2 Preliminaries and Main Results
Let $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$. We will always assume the parameter $c$ is less than the first eigenvalue of $(-\Delta,H_0^1)$. Denote by $0 < \lambda_{1} < \lambda_{2} \leq \dots \leq \lambda_{j} \leq \dots$ the eigenvalues of $(-\Delta,H_0^1)$ and $\mu_k(c)=\lambda_k(\lambda_k-c)$ the eigenvalues of $(\Delta^2+c\Delta,H_0^1\cap H^2)$. We also denote by $\varphi_j$ the eigenfunction associated with $\lambda_j$ and consequently with $\mu_j$, and $\varphi_1>0$ for $x\in \Omega$. We define a space $X:=H_0^1\cap H^2$. Clearly, $X$ is a Hilbert space with the inner product
$ (u,v)=\int_{\Omega}(\Delta u \Delta v-c\nabla u\nabla v) dx. $ |
We denote by $\|u\|_2$ the norm in $L^2(\Omega)$ and $\|u\|$ the norm in $X$ which is given by $\|u\|^2=(u,u)$. Furthermore, we have the Poincaréinequality $\|u\|^2\ge \mu_1 \|u\|_2^2$.
We define a functional on $X$ as follows
$\label{J}J(u)=\frac{1}{2}\int_\Omega (|\Delta u|^2-c|\nabla u|^2) dx-\int_\Omega F(x,u)dx= \frac{1}{2}\|u\|^2-\int_\Omega F(x,u)dx,$ |
(2.1) |
where $F(x,u)=\int_0^u f(x,t)dt$. Clearly, the existence of weak solutions for (1.1) is equivalent to the existence of critical points of the functional $J$. By simple computation, we have
$\label{Jprime}(J'(u),v)=\int_{\Omega}(\Delta u \Delta v-c\nabla u\nabla v) dx -\int_\Omega f(x,u)vdx=(u,v)-(Au,v),\ \forall u,v\in X,$ |
(2.2) |
where $(Au,v)=\int_\Omega f(x,u)vdx,\ \forall u,v\in X$. Obviously, $J \in C^1(X, \mathbb{R})$ (see line 7 from below in [13, P. 798]).
As we have mentioned, we utilize the critical point theory to prove our main results. Let us recall two definitions about (PS) condition and (PS)$_c$ condition that will be used below. One can refer to [20-23] for more details.
Definition 2.1 Let $X$ be a real Banach space and $J\in C^1(X,\mathbb{R})$. We say $J$ satisfies (PS) condition if for every sequence $\{u_n\}\subset X$ such that $J(u_n)$ is bounded and $J'(u_n)\to 0$ as $n\to \infty$, there exists a subsequence of $\{u_n\}$ which is convergent in $X$.
Definition 2.2 Let $X$ be a real Banach space, $J\in C^1(X,\mathbb{R})$ and $d\in \mathbb{R}$. We say $J$ satisfies (PS)$_c$ condition if the existence of a sequence $\{u_n\}\subset X$ such that $J(u_n)\to d$ and $J'(u_n)\to 0$ as $n\to \infty$ lead to $d$ is a critical value of $J$.
Lemma 2.1 (Mountain Pass Theorem) Let $X$ be a Banach space and $J\in C^1(X,\mathbb{R})$ be a functional satisfying (PS) condition. If $e\in X$ and $0<r<\|e\|$ are such that
$a:=\max\{J(0),J(e)\}<\mathop {\inf }\limits_{\left\| u \right\| = r} J(u)=:b,$ |
then $c:=\inf_{\gamma\in \Gamma}\sup_{t\in [0,1]}J(\gamma(t))$ is a critical value of $J$ with $c\ge b$, where $\Gamma$ is the set of paths joining the points $0$ and $e$, i.e., $\Gamma:=\{\gamma\in C([0,1],X):\gamma(0)=0,\ \gamma(1)=e\}$.
For $j,k\in \mathbb{N}$, $X=\overline{\text{span}}\{\varphi_j:j=1,2\ldots\}$. Denote $X_j:=\text{span} \{\varphi_j\}$, $Y_k:=\bigoplus_{j=1}^kX_j$ and $Z_k:=\overline{\bigoplus_{j=k+1}^\infty X_j}$. Clearly, $X=\overline{\bigoplus_{j\in \mathbb{N}}X_j}$ with dim$X_j<\infty$ for all $j\in \mathbb{N}$. We also find $X=Y_k\bigoplus Z_k$.
