数学杂志  2014, Vol. 34 Issue (3): 397-405   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Yong
WEAK SOLUTIONS FOR A FOURTH ORDER ELLIPTIC PROBLEM
WANG Yong    
Abstract: In this work we shall study the existence of weak solutions for a fourth order elliptic problem. By virtue of mountain pass theorem and fountain theorem, combining with variational method, several existence theorems for weak solutions are obtained. The results obtained here improve some existing results in the literature.
Key words: elliptic problem     mountain pass theorem     fountain theorem     weak solution    
四阶椭圆方程的弱解
王勇    
江南大学理学院, 江苏 无锡 214122
摘要:本文研究了一个四阶椭圆方程解的存在性问题.利用山路定理和喷泉定理, 结合变分方法, 获得了该问题弱解的几个存在性定理, 推广了现有的一些结果.
关键词椭圆方程    山路定理    喷泉定理    弱解    
1 Introduction

In this paper, we shall investigate the existence of weak solutions for the fourth order elliptic problem

$\label{pro}\begin{cases} \Delta^2 u+c \Delta u=f(x,u) \ \text{ in } \Omega,\\ u=\Delta u=0 \ \text{ on } \partial\Omega, \end{cases}$ (1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, the parameter $c$ is less than the first eigenvalue of $(-\Delta,H_0^1)$ and $f\in C(\overline{\Omega}\times\mathbb{R}, \mathbb{R})$.

It is well-known that fourth order problems were studied by many authors. For example, $u^{(4)}(t)=f(t,u(t))$ subject to boundary value conditions $u(0) = u(1) = u''(0) = u''(1) = 0$ can be used to model the deflection of elastic beams simply supported at the endpoints [1-3]. In [4], Lazer and Mckenna pointed out that fourth order elliptic problems furnish a model to study traveling waves in suspension bridges. Since then, more general nonlinear fourth order elliptic boundary value problems were studied, we refer the interested reader to [5-13].

Meanwhile, as is known to all, fountain and dual fountain theorems by Bartsch and Willem [14, 15] are effective tools for studying the existence of infinitely many large energy solutions and small energy solutions, for instance, see [16-19] and the references therein.

In [5], Yang and Zhang consider the existence of positive, negative and sign-changing solutions for (1.1). They present their results on invariant sets of the gradient flows of the corresponding variational functionals.

Chen and Tang [16] investigated the fractional boundary value problem of the following form

$\left\{ \begin{array}{l} \frac{d}{{dt}}\left( {\frac{1}{2}{\;_0}D_t^{ - \beta }u'(t) + \frac{1}{2}{\;_t}D_T^{ - \beta }u'(t)} \right) + \nabla F(t,u(t)) = 0\;{\rm{a}}{\rm{.e}}{\rm{. }}t \in [0,T],\\ u(0) = u(T) = 0. \end{array} \right.$

In their paper, they adopted fountain and dual fountain theorems to obtain the existence of infinitely many solutions under some adequate conditions. It is no doubt that the results in the literature are significantly improved.

In this paper, we first adopt mountain pass theorem to obtain the existence of nontrivial solutions for (1.1) under some appropriate conditions imposed on $f$, i.e., sublinearity at $0$ and superlinearity at $\infty$ with respect to $u$. Secondly, we only consider the nonlinearity $f$ is asymptotically linear at infinity and we utilize fountain theorem to obtain the existence of infinitely many solutions for (1.1). Note that, this condition at infinity is indeed $(f_1)$ of [5]. In [5], the authors assume that the nonlinearity $f$ satisfies conditions $(f_1), (f_4), (f_6)$ and $(f_7)$ (see [5, P130]) to obtain the existence of weak solutions for (1.1). However, in this paper, we only need conditions $(f_1)$ and $(f_7)$ to establish the existence of infinitely many solutions for (1.1). Therefore, our results here improve and extend the corresponding ones in [5].

