数学杂志  2014, Vol. 34 Issue (2): 319-323   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
赵静
邓艳平
一类三阶时滞微分方程解的渐进稳定性
赵静, 邓艳平    
广西民族大学理学院, 广西 南宁 530006
摘要:本文研究了三阶非线性时滞微分方程解的渐近稳定性.利用Lyapunov泛函, 得到了微分方程的零解是渐进稳定的, 这一结果推广了文献[2]的结果.
关键词时滞微分方程    渐近稳定    Lyapunov泛函    
ASYMPTOTIC STABILITY OF A CERTAIN THIRD-ORDER DELAY DIFFERENTIAL EQUATION
ZHAO Jing, DENG Yan-ping    
School of Science, Guangxi University for Natinonalities, Nanning 530006, China
Abstract: In this paper, we study the asymptotic stability of zero solution of the third-order nonlinear delay differential equation. By defining a Lyapunov function, we obtain that the zero solution of the differential equation is asymptotic stable, which extends the results in [2].
Key words: delay differential     asymptotical stability     Lyapunov function    
1 引言

在时滞微分方程理论和应用领域中, 稳定性是非常重要的问题.至今研究时滞微分方程有效的方法还是Lyapunov直接法.对于时滞微分方程解的稳定性研究也得到了很多很好的结果[1-6].

2007年, Zhang和Si[3]研究了形如

$ x'''(t)+g(x'(t))x''(t)+f(x(t), x'(t))+h(x(t))=0 $

的三阶非线性时滞微分方程解的渐进稳定性.

2010年, Cemil Tunc[4]研究了形如

$ \begin{eqnarray*}&& x'''(t)+g(x(t), x'(t))x''(t)+f(x(t-r(t)), x'(t-r(t)))+h(x(t-r(t)))\\ &=&p(t, x(t), x'(t), x(t-r(t)), x'(t-r(t)), x''(t))\end{eqnarray*} $

的三阶非线性时滞微分方程,得到了当$p=0$时此方程零解渐进稳定性的充分性判别准则.

本文, 我们将研究如下三阶非线性时滞微分方程零解的渐进稳定性

$ \begin{eqnarray}&& x'''(t)+g_{1}(x(t), x'(t))x''(t)+g_{2}(x(t), x'(t))x'(t)\nonumber\\ &&+f(x(t-r(t)), x'(t-r(t)))+h(x(t-r(t)))\nonumber\\ &=& p(t, x(t), x'(t), x(t-r(t)), x'(t-r(t)), x''(t)). \end{eqnarray} $ (1.1)

显然, (1.1) 式等价于系统

$ \begin{eqnarray}&& x'(t)=y(t), y'(t)=z(t), \nonumber\\ && z'(t)=-g_{1}(x(t), y(t))z(t)-g_{2}(x(t), y(t))y(t)-f(x(t), y(t))+h(x(t))\nonumber\\ && +\int^{t}_{t-r(t)}f_{x}(x(s), y(s))y(s)ds+\int^{t}_{t-r(t)}f_{y}(x(s), y(s))z(s)ds +\int^{t}_{t-r(t)}h'(x(s))y(s)ds\nonumber \\ && +p(t, x(t), y(t), x(t-r(t)), y(t-r(t)), z(t)), \end{eqnarray} $ (1.2)

其中$0\leq r(t)\leq \alpha, \ \alpha$为正常数, $r, g_{1}, g_{2}, f, h, p$均为连续函数, $f(x, 0)=h(0)=0$.导函数$r'(t)=\frac{dr}{dt}, $ $g_{1x}(x, y)=\frac{\partial g_{1}(x, y)}{\partial x}, $ $g_{2x}(x, y)=\frac{\partial g_{2}(x, y)}{\partial x}, $ $f_{x}(x, y)=\frac{\partial f(x, y)}{\partial x}, $ $f_{y}(x, y)=\frac{\partial f(x, y)}{\partial y}, h'(t)=\frac{dh}{dt}$存在且连续.假设$r'(t)\leq \beta, 0<\beta<1, $ $f(x(t-r(t)), y(t-r(t))), $ $h(x(t-r(t)), $ $g_{1}(x(t), y(t)), $ $g_{2}(x(t), y(t)), $ $p(t, x(t), y(t), x(t-r(t)), y(t-r(t)), z(t))$关于$x(t), y(t), x(t-r(t), y(t-r(t))$$z(t)$满足Lipschitz条件, 则方程有唯一解.最后, 假设所有的解都是实值的.