Lemma 2.2 (see [14]) Let $X$ be defined above. Suppose that
(A1) $J\in C^1(X,\mathbb{R})$ is an even functional. If for every $k\in \mathbb{N}$, there exist $\rho_k>r_k>0$ such that
(A2) $a_k:=\max\limits_{u\in Y_k, \|u\|=\rho_k}J(u)\le 0$;
(A3) $b_k:=\inf\limits_{u\in Z_k, \|u\|=r_k}J(u)\to \infty$ as $k\to \infty$;
(A4) $J$ satisfies (PS)$_c$ condition for all $c>0$, then $J$ has an unbounded sequence of critical values.
Theorem 2.1 If $f$ satisfies the following two conditions:
(H1) $f(x,0)=0$;
(H2) $\lim\limits_{t\to 0}\frac{f(x,t)}{t}=\xi$, $\lim\limits_{|t|\to \infty}\frac{f(x,t)}{t}=\eta$, uniformly a.e. in $x\in \Omega$, where
$0\le \xi<\mu_1=\lambda_1(\lambda_1-c)<\eta<+\infty,$ |
then (1.1) has at least a weak solution.
Lemma 2.3 Suppose (H1), (H2) hold, then $J$ satisfies (PS) condition.
Proof Since $\Omega$ is bounded and (H2) holds, then if $\{u_k\}$ is bounded in $X$, by using the Sobolev embedding theorem and the standard procedures, we can get a subsequence converges strongly in $X$. So we need only to show that $\{u_k\}$ is bounded in $X$.
Assume that $\{u_k\}\subset X$ is a (PS) sequence, i.e.,
$J(u_k)\to d, \quad J'(u_k)\to 0, \quad \text{as } k\to \infty.$ |
(2.3) |
From (H2) we know that
$|f(x,t)t|\le C(1+|t|^2).$ |
(2.4) |
(2.3) implies that for all $\varphi\in X$,
$(J'(u_k),\varphi)= \int_{\Omega}(\Delta u_k \Delta \varphi-c\nabla u_k\nabla \varphi) dx -\int_\Omega f(x,u_k)\varphi dx\to 0.$ |
(2.5) |
Setting $\varphi=u_k$ and using (2.4), we have
$\|u_k\|^2= \int_\Omega f(x,u_k)u_kdx+(J'(u_k),u_k)\le C|\Omega|+C\|u_k\|_2^2+o(1)\|u_k\|.$ |
(2.6) |
We claim that $\|u_k\|_2$ is bounded. Assume, by contradiction, that passing to a subsequence, $\|u_k\|_2^2\to \infty$ as $k\to \infty$. We put $\omega_k:=\frac{u_k}{\|u_k\|_2}$, then $\|\omega_k\|_2=1$. Moreover, from (2.6) we know
$\|\omega_k\|^2\le o(1)+C+\frac{o(1)}{\|u_k\|_2}\frac{\|u_k\|}{\|u_k\|_2}\le o(1)+C+o(1)\|\omega_k\|.$ |
(2.7) |
Hence, $\|\omega_k\|$ is bounded. Passing to a subsequence, we may assume that there exists $\omega\in X$ and $\|\omega\|_2=1$ such that
$\omega_k\rightharpoonup w, \text{ weakly in } X, k\to \infty, \quad \omega_k\to w, \text{ strongly in } L^2(\Omega), k\to \infty.$ |
From (2.5) we derive
$\int_{\Omega}(\Delta \omega \Delta \varphi-c\nabla \omega\nabla \varphi) dx -\int_\Omega \eta\omega\varphi dx= 0, \ \forall \varphi\in X.$ |
(2.8) |
Then $\omega\in X$ is a weak solution of the equation
$\Delta^2 \omega+c \Delta \omega=\eta \omega.$ |
Taking $\varphi(x) = \varphi_1(x)$, from (2.8) we have
$\int_{\Omega}(\Delta \omega \Delta \varphi_1-c\nabla \omega\nabla \varphi_1) dx -\int_\Omega \eta\omega\varphi_1dx= 0.$ |
(2.9) |
On the other hand, since $\varphi_1(x)> 0$ is the eigenfunction of $\lambda_1(\lambda_1-c)$, we have also
$\int_{\Omega}(\Delta \omega \Delta \varphi_1-c\nabla \omega\nabla \varphi_1) dx -\int_\Omega \lambda_1(\lambda_1-c)\omega\varphi_1dx= 0.$ |
(2.10) |
Together (2.9) with (2.10), note that $\|\omega\|_2=1$, we know that $\lambda_1(\lambda_1-c)=\eta$, which contradicts $\lambda_1(\lambda_1-c)<\eta$. Hence $\|u_k\|_2$ is bounded. Then, from (2.6) we know that $\{u_k\}$ is bounded in $X$. This completes the proof.
