数学杂志  2014, Vol. 34 Issue (2): 374-378   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
邹明田
李寿贵
陈莉莉
一类特殊网格的几何概率
邹明田, 李寿贵, 陈莉莉    
武汉科技大学理学院, 湖北 武汉 430065
摘要:本文研究了以正六边形和菱形为基本区域的复合网格中的Buffon问题.利用积分几何理论和运动测度工具, 获得了上述复合网格与长针相交的概率表达式, 推广了长针与复合网格相交的概率问题.
关键词Buffon问题    积分几何    运动测度    
A SPECIAL CLASS OF THE GRID GEOMETRIC PROBABILITY
ZOU Ming-tian, LI Shou-gui, CHEN Li-li    
College of Science, Wuhan University of Science and Technology, Wuhan 430065, China
Abstract: In this paper, we study the Buffon problem on the complicated lattices, of which the basic areas consist of hexagon and diamond. By using the theory of integral geometric and kinematic measuring tools, we obtain the expressions of the probability for a needle intersecting with the bound of the complicated lattices above, which generalize the problem of the probability for a long needle intersecting with the bound of the complicated lattices.
Key words: Buffon problem     integral geometry     kinematic measure    
1 引言

凸体的包含测度问题是积分几何中相当重要的课题之一.任德麟在80年代建立了二维和n维含于凸体内定长线段的的运动测度的系统理论, 推导出n维欧式空间中凸体的弦幂积分不等式, 提出了并解决了一系列复杂的几何概率课题[1-2].Santalo将平行线网格推广到平行带域网格, 同时将小针推广到凸域, 但他只研究了凸域直径不超过带域间距离的情况.任德麟作出了进一步推广, 取消凸域直径不超过带域的间距离这一限制, 而后其学生黎荣泽、张高勇讨论了相交的两组平行线网上的Buffon概率, 本文拟研究以正六边形和菱形为基本区域的复合网格中的Buffon问题.

2 预备知识

定义2.1 以$\sigma$表示凸域$D$被直线$G$截出的弦长.当$G$仅与$\partial$$D$相交包括$G$是线段情形, 约定$\sigma$=0, $G$的表示取广义法式, 对任意给定的$\sigma$${\varphi(0 \le \varphi \le 2\pi )}$, 令

$\begin{equation} {p\left(\sigma, \varphi \right)}= \mathop {\sup }\limits_G {\{ p:m[G \cap \left({\mathop{\rm int}} D\right)] = \sigma} \}, \end{equation}$ (2.1)

称二元函数${p\left(\sigma, \varphi \right)}$为凸域的广义支持函数[1-3].

定义2.2 以${\sigma _M}(\varphi )$表示垂直于$\varphi$方向的直线$G$与凸域$D$截出的弦长最大值, 即

$\begin{equation} {\sigma _M}(\varphi ) = \mathop {\sup }\limits_G \{ \sigma :\sigma = m[G \cap ({\mathop{\rm int}} D)]\}. \end{equation}$ (2.2)

对任意给定的$l(l \ge 0)$${\varphi(0 \le \varphi \le 2\pi )}$, 令

$\begin{equation} {r(l, \varphi )} = \min \{ l, {\sigma _M}(\varphi )\}, \end{equation}$ (2.3)

称二元函数$r(l, \varphi )$为凸域$D$的限弦函数[1-3].

3 主要内容

考虑将长为$l$的小针投掷于以正六边形${K_1}$和菱形${K_2}$为基本区域的平面网格(如图 1所示)中, 研究小针与此网格相交的概率.

图 1  

${K_1}$${K_2}$的面积和周长分别为${F_1}$${F_2}$${L_1}$${L_2}$, 含于${K_1}$内小针的运动测度为${m_1}(l)$, 含于${K_2}$内小针的运动测度为$ {m_2}(l)$.

假设正六边形的边长为$a$, 则${F_1} = \frac{{3\sqrt 3 }}{2}{a^2}$, ${F_2} = \frac{{\sqrt 3 }}{2}{a^2}$.

${n^2}$个边长为$a$的正方形组成以$na$为边长的大正方形, 含于大正方形内小针的运动测度为记为${m_3}(l)$, 当$n \to \infty $

$\begin{equation} p = \mathop {\lim }\limits_{n \to \infty } \frac{{{m_3}(l) - \frac{{{{(na)}^2}}}{{{F_1} + {F_2}}}({m_1}(l) + {m_2}(l))}}{{{m_3}(l)}}, \end{equation}$ (3.1)

即为小针与此网格相遇的概率[5].