2 Preliminaries and Main Results

Let $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$. We will always assume the parameter $c$ is less than the first eigenvalue of $(-\Delta,H_0^1)$. Denote by $0 < \lambda_{1} < \lambda_{2} \leq \dots \leq \lambda_{j} \leq \dots$ the eigenvalues of $(-\Delta,H_0^1)$ and $\mu_k(c)=\lambda_k(\lambda_k-c)$ the eigenvalues of $(\Delta^2+c\Delta,H_0^1\cap H^2)$. We also denote by $\varphi_j$ the eigenfunction associated with $\lambda_j$ and consequently with $\mu_j$, and $\varphi_1>0$ for $x\in \Omega$. We define a space $X:=H_0^1\cap H^2$. Clearly, $X$ is a Hilbert space with the inner product

$ (u,v)=\int_{\Omega}(\Delta u \Delta v-c\nabla u\nabla v) dx. $

We denote by $\|u\|_2$ the norm in $L^2(\Omega)$ and $\|u\|$ the norm in $X$ which is given by $\|u\|^2=(u,u)$. Furthermore, we have the Poincaréinequality $\|u\|^2\ge \mu_1 \|u\|_2^2$.

We define a functional on $X$ as follows

$\label{J}J(u)=\frac{1}{2}\int_\Omega (|\Delta u|^2-c|\nabla u|^2) dx-\int_\Omega F(x,u)dx= \frac{1}{2}\|u\|^2-\int_\Omega F(x,u)dx,$ (2.1)

where $F(x,u)=\int_0^u f(x,t)dt$. Clearly, the existence of weak solutions for (1.1) is equivalent to the existence of critical points of the functional $J$. By simple computation, we have

$\label{Jprime}(J'(u),v)=\int_{\Omega}(\Delta u \Delta v-c\nabla u\nabla v) dx -\int_\Omega f(x,u)vdx=(u,v)-(Au,v),\ \forall u,v\in X,$ (2.2)

where $(Au,v)=\int_\Omega f(x,u)vdx,\ \forall u,v\in X$. Obviously, $J \in C^1(X, \mathbb{R})$ (see line 7 from below in [13, P. 798]).

As we have mentioned, we utilize the critical point theory to prove our main results. Let us recall two definitions about (PS) condition and (PS)$_c$ condition that will be used below. One can refer to [20-23] for more details.

Definition 2.1 Let $X$ be a real Banach space and $J\in C^1(X,\mathbb{R})$. We say $J$ satisfies (PS) condition if for every sequence $\{u_n\}\subset X$ such that $J(u_n)$ is bounded and $J'(u_n)\to 0$ as $n\to \infty$, there exists a subsequence of $\{u_n\}$ which is convergent in $X$.

Definition 2.2 Let $X$ be a real Banach space, $J\in C^1(X,\mathbb{R})$ and $d\in \mathbb{R}$. We say $J$ satisfies (PS)$_c$ condition if the existence of a sequence $\{u_n\}\subset X$ such that $J(u_n)\to d$ and $J'(u_n)\to 0$ as $n\to \infty$ lead to $d$ is a critical value of $J$.

Lemma 2.1 (Mountain Pass Theorem) Let $X$ be a Banach space and $J\in C^1(X,\mathbb{R})$ be a functional satisfying (PS) condition. If $e\in X$ and $0<r<\|e\|$ are such that

$a:=\max\{J(0),J(e)\}<\mathop {\inf }\limits_{\left\| u \right\| = r} J(u)=:b,$

then $c:=\inf_{\gamma\in \Gamma}\sup_{t\in [0,1]}J(\gamma(t))$ is a critical value of $J$ with $c\ge b$, where $\Gamma$ is the set of paths joining the points $0$ and $e$, i.e., $\Gamma:=\{\gamma\in C([0,1],X):\gamma(0)=0,\ \gamma(1)=e\}$.

For $j,k\in \mathbb{N}$, $X=\overline{\text{span}}\{\varphi_j:j=1,2\ldots\}$. Denote $X_j:=\text{span} \{\varphi_j\}$, $Y_k:=\bigoplus_{j=1}^kX_j$ and $Z_k:=\overline{\bigoplus_{j=k+1}^\infty X_j}$. Clearly, $X=\overline{\bigoplus_{j\in \mathbb{N}}X_j}$ with dim$X_j<\infty$ for all $j\in \mathbb{N}$. We also find $X=Y_k\bigoplus Z_k$.

Lemma 2.2 (see [14]) Let $X$ be defined above. Suppose that

(A1) $J\in C^1(X,\mathbb{R})$ is an even functional. If for every $k\in \mathbb{N}$, there exist $\rho_k>r_k>0$ such that

(A2) $a_k:=\max\limits_{u\in Y_k, \|u\|=\rho_k}J(u)\le 0$;

(A3) $b_k:=\inf\limits_{u\in Z_k, \|u\|=r_k}J(u)\to \infty$ as $k\to \infty$;

(A4) $J$ satisfies (PS)$_c$ condition for all $c>0$, then $J$ has an unbounded sequence of critical values.