Proof of Theorem 2.1 (H2) implies that, for any $\varepsilon > 0$, there exists $C_1 > 0$, such that
$F(x,t)\ge \frac{1}{2}(\eta-\varepsilon)t^2-C_1, \forall x\in \Omega, t\not =0.$ |
(2.11) |
Taking $\varepsilon > 0$ such that $\eta -\varepsilon >\mu_1$, $\phi =\varphi_1$, from (2.11) we obtain
$ J(s\phi)\le \frac{1}{2}\int_\Omega (|\Delta (s\phi)|^2-c|\nabla (s\phi)|^2) dx- \frac{1}{2}(\eta-\varepsilon)\int_\Omega s^2\phi^2dx + C_1 |\Omega|\\ \le \frac{s^2}{2}\|\phi\|^2-\frac{s^2}{2}(\eta-\varepsilon)\|\phi\|^2_2+ C_1 |\Omega|\\ \le \frac{s^2}{2}\left(1-\frac{\eta-\varepsilon}{\mu_1}\right)\|\phi\|^2+ C_1 |\Omega|. $ |
Therefore, by $1-\frac{\eta-\varepsilon}{\mu_1}<0$ implies
$\mathop {\lim }\limits_{s \to \infty } J(s\phi ) \to - \infty .$ |
(2.12) |
From (H2), we can find $\alpha$, such that $2 < \alpha < 2^*$, where $2^*=\begin{cases} \frac{2N}{N-2}, N>2,\\ +\infty, N\le 2. \end{cases}$ (H1), (H2) imply that for all given $\varepsilon > 0$, there exists $C_0 > 0$, such that
$F(x,t)\le \frac{1}{2}(\xi+\varepsilon)|t|^2+C_0 |t|^\alpha .$ |
(2.13) |
(2.13), the Poincaré inequality and the Sobolev embedding theorem enable us to obtain
$J(u) \ge \frac{1}{2}\|u\|^2-\frac{\xi+\varepsilon}{2}\int_\Omega |u|^2dx-C_0 \int_\Omega |u|^\alpha dx \ge \left(\frac{1}{2}-\frac{\xi+\varepsilon}{2\mu_1}\right)\|u\|^2-C_s \|u\|^\alpha,$ |
(2.14) |
where $C_s$ is a constant. In (2.14), by taking $\varepsilon>0$ such that $\xi+\varepsilon<\mu_1$, and choosing $\|u\|= \rho > 0$ small enough, we obtain $J(u) \ge R > 0$, if $\|u\|= \rho$.
From (2.12), we know that there exists $e \in X$, $\|e\| > \rho$, such that $J(e)<0$. Define
$\Gamma:=\{\gamma: [0,1]\to X| \gamma \text{ is continuous and } \gamma (0) = 0, \gamma (1) = e\},$ |
and $c=\inf_{\gamma\in \Gamma}\max_{t\in [0,1]}J(\gamma(t))$. From Lemma 2.1 it follows that
$J(0)=0, J(e)<0, \text{ and } J(u)|_{\partial B_\rho}\ge R>0. $ |
Moreover, $J$ satisfies (PS) condition by Lemma 2.3. By the mountain pass theorem, we know $c$ is a critical value of $J$ and there is at least one nontrivial critical point in $X$ corresponding to this value. This completes the proof.
Theorem 2.2 If $f$ satisfies the following two conditions:
(H3) $ \mu_k < \liminf\limits_{|t|\to \infty}\frac{f(x,t)}{t}\le \limsup\limits_{|t|\to \infty}\frac{f(x,t)}{t}< \mu_{k+1}, \text{ uniformly in } \Omega; $
(H4) $f(t,-u)+f(t,u)=0$, then (1.1) has infinitely many weak solutions.
Lemma 2.4 (see [5, Lemma 4.1]{12}) Let $f$ satisfy (H3). Then $J$ satisfies (PS) condition.