引理3.1 设${p\left(\sigma, \varphi \right)}$$r(l, \varphi )$分别为凸域$D$的广义支撑函数和限弦函数, ${m}(l)$之定义同前, 则有

$\begin{equation} m(l) = \pi F - \int_0^{2\pi } {d\varphi } \int_0^{r(l, \varphi )} {p(\sigma, \varphi )} d\sigma, \end{equation}$ (3.2)

其中$F$$D$之面积[1].

对于边长为$a$一个角为$\pi /3$的菱形建立如下坐标系

图 2  

则此菱形的广义支撑函数为

$ {p_1} = \frac{{\sqrt 3 }}{2}a\cos \varphi - \frac{{\sqrt 3 }}{6}\sigma (3{\cos ^2}\varphi - {\sin ^2}\varphi ), \varphi \in\left[{0, \frac{\pi }{3}} \right), \\ {p_2} = \frac{1}{2}a\sin \varphi + \frac{{\sqrt 3 }}{6}\sigma (3{\cos ^2}\varphi- {\sin ^2}\varphi ), \varphi \in\left[{\frac{\pi }{3}, \frac{\pi }{2}} \right]. $

限弦函数为

$r(l, \varphi ) = \left\{ \begin{array}{l} l, \quad \quad \quad \quad \quad \quad \quad \quad \quad l \in [0, \frac{{\sqrt 3 a}}{2}), \varphi \in [0, \frac{\pi }{2}], \\ l, \quad \quad \quad \quad \quad \quad \quad \quad \quad l \in [\frac{{\sqrt 3 a}}{2}, a), \varphi \in [0, \frac{\pi }{6}-\arccos \frac{{\sqrt 3 a}}{{2l}}], \\ \frac{{\sqrt 3 a}}{{2\cos (\varphi - \pi /6) {\kern 1pt} {\kern 1pt} {\kern 1pt} }}, \quad \quad \quad \quad \;l \in [\frac{{\sqrt 3 a}}{2}, a), \varphi \in (\frac{\pi }{6}-\arccos \frac{{\sqrt 3 a}}{{2l}}, \frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}], \\ l, \quad \quad \quad \quad \quad \quad \quad \quad \quad l \in [\frac{{\sqrt 3 a}}{2}, a), \varphi \in (\frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}, \frac{\pi }{3}]{\kern 1pt} {\kern 1pt} {\kern 1pt}, \\ l, \quad \quad \quad \quad \quad \quad \quad \quad \quad l \in [\frac{{\sqrt 3 a}}{2}, a), \varphi \in (\frac{\pi }{3}, \frac{\pi }{2}]{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}, \\ \frac{{\sqrt 3 a}}{{2\cos (\varphi - \pi /6) {\kern 1pt} {\kern 1pt} {\kern 1pt} }}, \quad \quad \quad \quad {\kern 1pt} \;l \in [a, \sqrt 3 a], \varphi \in (\frac{\pi }{3}, \frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}], {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \\ l, \quad \quad \quad \quad \quad \quad \quad \quad \quad l \in [a, \sqrt 3 a], \varphi \in (\frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}, \frac{\pi }{2}]. {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \end{array} \right.$

$I = \int_0^{\frac{\pi }{2}} {d\varphi \int_0^{r(l, \varphi )} {pd\sigma } } $, 则分三种情况讨论

1. ${\kern 1pt} {\kern 1pt} l \in [0, \frac{{\sqrt 3 a}}{2})$,

${I_1} = \int_0^{\frac{\pi }{2}} {d\varphi \int_0^l {pd\sigma } } = \int_0^{\frac{\pi }{3}} {d\varphi } \int_0^l {{p_1}d\sigma } + \int_{\frac{\pi }{3}}^{\frac{\pi }{2}} {d\varphi } \int_0^l {{p_2}d\sigma } = al- \frac{{{l^2}}}{4}- \frac{{\sqrt 3 }}{{72}}\pi {l^2}.$