Theorem 2.1 If $f$ satisfies the following two conditions:

(H1) $f(x,0)=0$;

(H2) $\lim\limits_{t\to 0}\frac{f(x,t)}{t}=\xi$, $\lim\limits_{|t|\to \infty}\frac{f(x,t)}{t}=\eta$, uniformly a.e. in $x\in \Omega$, where

$0\le \xi<\mu_1=\lambda_1(\lambda_1-c)<\eta<+\infty,$

then (1.1) has at least a weak solution.

Lemma 2.3 Suppose (H1), (H2) hold, then $J$ satisfies (PS) condition.

Proof Since $\Omega$ is bounded and (H2) holds, then if $\{u_k\}$ is bounded in $X$, by using the Sobolev embedding theorem and the standard procedures, we can get a subsequence converges strongly in $X$. So we need only to show that $\{u_k\}$ is bounded in $X$.

Assume that $\{u_k\}\subset X$ is a (PS) sequence, i.e.,

$J(u_k)\to d, \quad J'(u_k)\to 0, \quad \text{as } k\to \infty.$ (2.3)

From (H2) we know that

$|f(x,t)t|\le C(1+|t|^2).$ (2.4)

(2.3) implies that for all $\varphi\in X$,

$(J'(u_k),\varphi)= \int_{\Omega}(\Delta u_k \Delta \varphi-c\nabla u_k\nabla \varphi) dx -\int_\Omega f(x,u_k)\varphi dx\to 0.$ (2.5)

Setting $\varphi=u_k$ and using (2.4), we have

$\|u_k\|^2= \int_\Omega f(x,u_k)u_kdx+(J'(u_k),u_k)\le C|\Omega|+C\|u_k\|_2^2+o(1)\|u_k\|.$ (2.6)

We claim that $\|u_k\|_2$ is bounded. Assume, by contradiction, that passing to a subsequence, $\|u_k\|_2^2\to \infty$ as $k\to \infty$. We put $\omega_k:=\frac{u_k}{\|u_k\|_2}$, then $\|\omega_k\|_2=1$. Moreover, from (2.6) we know

$\|\omega_k\|^2\le o(1)+C+\frac{o(1)}{\|u_k\|_2}\frac{\|u_k\|}{\|u_k\|_2}\le o(1)+C+o(1)\|\omega_k\|.$ (2.7)

Hence, $\|\omega_k\|$ is bounded. Passing to a subsequence, we may assume that there exists $\omega\in X$ and $\|\omega\|_2=1$ such that

$\omega_k\rightharpoonup w, \text{ weakly in } X, k\to \infty, \quad \omega_k\to w, \text{ strongly in } L^2(\Omega), k\to \infty.$

From (2.5) we derive

$\int_{\Omega}(\Delta \omega \Delta \varphi-c\nabla \omega\nabla \varphi) dx -\int_\Omega \eta\omega\varphi dx= 0, \ \forall \varphi\in X.$ (2.8)

Then $\omega\in X$ is a weak solution of the equation

$\Delta^2 \omega+c \Delta \omega=\eta \omega.$

Taking $\varphi(x) = \varphi_1(x)$, from (2.8) we have

$\int_{\Omega}(\Delta \omega \Delta \varphi_1-c\nabla \omega\nabla \varphi_1) dx -\int_\Omega \eta\omega\varphi_1dx= 0.$ (2.9)

On the other hand, since $\varphi_1(x)> 0$ is the eigenfunction of $\lambda_1(\lambda_1-c)$, we have also

$\int_{\Omega}(\Delta \omega \Delta \varphi_1-c\nabla \omega\nabla \varphi_1) dx -\int_\Omega \lambda_1(\lambda_1-c)\omega\varphi_1dx= 0.$ (2.10)

Together (2.9) with (2.10), note that $\|\omega\|_2=1$, we know that $\lambda_1(\lambda_1-c)=\eta$, which contradicts $\lambda_1(\lambda_1-c)<\eta$. Hence $\|u_k\|_2$ is bounded. Then, from (2.6) we know that $\{u_k\}$ is bounded in $X$. This completes the proof.

