数学杂志  2014, Vol. 34 Issue (2): 265-271   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHANG Lin-li
LIU An-ping
MA Qing-xia
FAN Rui-li
BOUNDARY VALUE PROBLEM FOR FIRST-ORDER IMPULSIVE INTEGRO-DIFFERENTIAL EQUATION WITH DELAY
ZHANG Lin-li1, LIU An-ping2, MA Qing-xia2, FAN Rui-li2    
1. Department of Basic Course, Haikou College of Economics, Haikou 571127, China;
2. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract: In this paper, the properties of solution of boundary value problem for first-order impulsive integro-differential equation with delay are discussed. Using the iterative analysis method, the existence and uniqueness of solution and the sufficient condition for uniform stability of trivial solution are obtained, which extend the previous results on integro-differential equation in periodic boundary value problem.
Key words: iterative analysis     boundary value problem     existence     stability    
一阶脉冲时滞积分微分方程边值问题
张林丽1, 刘安平2, 马晴霞2, 樊瑞利2    
1. 海口经济学院基础课部, 海南 海口 571127;
2. 中国地质大学(武汉)数学与物理学院, 湖北 武汉 430074
摘要:本文研究了一类一阶脉冲时滞积分微分方程边值问题解的性质.利用迭代分析方法, 得到了该类边值问题解的存在性、唯一性和平凡解一致稳定的充分条件, 推广了已有积分微分方程周期边值问题解的结论.
关键词迭代分析方法    边值问题    存在性    稳定性    
1 Introduction

Impulsive differential equation is mathematical model to simulate process and phenomena observed in control theory, physics, chemistry, population dynamics, biotechnologies, industrial robotics, economics, etc. During the last two decades, impulsive differential equations were studied by many researchers [1-5]. Some classical tools were used to study such a problem in the literatures. These classical technique include the coincidence degree theory of Mawhin [6], the method of upper and lower solutions [7] and some fixed point theorems [8]. In [9, 10], the author used iterative analysis method to obtain the existence of solution of functional differential equation. In [11-15], by the iterative analysis method, authors got the existence of periodic solution or anti-periodic solution of equation without delay. However, there is few paper on two points boundary value problem for impulsive integro-differential equation with delay. In this paper we employ the iterative analysis method to obtain the existence, uniqueness and stability of integro-differential equation for boundary value problem.

We consider the following boundary value problem for first-order impulsive integro-differential equation with delay

$\begin{align} &u'(t)+\alpha(t) u(t)=f(t,u(t-\tau),Pu(t)),\:\:\:\:\:\:\:t\in J^{'}, \end{align}$ (1.1)
$\begin{align} &\triangle u(t_{j})=I_{j}(u(t_{j})),\:\:\:\:\:j=1,\cdots,m, \end{align}$ (1.2)
$\begin{align} &u(0)-u(T)=M, \end{align}$ (1.3)
$\begin{align} &u(t)=\varphi(t),\:\:t\in [-\tau,0], \end{align}$ (1.4)

where $J=[0,T],$ $M\in R,$ $J^{+}=[-\tau,T],$ $T>0,$ $\tau>0,$ $0=t_{0}<t_{1}<\cdots<t_{m}<t_{m+1}=T,$ $J^ {'}=J-\{t_1,\cdots,t_m\},$ $\alpha\in C[J,R^{+}],$ $\varphi\in C[[-\tau,0],R],$ $f: J\times R\times R\rightarrow R$ is continuous at every point $(t,u,Pu)\in J^{'}\times R\times R, $ $I_{j}\in C[R,R],$ $\triangle u(t_{j})=u(t_{j}^+)-u(t_{j}^-),$ $t_{j+1}-t_{j}=\tau$ for all $j=1,\cdots,m,$ $ Pu(t)=\displaystyle\int_{0}^{t}K(t,s)u(s)ds,$ $K\in C[D,R^{+}],$ where $D=\{(t,s)\in R^{2}:0 \leq s\leq t\leq T\}$.

(i) If $M=0,$ $(1.1)$-$(1.4)$ is periodic boundary value problem;

(ii) If $M\neq 0,$ $(1.1)$-$(1.4)$ is two points boundary value problem.

This paper is organized as follows. In Section 2, some notations and preliminaries are introduced. In Section 3, we prove the existence, uniqueness and stability of solution of first-order impulsive integro-differential equation with delay by using the iterative analysis method.