2 主要结论

定理  设存在正常数$a, b, c, \mu, \delta, \lambda_{1}, \lambda_{2}, K$$L$, 使得下列条件成立:

(1) $g_{1}(x, y)\geq \mu+a, \ g_{2}(x, y)\geq c, \ yg_{1x}(x, y)\leq 0, \ yg_{2x}(x, y)\leq 0;$

(2)  $f(x, y){\rm sgn} y\geq (b+\delta)|y|, \ -K\leq f_{x}(x, y)\leq 0, \ |f_{y}(x, y)|\leq L;$

(3) $0<h'(x)<ab, {\rm sgn}h(x)={\rm sgn} x.$

$\alpha<\min\bigg\{\frac{2a(\delta+c)}{a^{2}b+aK+aL+2\lambda_{1}}, \frac{\mu}{ab+K+L+2\lambda_{2}}\bigg\}$时, 其中$\lambda_{1}=\frac{a^{2}b+ab+aK+K}{2(1-\beta)}, \lambda_{2}=\frac{aL+L}{2(1-\beta)}, $则方程(1.1) 的零解是渐进稳定的.

  先定义一个Lyapunov函数

$ \begin{eqnarray}V&\;=&\;V(x_{t}, y_{t}, z_{t})=a\int^{x}_{0}h(\xi)d\xi+h(x)y+\frac{1}{2}(ay+z)^{2}+ a\int^{y}_{0}[g_{1}(x, \eta)-a]\eta d\eta\nonumber\\ &&+\int^{y}_{0}g_{2}(x, \eta)\eta d\eta +\int^{y}_{0}f(x, \eta)d\eta+ \lambda_{1}\int^{0}_{-r(t)}\int^{t}_{t+s}y^{2}(\theta)d\theta ds \nonumber\\&&+ \lambda_{2}\int^{0}_{-r(t)}\int^{t}_{t+s}z^{2}(\theta)d\theta ds. \end{eqnarray} $ (2.1)

显然, $V(0, 0, 0)=0, $并且(2.1) 式可以改写为

$ \begin{eqnarray}&& V =a\int^{x}_{0}h(\xi)d\xi-\frac{1}{2b}h(x)^{2}+\frac{b}{2}\bigg[y+\frac{h(x)}{b}\bigg]^{2} +\frac{1}{2}(ay+z)^{2}\nonumber\\ &&+ a\int^{y}_{0}\bigg[g_{1}(x, \eta)+\frac{1}{a}g_{2}(x, \eta)-a\bigg]\eta d\eta\nonumber\\ && +\int^{y}_{0}f(x, \eta)d\eta-\frac{b}{2}y^{2}+ \lambda_{1}\int^{0}_{-r(t)}\int^{t}_{t+s}y^{2}(\theta)d\theta ds + \lambda_{2}\int^{0}_{-r(t)}\int^{t}_{t+s}z^{2}(\theta)d\theta ds.\end{eqnarray} $ (2.2)

由条件$0<h'(x)<ab, $ ${\hbox{sgn}}h(x)={\hbox{sgn}}x$$g_{1}(x, y)\geq \mu+a$可得

$ \begin{eqnarray*} a\int^{x}_{0}h(\xi)d\xi-\frac{1}{2b}h(x)^{2} &\;=&\; a\int^{x}_{0}h(\xi)d\xi-\frac{1}{b}\int^{x}_{0}h(\xi)h'(\xi)d\xi\\ &\;=&\;\int^{x}_{0}[a-b^{-1}h'(\xi)]h(\xi)d\xi =b^{-1}\int^{x}_{0}[ab-h'(\xi)]h(\xi)d\xi>0 \end{eqnarray*} $

$ a\int^{y}_{0}\bigg[g_{1}(x, \eta)+\frac{1}{a}g_{2}(x, \eta)-a\bigg] \eta d\eta\geq \frac{a\mu+c}{2}y^{2}. $

另一方面, 由条件$f(x, y){\hbox{sgn}}y\geq (b+\delta)|y|, $可得

$y>0$时, $f(x, y)\geq(b+\delta)y, $ $f(x, y)y\geq(b+\delta)y^{2}.$

$y<0$时, $f(x, y)\leq(b+\delta)y, $ $f(x, y)y\geq(b+\delta)y^{2}.$

从而必有

$ \int^{y}_{0}f(x, \eta)d\eta-\frac{b}{2}y^{2} =\int^{y}_{0}[f(x, \eta)-b\eta]d\eta\geq 0. $