Proof of Theorem 2.1 (H2) implies that, for any $\varepsilon > 0$, there exists $C_1 > 0$, such that

$F(x,t)\ge \frac{1}{2}(\eta-\varepsilon)t^2-C_1, \forall x\in \Omega, t\not =0.$ (2.11)

Taking $\varepsilon > 0$ such that $\eta -\varepsilon >\mu_1$, $\phi =\varphi_1$, from (2.11) we obtain

$ J(s\phi)\le \frac{1}{2}\int_\Omega (|\Delta (s\phi)|^2-c|\nabla (s\phi)|^2) dx- \frac{1}{2}(\eta-\varepsilon)\int_\Omega s^2\phi^2dx + C_1 |\Omega|\\ \le \frac{s^2}{2}\|\phi\|^2-\frac{s^2}{2}(\eta-\varepsilon)\|\phi\|^2_2+ C_1 |\Omega|\\ \le \frac{s^2}{2}\left(1-\frac{\eta-\varepsilon}{\mu_1}\right)\|\phi\|^2+ C_1 |\Omega|. $

Therefore, by $1-\frac{\eta-\varepsilon}{\mu_1}<0$ implies

$\mathop {\lim }\limits_{s \to \infty } J(s\phi ) \to - \infty .$ (2.12)

From (H2), we can find $\alpha$, such that $2 < \alpha < 2^*$, where $2^*=\begin{cases} \frac{2N}{N-2}, N>2,\\ +\infty, N\le 2. \end{cases}$ (H1), (H2) imply that for all given $\varepsilon > 0$, there exists $C_0 > 0$, such that

$F(x,t)\le \frac{1}{2}(\xi+\varepsilon)|t|^2+C_0 |t|^\alpha .$ (2.13)

(2.13), the Poincaré inequality and the Sobolev embedding theorem enable us to obtain

$J(u) \ge \frac{1}{2}\|u\|^2-\frac{\xi+\varepsilon}{2}\int_\Omega |u|^2dx-C_0 \int_\Omega |u|^\alpha dx \ge \left(\frac{1}{2}-\frac{\xi+\varepsilon}{2\mu_1}\right)\|u\|^2-C_s \|u\|^\alpha,$ (2.14)

where $C_s$ is a constant. In (2.14), by taking $\varepsilon>0$ such that $\xi+\varepsilon<\mu_1$, and choosing $\|u\|= \rho > 0$ small enough, we obtain $J(u) \ge R > 0$, if $\|u\|= \rho$.

From (2.12), we know that there exists $e \in X$, $\|e\| > \rho$, such that $J(e)<0$. Define

$\Gamma:=\{\gamma: [0,1]\to X| \gamma \text{ is continuous and } \gamma (0) = 0, \gamma (1) = e\},$

and $c=\inf_{\gamma\in \Gamma}\max_{t\in [0,1]}J(\gamma(t))$. From Lemma 2.1 it follows that

$J(0)=0, J(e)<0, \text{ and } J(u)|_{\partial B_\rho}\ge R>0. $

Moreover, $J$ satisfies (PS) condition by Lemma 2.3. By the mountain pass theorem, we know $c$ is a critical value of $J$ and there is at least one nontrivial critical point in $X$ corresponding to this value. This completes the proof.

Theorem 2.2 If $f$ satisfies the following two conditions:

(H3) $ \mu_k < \liminf\limits_{|t|\to \infty}\frac{f(x,t)}{t}\le \limsup\limits_{|t|\to \infty}\frac{f(x,t)}{t}< \mu_{k+1}, \text{ uniformly in } \Omega; $

(H4) $f(t,-u)+f(t,u)=0$, then (1.1) has infinitely many weak solutions.

Lemma 2.4 (see [5, Lemma 4.1]{12}) Let $f$ satisfy (H3). Then $J$ satisfies (PS) condition.