2 Preliminaries

Let $J^{-}=J^{+}-\{t_1,\cdots,t_m\},$ $PC(J^{+},R)=\{u:J^{+}\rightarrow R;$ $u(t)$ is continuous everywhere except for some $t_j$ at which $u(t_{j}^+)$ and $u(t_{j}^-) $ exist and $u(t_{j}^-)=u(t_{j}),$ $j=1,\cdots,m\}.$ $PC^{'}(J^{+},R)=\{u\in PC(J^{+},R);$ $u'(t)$ is continuous on $J^{-},$ where $u'(0^+),$ $u'(T^-),$ $u'(t_{j}^+)$ and $u'(t_{j}^-) $ exist, $j=1,\cdots,m\}.$

And let $E=\{u\in PC(J^+,R):u(t)=\varphi(t), t\in [-\tau,0]\}$ with norm

$ \parallel u\parallel_{E}=\sup \{\mid u(t)\mid:t\in J^+\}, $

it is easy to see that $E$ is a Banach space.

Let $\parallel \Psi\parallel=\sup \{\mid \varphi(t)\mid:t\in [-\tau,0]\}.$ Let $E_0=\{PC(J^+,R)\bigcap PC^{'}(J^+,R)\}$, a function $u\in E_0$ is called a solution of problem $(1.1)$-${(1.4)}$ if it satisfies $(1.1)$-${(1.4)}$.

The following are the basic hypotheses:

(${H}_1)$ $f(t,0,0)=0$ and there exists $L(t)>0,L(t)\in L^{1}[0,T]$ such that

$\mid f(t,x_1,x_2)-f(t,y_1,y_2)\mid\leq L(t)(\mid x_1-y_1\mid+\mid x_2-y_2\mid);$

(${H}_2)$ $I_j(0)=0$ and there exists $q_j>0$ such that $\mid I_j(u_1)-I_j(u_2)\mid\leq q_j\mid u_1-u_2\mid.$

We denote

$\begin{eqnarray*} \begin{split} K^{*}&=\sup\limits_{t\in J}\left\lbrace \int^t_0\mid K(t,s)\mid ds\right\rbrace ,\:\:\:D=\int^{T}_{0} L(s)ds, B=\sum\limits_{j=1}^{m}q_{j}, \\ A&=\frac{D}{1-e^{-a(T)}}, C=\frac{B+D(1+K^{*})}{1-e^{-a(T)}}. \end{split} \end{eqnarray*}$

(${H}_3)$ $ 0<C<1.$

To obtain the main theorem of this paper, we need the following lemma.

Lemma 2.1 The solution of the boundary value problem $(1.1)$-${(1.4)}$ can be presented as

$\begin{equation}\label{2.1} u(t)=\int^{T}_{0}g_{\alpha}(t,s)f(s,u(s-\tau),Pu(s))ds+Mg_{\alpha}(t,0)+\sum\limits^{m}_{j=1}g_{\alpha}(t,t_j)I_j(u(t_j)),\:\:t\in J, \end{equation}$

where

$\begin{equation} g_{\alpha}(t,s)=\frac{1}{1-e^{-a(T)}}\left\{ \begin{array}{ll} e^{-[a(t)-a(s)]}, & 0\leq s\leq t\leq T,\\ e^{-[a(T)+a(t)-a(s)]},& 0\leq t<s\leq T \end{array} \right. \end{equation}$

with

$\begin{equation} a(t)=\int^{t}_{0}\alpha(s)ds,\:\:\:\:\:\:\:\:\:t\in J. \end{equation}$

Proof Set $y(t)=e^{a(t)}u(t)$ for $t\in J$. Then $y(t)$ satisfies the impulsive boundary value problem

$\begin{align*} y'(t)&=e^{a(t)} f ^{*}(t,y(t-\tau),Py(t)),\\ y(0)&=e^{-a(T)}y(T)+M,\\ y(t_j^+)&=y(t_j^-)+I_j^*(y(t_j)), \end{align*}$

where $f ^{*}(t,y(t-\tau),Py(t))=f(t,u(t-\tau),Pu(t))$ and $I_j^*(y(t_j))= e^{a(t_j)}I_j(e^{-a(t_j)}y(t_j)).$ For $t\in [0,t_1]$, there is no impulsive effect in this interval, and we obtain