2. ${\kern 1pt} {\kern 1pt} l \in [\frac{{\sqrt 3 a}}{2}, a)$,

$ {I_2} = \int_0^{\frac{\pi }{6}- \arccos \frac{{\sqrt 3 a}}{{2l}}} {d\varphi } \int_0^l {{p_1}d\sigma } + \int_{\frac{\pi }{6}- \arccos \frac{{\sqrt 3 a}}{{2l}}}^{\frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}} {d\varphi } \int_0^{\frac{{\sqrt 3 a}}{{2\cos \varphi }}} {{p_1}d\sigma } + \int_{\frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}}^{\frac{\pi }{3}} {d\varphi } \int_0^l {{p_1}d\sigma } \\ + \int_{\frac{\pi }{3}}^{\frac{\pi }{2}} {d\varphi } \int_0^l {{p_2}d\sigma } \\ = al- \frac{{{l^2}}}{4} - \frac{{\sqrt 3 }}{{72}}\pi {l^2} - \frac{5}{4}a\sqrt {{l^{^2}} - \frac{3}{4}{a^2}} + (\frac{{\sqrt 3 }}{6}{l^2} + \frac{{\sqrt 3 }}{2}{a^2})\arccos \frac{{\sqrt 3 a}}{{2l}}. $

3. ${\kern 1pt} l \in [a, \sqrt 3 a]$,

$ {I_3} = \int_0^{\frac{\pi }{3}} {d\varphi } \int_0^{\frac{h}{{\cos (\varphi - \pi /6)}}} {{p_1}d\sigma } + \int_{\frac{\pi }{3}}^{\frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}} {d\varphi } \int_a^{\frac{{\sqrt 3 a}}{{2\cos (\varphi - \pi /6) {\kern 1pt} {\kern 1pt} {\kern 1pt} }}{\kern 1pt} } {{p_2}d\sigma } + \int_{\frac{\pi }{6} + \arccos \frac{{\sqrt 3 a}}{{2l}}}^{\frac{\pi }{2}} {d\varphi } \int_a^l {{p_2}d\sigma } \\ = \frac{{\sqrt 3 }}{{24}}\pi {a^2} + \frac{{\sqrt 3 }}{{36}}\pi {l^2} + \frac{3}{{16}}{a^2} + \frac{{{l^2}}}{8} - \frac{3}{8}a\sqrt {{l^{^2}} - \frac{3}{4}{a^2}} + (\frac{{\sqrt 3 }}{4}{a^2} - \frac{{\sqrt 3 }}{{12}}{l^2})\arccos \frac{{\sqrt 3 a}}{{2l}}. $

于是此菱形的运动测度为

${m_2}(l) = \frac{{\sqrt 3 }}{2}\pi {a^2} - 4I, $

将前面的结果代入可得

${m_2}(l) = \left\{ \begin{array}{l} \frac{{\sqrt 3 }}{2}\pi {a^2} - 4al + {l^2} + \frac{{\sqrt 3 }}{{18}}\pi {l^2}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \in [0, \frac{{\sqrt 3 }}{2}a), \\ \frac{{\sqrt 3 }}{2}\pi {a^2}- 4al + {l^2} + \frac{{\sqrt 3 }}{{18}}\pi {l^2} + 5a\sqrt {{l^{^2}}- \frac{3}{4}{a^2}}, \\- (\frac{{2\sqrt 3 }}{3}{l^2} + 2\sqrt 3 {a^2})\arccos \frac{{\sqrt 3 a}}{{2l}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \in [\frac{{\sqrt 3 }}{2}a, a){\kern 1pt} {\kern 1pt} {\kern 1pt}, \\ \frac{{\sqrt 3 }}{3}\pi {a^2}- \frac{3}{4}{a^2}- \frac{1}{2}{l^2}- \frac{{\sqrt 3 }}{9}\pi {l^2}{\rm{ + }}\frac{3}{2}a\sqrt {{l^{^2}} - \frac{3}{4}{a^2}}, \\ - (\sqrt 3 {a^2} - \frac{{\sqrt 3 }}{3}{l^2})\arccos \frac{{\sqrt 3 a}}{{2l}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \in [a, \sqrt 3 a]{\kern 1pt} {\kern 1pt}. \end{array} \right.$

由上述方法还可以得到

正六边形内定长线段的运动测度[4]

${m_1}(l) = \left\{ \begin{array}{l} \frac{{3\sqrt 3 }}{2}\pi {a^2} - 6al - \frac{{\sqrt 3 \pi {l^2}}}{6} + \frac{3}{2}{l^2}, \quad \quad \quad \quad \quad \quad \quad \;\quad \;l \in [0, a], {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \\ \frac{{5\sqrt 3 }}{2}\pi {a^2} + \frac{{\sqrt 3 \pi {l^2}}}{2} -(3\sqrt 3 {a^2} + 2\sqrt 3 {l^2}), \\ \arcsin \frac{{\sqrt 3 a}}{{2l}} -\frac{{9a}}{2}\sqrt {4{l^2} -3{a^2}}, \quad \quad \quad \quad \quad \quad \quad \;\quad \;\;l \in (a, \sqrt 3 a], {\kern 1pt} \\ 2\sqrt 3 \pi {a^2} + \frac{{\sqrt 3 }}{6}\pi {l^2} -9{a^2} -\frac{3}{2}{l^2} + 15a\sqrt {{l^2} -3{a^2}}, \\ - (12\sqrt 3 {a^2} + \sqrt 3 {l^2})\arccos \frac{{\sqrt 3 a}}{l}, \quad \quad \quad \quad \quad \quad \;\, \quad l \in (\sqrt 3 a, 2a].{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \end{array} \right.{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} $