Proof Take $\mu_k < b_1 \le b_2 < \mu_{k+1} $ and $M>0$ such that for $|u|\ge M$, $b_1\le \frac{f(x,u)}{u}\le b_2$ by (H3). Now let $\{u_k\}$ be a (PS) sequence for $J(u)$. Writing $u_k=v_k+w_k$ with $v_k\in Y_k$ and $w_k\in Z_k$. Considering the inner product of $J'(u)$ and $v_k-w_k$, we find

$o(1)\cdot \|u_k\| =(J'(u_k),v_k-w_k)=(u_k,v_k-w_k)-\int_\Omega f(x,u_k)(v_k-w_k)dx\\ =(v_k+w_k,v_k-w_k)-\int_{|u_k|\ge M} \frac{f(x,u_k)}{u_k}(v^2_k-w^2_k)dx-\int_{|u_k|<M} f(x,u_k)(v_k-w_k)dx\\ \le \|v_k\|^2-\|w_k\|^2-b_1 \int_{|u_k|\ge M}v_k^2 dx+b_2 \int_{|u_k|\ge M}w_k^2 dx-\int_{|u_k|< M} f(x,u_k)(v_k-w_k)dx\\ = \|v_k\|^2-\|w_k\|^2-b_1 \int_{\Omega}v_k^2 dx+b_1 \int_{|u_k|< M}v_k^2 dx+b_2 \int_{\Omega}w_k^2 dx-b_2 \int_{|u_k|< M}w_k^2 dx\\ -\int_{|u_k|< M} f(x,u_k)(v_k-w_k)dx\\ \le \|v_k\|^2-\|w_k\|^2-\frac{b_1}{\mu_k} \|v_k\|^2+\frac{b_2}{\mu_{k+1}} \|w_k\|^2+b_1 \int_{|u_k|< M}v_k^2 dx -b_2 \int_{|u_k|< M}w_k^2 dx\\ -\int_{|u_k|< M} f(x,u_k)(v_k-w_k)dx.$ (2.15)

By (2.15) and Hölder inequality, we obtain

$ o(1)\cdot \|u_k\|\le \left(1-\frac{b_1}{\mu_k}\right)\|v_k\|^2+\left(\frac{b_2}{\mu_{k+1}}-1\right)\|w_k\|^2+\frac{b_1b_2}{b_2-b_1} \int_{|u_k|< M}u_k^2 dx\\ +\left(\int_{|u_k|< M}|f(x,u_k)|^2dx\right)^{\frac{1}{2}}\left(\int_{|u_k|< M}|v_k-w_k|^2dx\right)^{\frac{1}{2}}\\ \le \left(1-\frac{b_1}{\mu_k}\right)\|v_k\|^2+\left(\frac{b_2}{\mu_{k+1}}-1\right)\|w_k\|^2+\frac{b_1b_2}{b_2-b_1} M^2 |\Omega| +C\left(\int_{|u_k|< M}|u_k|^2dx\right)^{\frac{1}{2}} \\ \le \left(1-\frac{b_1}{\mu_k}\right)\|v_k\|^2+\left(\frac{b_2}{\mu_{k+1}}-1\right)\|w_k\|^2+\frac{b_1b_2}{b_2-b_1} M^2 |\Omega| +CM\sqrt{|\Omega|}\\ \le -a \|u_k\|^2+\frac{b_1b_2}{b_2-b_1} M^2 |\Omega| +CM\sqrt{|\Omega|}.$

So, $\{u_k\}$ is bounded, where $a = \min\left\{ \frac{b_1}{\mu_k}-1,1 - \frac{b_2}{\mu_{k+1}} \right\} > 0$. A standard argument shows that $J (u)$ satisfies e (PS) condition. This completes the proof.

Proof of Theorem 2.2 (H4) and Lemma 2.4 enable us to obtain that (A1) and (A4) in Lemma 2.2 are satisfied.

By $\liminf\limits_{|t|\to \infty}\frac{f(x,t)}{t}>\mu_k$, there exist $M_1>0$ and $\varepsilon>0$ such that $f(x,t)\ge (\mu_k+\varepsilon) t $, for all $|t|\ge M_1$ and $x\in \Omega$. We know $f(x,t)-(\mu_k+\varepsilon) t$ is continuous and bounded on $x\in \Omega$ and $|t|\le M_1$, and thus there exists $C>0$ such that $-C\le f(x,t)-(\mu_k+\varepsilon) t\le C$. Therefore,

$f(x,t)\ge (\mu_k+\varepsilon)t-C, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ (2.16)

By the definition of $F(x,u)$, we see

$F(x,u)=\int_0^u f(x,t)dt\ge \int_0^u [(\mu_k+\varepsilon)t-C]dt\ge \frac{u^2}{2}(\mu_k+\varepsilon)-Cu, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ (2.17)