Proof Take $\mu_k < b_1 \le b_2 < \mu_{k+1} $ and $M>0$ such that for $|u|\ge M$, $b_1\le \frac{f(x,u)}{u}\le b_2$ by (H3). Now let $\{u_k\}$ be a (PS) sequence for $J(u)$. Writing $u_k=v_k+w_k$ with $v_k\in Y_k$ and $w_k\in Z_k$. Considering the inner product of $J'(u)$ and $v_k-w_k$, we find
$o(1)\cdot \|u_k\| =(J'(u_k),v_k-w_k)=(u_k,v_k-w_k)-\int_\Omega f(x,u_k)(v_k-w_k)dx\\ =(v_k+w_k,v_k-w_k)-\int_{|u_k|\ge M} \frac{f(x,u_k)}{u_k}(v^2_k-w^2_k)dx-\int_{|u_k|<M} f(x,u_k)(v_k-w_k)dx\\ \le \|v_k\|^2-\|w_k\|^2-b_1 \int_{|u_k|\ge M}v_k^2 dx+b_2 \int_{|u_k|\ge M}w_k^2 dx-\int_{|u_k|< M} f(x,u_k)(v_k-w_k)dx\\ = \|v_k\|^2-\|w_k\|^2-b_1 \int_{\Omega}v_k^2 dx+b_1 \int_{|u_k|< M}v_k^2 dx+b_2 \int_{\Omega}w_k^2 dx-b_2 \int_{|u_k|< M}w_k^2 dx\\ -\int_{|u_k|< M} f(x,u_k)(v_k-w_k)dx\\ \le \|v_k\|^2-\|w_k\|^2-\frac{b_1}{\mu_k} \|v_k\|^2+\frac{b_2}{\mu_{k+1}} \|w_k\|^2+b_1 \int_{|u_k|< M}v_k^2 dx -b_2 \int_{|u_k|< M}w_k^2 dx\\ -\int_{|u_k|< M} f(x,u_k)(v_k-w_k)dx.$ |
(2.15) |
By (2.15) and Hölder inequality, we obtain
$ o(1)\cdot \|u_k\|\le \left(1-\frac{b_1}{\mu_k}\right)\|v_k\|^2+\left(\frac{b_2}{\mu_{k+1}}-1\right)\|w_k\|^2+\frac{b_1b_2}{b_2-b_1} \int_{|u_k|< M}u_k^2 dx\\ +\left(\int_{|u_k|< M}|f(x,u_k)|^2dx\right)^{\frac{1}{2}}\left(\int_{|u_k|< M}|v_k-w_k|^2dx\right)^{\frac{1}{2}}\\ \le \left(1-\frac{b_1}{\mu_k}\right)\|v_k\|^2+\left(\frac{b_2}{\mu_{k+1}}-1\right)\|w_k\|^2+\frac{b_1b_2}{b_2-b_1} M^2 |\Omega| +C\left(\int_{|u_k|< M}|u_k|^2dx\right)^{\frac{1}{2}} \\ \le \left(1-\frac{b_1}{\mu_k}\right)\|v_k\|^2+\left(\frac{b_2}{\mu_{k+1}}-1\right)\|w_k\|^2+\frac{b_1b_2}{b_2-b_1} M^2 |\Omega| +CM\sqrt{|\Omega|}\\ \le -a \|u_k\|^2+\frac{b_1b_2}{b_2-b_1} M^2 |\Omega| +CM\sqrt{|\Omega|}.$ |
So, $\{u_k\}$ is bounded, where $a = \min\left\{ \frac{b_1}{\mu_k}-1,1 - \frac{b_2}{\mu_{k+1}} \right\} > 0$. A standard argument shows that $J (u)$ satisfies e (PS) condition. This completes the proof.
Proof of Theorem 2.2 (H4) and Lemma 2.4 enable us to obtain that (A1) and (A4) in Lemma 2.2 are satisfied.