综上述

$ \begin{eqnarray*} V&\;\geq&\; b^{-1}\int^{x}_{0}[ab-h'(\xi)]h(\xi)d\xi+\frac{a\mu+c}{2}y^{2}+\frac{1}{2}(ay+z)^{2}\\ && +\lambda_{1}\int^{0}_{-r(t)}\int^{t}_{t+s}y^{2}(\theta)d\theta ds + \lambda_{2}\int^{0}_{-r(t)}\int^{t}_{t+s}z^{2}(\theta)d\theta ds.\end{eqnarray*} $

显然对于这个不等式, 存在足够小的正常数$D_{i}~ (i=1, 2, 3), $使得

$ \begin{eqnarray} V&\;=&\;D_{1}x^{2}+D_{2}y^{2}+D_{3}z^{2}+\lambda_{1}\int^{0}_{-r(t)}\int^{t}_{t+s}y^{2}(\theta)d\theta ds + \lambda_{2}\int^{0}_{-r(t)}\int^{t}_{t+s}z^{2}(\theta)d\theta ds\nonumber\\ &\geq&\; D_{4}(x^{2}+y^{2}+z^{2})+\lambda_{1}\int^{0}_{-r(t)}\int^{t}_{t+s}y^{2}(\theta)d\theta ds + \lambda_{2}\int^{0}_{-r(t)}\int^{t}_{t+s}z^{2}(\theta)d\theta ds\nonumber\\ &\geq&\;D_{4}(x^{2}+y^{2}+z^{2}), \end{eqnarray} $ (2.3)

其中$D_{4}=\min\{D_{1}, D_{2}, D_{3}\}, $从而$x^{2}+y^{2}+z^{2}\leq D_{4}^{-1}V(x_{t}, y_{t}, z_{t}), \ y^{2}+z^{2}\leq D_{4}^{-1}V(x_{t}, y_{t}, z_{t}).$

接下来, 证明存在一个连续函数$u(x)\geq 0$$u(|\varphi(0)|)\geq 0$, 使得$u(|\varphi(0)|)\leq V(\varphi).$

事实上, $V$沿系统(1.2) 的导数为

$ \frac{dV}{dt}\;=\;-af(x, y)y+h'(x)y^{2}-[g_{1x}(x, y)-a]z^{2} +ay\int^{y}_{0}g_{1x}(x, \eta)\eta d\eta+\\\;\;\;\;y\int^{y}_{0}g_{2x}(x, \eta)\eta d\eta\nonumber\\ \;\;\;\;+y\int^{y}_{0}f_{x}(x, \eta)d\eta-ag_{2}(x, y)y^{2} +(ay+z)\int^{t}_{t-r(t)}h'(x(s))y(s)ds\nonumber\\ \;\;\;\;+(ay+z)\int^{t}_{t-r(t)}f_{x}(x(s), y(s))y(s)ds \;\;\;\;+(ay+z)\int^{t}_{t-r(t)}f_{y}(x(s), y(s))z(s)ds+\\\;\;\;\;\lambda_{1}r(t)y^{2}\nonumber\\ \;\;\;\;-\lambda_{1}(1-r'(t))\int^{t}_{t-r(t)}y^{2}(s)ds+\lambda_{2}r(t)z^{2} -\lambda_{2}(1-r'(t))\int^{t}_{t-r(t)}z^{2}(s)ds. $ (2.4)

根据定理假设和等式$2|st|=s^{2}+t^{2}, $可得

$ \begin{eqnarray}\frac{dV}{dt}&\;\leq&\; [a(\delta+c)-(\frac{a^{2}b}{2}+\frac{aK}{2}+\frac{aL}{2}+\lambda_{1})]y^{2} -[\mu-(\frac{ab}{2}+\frac{K}{2}+\frac{L}{2}+\lambda_{2})]z^{2}\nonumber\\ && +[\frac{a^{2}b}{2}+\frac{ab}{2}+\frac{aK}{2}+\frac{K}{2}-\lambda_{1}(1-\beta)] \int^{t}_{t-r(t)}y^{2}(s)ds\nonumber\\ &&+[\frac{aL}{2}+\frac{L}{2}-\lambda_{2}(1-\beta)]\int^{t}_{t-r(t)}z^{2}(s)ds, \end{eqnarray} $ (2.5)

从而$\frac{dV}{dt}\leq 0.$易证集合$Z=\{\varphi\in C:\dot{V}(\varphi)=0\}$的最大不变集$Q=\{0\}.$于是方程(1.1) 满足$\frac{dV(x_{t}, y_{t}, z_{t})}{dt}=0$的唯一解是$x=y=z=0.$因此, 方程(1.1) 的零解是渐进稳定的(根据见参考文献[5]).证毕.