For any $u \in Y_k$, and it is easy to verify that $\|\cdot\|_2$ is a norm of $Y_k$. Since all the norms of a finite dimensional normed space are equivalent, so there exists positive constant $C_1$ such that $\|u\|_2\le C_1\|u\|$. In view of (2.17), by Hölder inequality, we obtain

$J(u) =\frac{1}{2}\|u\|^2-\int_\Omega F(x,u)dx\le \frac{1}{2}\|u\|^2-\int_\Omega \frac{u^2}{2}(\mu_k+\varepsilon)dx+C|\Omega|^{\frac{1}{2}}\|u\|_2\\ \le \frac{1}{2}\|u\|^2-\frac{\mu_k+\varepsilon}{2\mu_k}\|u\|^2+CC_1|\Omega|^{\frac{1}{2}}\|u\|=\frac{1}{2}\|u\|^2 \left(1-\frac{\mu_k+\varepsilon}{\mu_k}\right)+CC_1|\Omega|^{\frac{1}{2}}\|u\|. $ (2.18)

Since $1-\frac{\mu_k+\varepsilon}{\mu_k}<0$, then there exists positive constants $d_k$ such that

$J(u)\le 0, \text{ for each } u\in Y_k \text{ and } \|u\|\ge d_k.$ (2.19)

On the other hand, by $\limsup\limits_{|t|\to \infty}\frac{f(x,t)}{t}<\mu_{k+1}$, there exist $M_2>0$ and $\varepsilon\in (0,\mu_{k+1})$ such that

$f(x,t)\le (\mu_{k+1}-\varepsilon)t, \ |t|\ge M_2$

and $x\in \Omega$. For the reason that $f(x,t)- (\mu_{k+1}-\varepsilon)t$ is continuous and bounded on $|t|\le M_2$ and $x\in \Omega$, then there is a $C>0$ such that $f(x,t)- (\mu_{k+1}-\varepsilon)t\le C,\ |t|\le M_2$ and $x\in \Omega$. Consequently,

$f(x,t)\le (\mu_{k+1}-\varepsilon)t+ C, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ (2.20)

Therefore, we have

$F(x,u)\le \frac{u^2}{2}(\mu_{k+1}-\varepsilon)+Cu, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ (2.21)

For any $u \in Z_k$, let $ \beta_k:=\sup\limits_{u\in Z_k, \|u\|=1}\|u\|_2$. Since $X$ is compactly embedded into $L^2(\Omega)$, there holds (see [21, Lemma 3.8]), $\beta_k\to 0, \text{ as } k\to \infty$. By (2.21) and Hölder inequality, we arrive at

$J(u) =\frac{1}{2}\|u\|^2-\int_\Omega F(x,u)dx \ge \frac{1}{2}\|u\|^2 - \int_\Omega \frac{u^2}{2}(\mu_{k+1}-\varepsilon)dx- \int_\Omega Cudx\\ \ge \frac{1}{2}\|u\|^2 - \frac{\mu_{k+1}-\varepsilon}{2\mu_{k+1}}\|u\|^2- C|\Omega|^{\frac{1}{2}}\left(\int_\Omega |u|^2dx\right)^{\frac{1}{2}} \\ \ge \frac{1}{2}\|u\|^2 \left(1- \frac{\mu_{k+1}-\varepsilon}{\mu_{k+1}}\right)-C|\Omega|^{\frac{1}{2}}\beta_k \|u\|.$ (2.22)

Choosing $r_k:=1/\beta_k$, we easily $r_k\to \infty$ as $k\to \infty$, then

$J(u)\ge \frac{1}{2}\left(1- \frac{\mu_{k+1}-\varepsilon}{\mu_{k+1}}\right) r_k^2-C|\Omega|^{\frac{1}{2}}\to \infty, \text{ as } k\to \infty.$

Hence, $b_k:=\inf\limits_{u\in Z_k, \|u\|=r_k}J(u)\to \infty$ as $k\to \infty$. Combining this and (2.19), we can take $\rho_k:=\max\{d_k,r_k+1\}$, and thus $a_k:=\max\limits_{u\in Y_k, \|u\|=\rho_k}J(u)\le 0$.

Up until now, we have proved the functional $J$ satisfies all the conditions of Lemma 2.2, then $J$ has an unbounded sequence of critical values. Equivalently, (1.1) has infinitely many weak solutions. This completes the proof.