大正方形内定长线段的运动测度

${m_3}\left( l \right) = \pi {n^2}{a^2} - 4nal + {l^2}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l \in [0, na), $

则小针与网格相交的概率

$p = \mathop {\lim }\limits_{n \to \infty } \frac{{{m_3}(l)- \frac{{{{(na)}^2}}}{{{F_1} + {F_2}}}({m_1}(l) + {m_2}(l))}}{{{m_3}(l)}} = 1- \frac{{({m_1}(l) + {m_2}(l))}}{{\pi ({F_1} + {F_2})}} = 1- \frac{{({m_1}(l) + {m_2}(l))}}{{2\sqrt 3 \pi {a^2}}}.$

(i)当$l \in [0, \frac{{\sqrt 3 }}{2}a)$时,

$p = \frac{{10al- \frac{5}{2}{l^2} + \frac{{\sqrt 3 }}{9}\pi {l^2}}}{{2\sqrt 3 \pi {a^2}}}. $

(ii)当$l \in [\frac{{\sqrt 3 }}{2}a, a)$时,

$p = \frac{{10al- \frac{5}{2}{l^2} + \frac{{\sqrt 3 }}{9}\pi {l^2}- \frac{5}{4}a\sqrt {{l^{^2}}- \frac{3}{4}{a^2}} + (\frac{{\sqrt 3 }}{6}{l^2} + \frac{{\sqrt 3 }}{2}{a^2})\arccos \frac{{\sqrt 3 a}}{{2l}}}}{{2\sqrt 3 \pi {a^2}}}. $

(iii)当$l \in [a, \sqrt 3 a]$时,

$p =\frac{\frac{3}{4}{a^2} + \frac{1}{2}{l^2} - \frac{{5\sqrt 3 }}{6}\pi {a^2} - \frac{{7\sqrt 3 }}{{18}}\pi {l^2} + \frac{{15}}{2}a\sqrt {{l^{^2}} - \frac{3}{4}{a^2}} + (\sqrt 3 {a^2} - \frac{{\sqrt 3 }}{3}{l^2})\arccos \frac{{\sqrt 3 a}}{{2l}}}{{{2\sqrt 3 \pi {a^2}}}} \\ +\frac{ (3\sqrt 3 {a^2} + 2\sqrt 3 {l^2})\arcsin \frac{{\sqrt 3 a}}{{2l}}}{ {{2\sqrt 3 \pi {a^2}}}}.$

(iv)当$l \in [\sqrt 3 a, 2a]$时,

$p = \frac{{9{a^2} + \frac{3}{2}{l^2} - \frac{{\sqrt 3 }}{6}\pi {l^2} - 15a\sqrt {{l^2} - 3{a^2}} + (12\sqrt 3 {a^2} + \sqrt 3 {l^2})\arccos \frac{{\sqrt 3 a}}{l}}}{{2\sqrt 3 \pi {a^2}}}. $
参考文献
[1] Ren Delin. Topics in integral geometry[M]. Singapore: World Scientific, 1994.
[2] Ren Delin. The generalized support function and its application [C]. New York:Grodon and breach science publish, 1982: 1367-1378.
[3] SantaloL A. 积分几何与几何概率[M]. 吴大任译.: 南开大学出版社, 1991.
[4] 黎荣泽, 张高勇. 某些凸多边形内定长线段的运动测度公式及其在几何概率中的运用[J]. 武汉钢铁学院学报, 1984, 1: 106–128.
[5] Xie Fengfan, Li Deyi. On generalized buffon needle problem for lattices[J]. Acta Mathematica Scientia, 2011, 31(1): 303–308. DOI:10.1016/S0252-9602(11)60230-0
[6] Ciuseppe Caristi, Massimiliano Ferrara. On Buffon's problem for a lattice and its deformations[J]. Beitrage zur Algebra and Ceometrie, 2004, 45(1): 13–20.