By $\liminf\limits_{|t|\to \infty}\frac{f(x,t)}{t}>\mu_k$, there exist $M_1>0$ and $\varepsilon>0$ such that $f(x,t)\ge (\mu_k+\varepsilon) t $, for all $|t|\ge M_1$ and $x\in \Omega$. We know $f(x,t)-(\mu_k+\varepsilon) t$ is continuous and bounded on $x\in \Omega$ and $|t|\le M_1$, and thus there exists $C>0$ such that $-C\le f(x,t)-(\mu_k+\varepsilon) t\le C$. Therefore,
$f(x,t)\ge (\mu_k+\varepsilon)t-C, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ |
(2.16) |
By the definition of $F(x,u)$, we see
$F(x,u)=\int_0^u f(x,t)dt\ge \int_0^u [(\mu_k+\varepsilon)t-C]dt\ge \frac{u^2}{2}(\mu_k+\varepsilon)-Cu, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ |
(2.17) |
For any $u \in Y_k$, and it is easy to verify that $\|\cdot\|_2$ is a norm of $Y_k$. Since all the norms of a finite dimensional normed space are equivalent, so there exists positive constant $C_1$ such that $\|u\|_2\le C_1\|u\|$. In view of (2.17), by Hölder inequality, we obtain
$J(u) =\frac{1}{2}\|u\|^2-\int_\Omega F(x,u)dx\le \frac{1}{2}\|u\|^2-\int_\Omega \frac{u^2}{2}(\mu_k+\varepsilon)dx+C|\Omega|^{\frac{1}{2}}\|u\|_2\\ \le \frac{1}{2}\|u\|^2-\frac{\mu_k+\varepsilon}{2\mu_k}\|u\|^2+CC_1|\Omega|^{\frac{1}{2}}\|u\|=\frac{1}{2}\|u\|^2 \left(1-\frac{\mu_k+\varepsilon}{\mu_k}\right)+CC_1|\Omega|^{\frac{1}{2}}\|u\|. $ |
(2.18) |
Since $1-\frac{\mu_k+\varepsilon}{\mu_k}<0$, then there exists positive constants $d_k$ such that
$J(u)\le 0, \text{ for each } u\in Y_k \text{ and } \|u\|\ge d_k.$ |
(2.19) |
On the other hand, by $\limsup\limits_{|t|\to \infty}\frac{f(x,t)}{t}<\mu_{k+1}$, there exist $M_2>0$ and $\varepsilon\in (0,\mu_{k+1})$ such that
$f(x,t)\le (\mu_{k+1}-\varepsilon)t, \ |t|\ge M_2$ |
and $x\in \Omega$. For the reason that $f(x,t)- (\mu_{k+1}-\varepsilon)t$ is continuous and bounded on $|t|\le M_2$ and $x\in \Omega$, then there is a $C>0$ such that $f(x,t)- (\mu_{k+1}-\varepsilon)t\le C,\ |t|\le M_2$ and $x\in \Omega$. Consequently,
$f(x,t)\le (\mu_{k+1}-\varepsilon)t+ C, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ |
(2.20) |
Therefore, we have
$F(x,u)\le \frac{u^2}{2}(\mu_{k+1}-\varepsilon)+Cu, \ \forall (x,t)\in \Omega\times \mathbb{R}.$ |
(2.21) |
For any $u \in Z_k$, let $ \beta_k:=\sup\limits_{u\in Z_k, \|u\|=1}\|u\|_2$. Since $X$ is compactly embedded into $L^2(\Omega)$, there holds (see [21, Lemma 3.8]), $\beta_k\to 0, \text{ as } k\to \infty$. By (2.21) and Hölder inequality, we arrive at
$J(u) =\frac{1}{2}\|u\|^2-\int_\Omega F(x,u)dx \ge \frac{1}{2}\|u\|^2 - \int_\Omega \frac{u^2}{2}(\mu_{k+1}-\varepsilon)dx- \int_\Omega Cudx\\ \ge \frac{1}{2}\|u\|^2 - \frac{\mu_{k+1}-\varepsilon}{2\mu_{k+1}}\|u\|^2- C|\Omega|^{\frac{1}{2}}\left(\int_\Omega |u|^2dx\right)^{\frac{1}{2}} \\ \ge \frac{1}{2}\|u\|^2 \left(1- \frac{\mu_{k+1}-\varepsilon}{\mu_{k+1}}\right)-C|\Omega|^{\frac{1}{2}}\beta_k \|u\|.$ |
(2.22) |
Choosing $r_k:=1/\beta_k$, we easily $r_k\to \infty$ as $k\to \infty$, then
$J(u)\ge \frac{1}{2}\left(1- \frac{\mu_{k+1}-\varepsilon}{\mu_{k+1}}\right) r_k^2-C|\Omega|^{\frac{1}{2}}\to \infty, \text{ as } k\to \infty.$ |
Hence, $b_k:=\inf\limits_{u\in Z_k, \|u\|=r_k}J(u)\to \infty$ as $k\to \infty$. Combining this and (2.19), we can take $\rho_k:=\max\{d_k,r_k+1\}$, and thus $a_k:=\max\limits_{u\in Y_k, \|u\|=\rho_k}J(u)\le 0$.
Up until now, we have proved the functional $J$ satisfies all the conditions of Lemma 2.2, then $J$ has an unbounded sequence of critical values. Equivalently, (1.1) has infinitely many weak solutions. This completes the proof.