References
[1] Li Yongxiang. Existence and multiplicity positive solutions for fourth order boundary value problems[J]. Acta Math. Appl. Sin., 2003, 26(1): 109–116.
[2] O'Regan D. Fourth (and higher) order singular boundary value problems[J]. Nonlinear Anal., 1990, 14: 1001–1038. DOI:10.1016/0362-546X(90)90066-P
[3] O'Regan D. Solvability of some fourth (and higher) order singular boundary value problems[J]. J. Math. Anal. Appl., 1991, 161: 78–116. DOI:10.1016/0022-247X(91)90363-5
[4] Lazer A, Mckenna P. Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis[J]. SIAM Rev., 1990, 32: 537–578. DOI:10.1137/1032120
[5] Yang Yang, Zhang Jihui. Existence of solutions for some fourth-order nonlinear elliptic problems[J]. J. Math. Anal. Appl., 2009, 351: 128–137. DOI:10.1016/j.jmaa.2008.08.023
[6] Yang Yang, Zhang Jihui. Nontrivial solutions for some fourth order boundary value problems with parameters[J]. Nonlinear Anal., 2009, 70(11): 3966–3977. DOI:10.1016/j.na.2008.08.005
[7] Zhang Jihui. Existence results for some fourth order nonlinear elliptic problems[J]. Nonlinear Anal., 2001, 45(1): 29–36. DOI:10.1016/S0362-546X(99)00328-4
[8] Zhang Jihui, Li Shujie. Multiple nontrivial solutions for some fourth order semilinear elliptic problems[J]. Nonlinear Anal., 2005, 60(2): 221–230. DOI:10.1016/j.na.2004.07.047
[9] Zhang Jian, Wei Zhongli. Inflnitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems[J]. Nonlinear Anal., 2011, 74(18): 7474–7485. DOI:10.1016/j.na.2011.07.067
[10] Arioli G, Gazzola F, Grunau H. Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[J]. J. Difierential Equations, 2006, 230: 743–770. DOI:10.1016/j.jde.2006.05.015
[11] Choi Q, Jin Yinghua. Nonlinearity and nontrivial solutions of fourth order semilinear elliptic equations[J]. J. Math. Anal. Appl., 2004, 290(1): 224–234. DOI:10.1016/j.jmaa.2003.09.048
[12] Micheletti A, Pistoia A. Nontrivial solutions for some fourth order semilinear elliptic problems[J]. Nonlinear Anal., 1998, 34(4): 509–523. DOI:10.1016/S0362-546X(97)00596-8
[13] Wei Yuanhong. Multiplicity results for some fourth order elliptic equations[J]. J. Math. Anal. Appl., 2012, 385(2): 797–807. DOI:10.1016/j.jmaa.2011.07.011
[14] Bartsch T. Inflnitely many solutions of a symmetric Dirichlet problem[J]. Nonlinear Anal., 1993, 20: 1205–1216. DOI:10.1016/0362-546X(93)90151-H
[15] Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities[J]. Proc. Amer. Math. Soc., 1995, 123: 3555–3561. DOI:10.1090/S0002-9939-1995-1301008-2
[16] Chen Jing, Tang Xianhua. Inflnitely many solutions for a class of fractional boundary value problem[EB/OL]. http://www.emis.de/journals/BMMSS/pdf/acceptedpapers2011-09-043 R1.pdf.
[17] Severo U. Multiplicity of solutions for a class of quasilinear elliptic equations with cancave and convex terms in R[J]. Electron. J. Qual. Theory Difier. Equ., 2008, 5: 1–16.
[18] Liu Duchao. On a p-Kirchhofi equation via fountain theorem and dual fountain theorem[J]. Nonlinear Anal., 2010, 72(1): 302–308. DOI:10.1016/j.na.2009.06.052
[19] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with strong resonance at inflnity[J]. Nonlinear Anal., 1983, 7: 981–1012. DOI:10.1016/0362-546X(83)90115-3
[20] Lu Wenduan. Variational methods in difierential equations[M]. Beijing: Scientiflc Publishing House, 2002.
[21] Willem M. Minimax theorems[M]. Boston: Birkhäuser, 1996.
[22] Struwe M. Variational methods: applications to nonlinear partial difierential equations and hamiltonian systems (4th ed)[M]. Heidelberg: Springer, 2008.
[23] Rabinowitz P. Minimax methods in critical point theory with applications to difierential equations[M]. CBMS Reg. Conf. 65: Providence, RI AMS, 1986.