下面给出以下的一个三阶非线性时滞微分方程来阐述主要结论的具体应用.例如三阶非线性时滞微分方程零解的渐进稳定性

$ \begin{eqnarray}&& x'''(t)+[1+e^{-x(t)x'(t)}+\frac{1}{3+\cos(x'(t))}]x''(t)+[3+e^{-x(t)x'(t)}]x'(t)\nonumber\\ && +x'(t-r)+\frac{1}{10}x(t-r(t))=0.\end{eqnarray} $ (2.6)

显然, (1.1) 式等价于系统

$ \begin{eqnarray*}&& x'(t)=y(t), y'(t)=z(t), \\ && z'(t)=-[1+e^{-x(t)x'(t)}+\frac{1}{3+\cos(x'(t))}]z(t)-[3+e^{-x(t)x'(t)}]y(t)-x'(t-r)\\ &&+\frac{1}{10}x(t-r(t))+\int^{t}_{t-r(t)}\frac{4-y^{2}(s)-y(s)}{(4+y^{2}(s))^{2}}z(s)ds +\frac{1}{10}\int^{t}_{t-r(t)}y(s)ds, \end{eqnarray*} $

其中

$ g_{1}(x, y)=2+\sin(x)+\frac{1}{3+\cos(y)}, g_{2}(x, y)=3+\frac{1}{1+x^{2}+y^{2}}, f(x, y)=y, h(x)=\frac{1}{10}x. $

显然

(1) $g_{1}(x, y)=1+e^{-xy}+\frac{1}{3+\cos(y)}\geq1+\frac{1}{4}:= \mu+a,   yg_{1x}(x, y)=-y^{2}e^{-xy}\leq 0, $

$ g_{2}(x, y)=3+e^{-xy}\geq3:= c, yg_{2x}(x, y)=-y^{2}e^{-xy}\leq 0; $

(2) $f(x, y)$sgn$y=y$ sgn$y=|y|=(\frac{1}{2}+\frac{1}{2})|y|:=(b+\delta)|y|, $

$ -1:=-K< f_{x}(x, y)=0, |f_{y}(x, y)|=1:=L; $

(3)  $h(x)=\frac{1}{10}x, ~~h(0)=0, ~~0<h'(x)=\frac{1}{10}<ab=\frac{1}{8}, $ sgn$h(x)=$sgn$x.$

即定理的所有条件被满足, 因此方程(2.6) 的零解是渐近稳定的.

参考文献
[1] Cemil T. Global stability of solutions of certain third-order nonlinear differential equations[J]. Pan-American Mathematical Journal, 2004, 14(4): 31–37.
[2] Cemil T. Some new stability and boundedness results of solutions of Liénard type equations with a deviating argument[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(1): 85–91. DOI:10.1016/j.nahs.2009.08.002
[3] Zhang Lijuan, Si Ligeng. Globally asymptotic stability of a class of third order nonlinear system[J]. Acta Math. Appl. Sin., 2007, 30(1): 99–103.
[4] Cemil T. On the stability and boundedness of nonlinear third order delay differential equations with delay[J]. Filomat, 2010, 24(3): 1–10. DOI:10.2298/FIL1003001T
[5] Sinha A S C. On stability of solutions of some third and fourth order delay-differential equations[J]. Infor. Control, 1973, 23: 165–172. DOI:10.1016/S0019-9958(73)90651-7
[6] Zhang Zaiyun, Liu Zhenhai. Stability analysis of heat flow with boundary time-varying delay effect[J]. Nonlinear Analysis, 2010, 73: 1878–1889. DOI:10.1016/j.na.2010.05.022
[7] 郑祖麻. 泛函微分方程理论[M]. 安徽: 安徽教育出版社, 1994.
[8] Liu Zhenhai, Han Jiangfeng. Boundary value problems for second order impulsive functional differential equations[J]. Dynamic Systems and Applications, 2011, 20: 369–382.
[9] Hale J. Theory of functional differential equations[M]. New York, Heidelberg: Springer-Verlag, 1977.
[10] Burton T A. Stability and periodic solutions of ordinary and functional differential equations[M]. Orlando: Academic Press, 1985.