\lambda }{2}[\rho _{M}(u)+\rho _{M}(u)] =\frac{1}{2}[\rho _{M}(u)+\rho _{M}(u)] <\frac{1}{2}\cdot \ 2\ =1.$ (**)

Hence $\exists \lambda>1\ {\rm s.t.}\ \rho _{M}(\lambda \frac{u\pm v}{2})<1$, therefore, $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}<1$.

While $\exists i_0$, $\left\vert u(i_0)\right\vert>s_l$. Then

$\underset{i\rightarrow 1^{+}}{\lim }\rho _{M}(\lambda \frac{u\pm v}{2}) \\=\underset{\lambda \rightarrow 1^{+}}{\lim }\underset{i\in\textrm{supp}u,i\neq i_{0} }{\sum \limits}M(\lambda \frac{u(i)}{2})+\underset{\lambda \rightarrow 1^{+}}{\lim }M(\lambda \frac{u(i_{0})}{2})+\underset{ \lambda \rightarrow 1^{+}}{\lim }\underset{i\in\textrm{supp}v}{\sum \limits}M(\lambda \frac{v(i)}{2}) \\\leq\underset{\lambda \rightarrow 1^{+}}{\lim } \underset{i\in\textrm{supp}u,i\neq i_{0}}{\sum \limits}\frac{\lambda }{2}M(u(i))+M(\frac{ u(i_{0})}{2})+\underset{\lambda \rightarrow 1^{+}}{\lim }\underset{i\in\textrm{supp}v}{\sum \limits}\frac{\lambda }{2}M(v(i)) \\<\underset{i\in\textrm{supp}u,i\neq i_{0}}{\sum \limits}\frac{1 }{2}M(u(i))+\frac{1}{2}M(u(i_{0}))+\underset{i\in\textrm{supp}v}{\sum \limits}\frac{1}{2} M(v(i))\\ = \frac{1}{2}[\rho _{M}(u)+\rho _{M}(v)] \leq 1. $ (***)

Hence

$\exists \lambda>1 {\rm s.t.} \rho _{M}(\lambda \frac{u\pm v}{2})<1,$

therefore, $\left\Vert \frac{u\pm v}{2}\right\Vert _{(M)}<1$.

While $M(s_l)$Card$I_\theta(u)<1$.

From supp$u$ $\cap$ supp$ v=\emptyset$, we have Card$I_\theta(u)>0 $, since $M(s_l)>0$, then

${\rm Card} I_\theta(u)<\infty.$

If $\forall i,\left\vert v(i)\right\vert<\beta$. From $\alpha=0$, we have $\beta>\alpha=0$. Combining with Card$I_\theta(u)<\infty$, we have $\exists\lambda_{0}>1 {\rm s.t.} \left\vert \lambda_{0}v(i)\right\vert<\beta$,

$\underset{\lambda \rightarrow 1^{+}}{\lim }\rho _{M}(\lambda v)=\underset{ \lambda \rightarrow 1^{+}}{\lim }\underset{\textrm{supp}v}{\sum \limits} M(\lambda v(i))=\underset{\textrm{supp}v}{\sum \limits}\underset{\lambda \rightarrow 1^{+}}{\lim }M(\lambda v(i))=\underset{\textrm{supp}v}{ \sum }M(v(i))=\rho _{M}( v)\leq 1.$

Since $\left\Vert v\right\Vert_{(M)}=1$, then

$\forall \lambda>1, \rho_M(\lambda v)>1,$

hence $\underset{\lambda \rightarrow 1^{+}}{\lim }\rho _{M}(\lambda v)\geq 1$, then

$\rho _{M}(v)=\underset{\lambda \rightarrow 1^{+}}{\lim }\rho _{M}(\lambda v)=1.$

Noticing that $M(s_l)$Card$I_\theta(u)<1$, supp$v\subset I_\theta(u)$, we get $\exists i_0 \in$ supp$v \ {\rm s.t.}\ \left\vert v(i_0)\right\vert>s_l$. In fact, assume $\forall i,\left\vert v(i)\right\vert<s_l$, then $\rho_M(v)\leq M(s_l)$Cardsupp$v\leq M(s_l)$Card$I_\theta(u)<1 $, a contradiction to $\rho_M(v)=1$. Exchange the positions of $u$ and $v$ in $(***)$, we get $\left\Vert\frac{u\pm v}{2}\right\Vert_{(M)}<1$.

If $\exists i_0\in $supp$v\ {\rm s.t.}\left\vert v(i_0)\right\vert=\beta$.

When $s_l<\beta$, exchange the positions of $u$ and $v$ in $(***)$, we get $\left\Vert\frac{u\pm v}{2}\right\Vert_{(M)}<1$.

When $s_l=\beta$, from $M(s_l)$Card$I_\theta(u)<1$, we have

$\rho_M(v)\leq\underset{i=1}{\overset{\infty }{\sum \limits}}M(\beta )=M(s_l){\rm Card}I_\theta(u)<1,$

exchange the positions of $u$ and $v$ in $(**)$, we get $\left\Vert\frac{u\pm v}{2}\right\Vert_{(M)}<1$.

Summarily, $u$ is a (J) nonsquare point.

References
[1] James R C. Uniformly nonsquare Banach spaces[J]. Annals of Mathematics, 1964, 80(3): 542–550. DOI:10.2307/1970663
[2] Schäfier J J. Geometry of spheres in normed space[C]. Lect Notes in Pure and Applied Math. , New York: Marrel Dekker, 1976: 349-358.
[3] Chen Shuotao. Geometry of Orlicz space[M]. Dissertationes Mathematicae, Warszawa: Polish Academy of Science, 1996.
[4] Wang Tingfu, Shi Zhongrui, Li Yanhong. On uniformly nonsquare points and nonsquare points of Orlicz spaces[J]. Comment. Math. Univ. Carolin, 1992, 33(3): 477–484.
[5] Jesús G F, Enrique L F, Eva M M N. Uniformly nonsquare Banach spaces have the flxed point property for nonexpansive mappings[J]. Journal of Functional Analysis, 2006, 233(2): 494–514. DOI:10.1016/j.jfa.2005.09.002
[6] Krasnosielskii M A, Rutickii Y B. Convex functions and Orlicz space[M]. Groningen: Noordhofi, 1961.
[7] Zhang Dawei, Shi Zhongrui. Nonsquareness of Orlicz-Bochner space[J]. Journal of Shanghai Uni versity, Natural Science, 2010, 16(1): 48–52.
[8] Liu Xinbo, Wang Tingfu, Yu Feifei. Extreme points and strongly extreme points of Musielak-Orlicz sequences spaces[J]. Acta Mathematica Sinica, English Series, 2005, 21(2): 267–288. DOI:10.1007/s10114-004-0422-3
[9] Hudzik H. Uniformly non-l1(n) Orlicz space with Luxemburg norm[J]. Bullentin of the Polish Academy of Sciences Mathematics, 1987, 35(3): 218–221.
[10] Wu Congxin, Wang Tingfu. Orlicz space and its application[M]. Haerbin: Press of Science and Technology of Heilongjiang, 1983.
[11] Chen Shutao, Wang Yuwen. The deflnition of normed linear spaces[J]. Chinese Annals of Mathe matics, 1988, 9A(3): 330–334.