$\begin{equation} y(t)=y(0)+\int^{t}_{0}e^{a(s)}f ^{*}(s,y(s-\tau), Py(s))ds \end{equation}$

and

$\begin{equation}\label{2.2} y(t_1^{-})=y(0)+\int^{t_1}_{0}e^{a(s)}f ^{*}(s,y(s-\tau),Py(s))ds. \end{equation}$

Considering Cauchy problem $(1.1)$ and $(2.2)$ on $(t_1,t_2]$, we have

$\begin{align*} y(t)&=y(t_1^{-})+\int^{t}_{t_1}e^{a(s)}f^{*}(s,y(s-\tau),Py(s))ds+I_1^{*}(y(t_1))\\ &=y(0)+\int^{t}_{0}e^{a(s)}f^{*}(s,y(s-\tau),Py(s))ds+I_1^{*}(y(t_1)). \end{align*}$

The procedure can be repeated on $(t_2,t_3],$ $(t_3,t_4],$ $\cdots,$ $(t_m,T]$ and we attain

$\begin{equation} y(t)=y(0)+\int^{t}_{0}e^{a(s)}f^{*}(s,y(s-\tau),Py(s))ds+\sum\limits_{j:t_j\in (0,t)}I_j^{*}(y(t_j)),\:\:\:\:t\in J. \end{equation}$

Using the expression above for $t=T$, we get

$\begin{align*} y(0)=\frac{1}{e^{a(T)}-1}\int^{T}_{0}e^{a(s)}f^{*}(s,y(s-\tau),Py(s))ds+\frac{e^{a(T)}}{e^{a(T)}-1}M+\frac{1}{e^{a(T)}-1}\sum\limits_{j=1}^{m}I_{j}^{*}(y(t_{j})). \end{align*}$

Substituting this value into $(2.3)$, we obtain that for every $t\in J,$

$\begin{equation*} \begin{split} u(t) =&\int^{t}_{0}\left[\frac{e^{-(a(t)-a(s))}}{e^{a(T)}-1}+e^{-(a(t)-a(s))}\right]f(s,u(s-\tau),Pu(s))ds\\ &+\int^{T}_{t}\frac{e^{-(a(t)-a(s))}}{e^{a(T)}-1}f(s,u(s-\tau),Pu(s)) ds\\ &+\sum\limits_{j=1}^{m}\frac{e^{-(a(t)-a(t_{j}))}}{e^{a(T)}-1}I_{j}(u(t_{j}))+\sum\limits_{j:t_{j}\in(0,t)}e^{-(a(t)-a(t_{j}))}I_{j}(u(t_{j}))+\frac{e^{-a(t)}}{1-e^{-a(T)}}M\\ =&\int^{T}_{0}g_{\alpha}(t,s)f(s,u(s-\tau),Pu(s))ds+Mg_{\alpha}(t,0)+\sum\limits_{j=1}^{m}g_{\alpha}(t,t_{j})I_{j}(u(t_{j})). \end{split} \end{equation*}$

The proof of Lemma $2.1$ is completed.

Remark 1 (i) If $M=0,$ the solution of the periodic boundary value problem $(1.1)$-$(1.4)$ can be presented as

$\begin{equation}\label{2.4} u(t)=\int^{T}_{0}g_{\alpha}(t,s)f(s,u(s-\tau),Pu(s))ds+\sum\limits^{m}_{j=1}g_{\alpha}(t,t_j)I_j(u(t_j)),\:\:\:\:\: t\in J. \end{equation}$

(ii) If $M\neq 0,$ the solution of the two points boundary value problem $(1.1)$-$(1.4)$ can be presented as

$\begin{equation}\label{2.5} u(t)=\int^{T}_{0}g_{\alpha}(t,s)f(s,u(s-\tau),Pu(s))ds+Mg_{\alpha}(t,0)+\sum\limits^{m}_{j=1}g_{\alpha}(t,t_j)I_j(u(t_j)),\:\:t\in J. \end{equation}$
3 Main Results

Theorem 3.1 Suppose that hypotheses (H$_1)$-(H$_3)$ hold, the boundary value problem $(1.1)$-$(1.4)$ has a unique solution $u(t)$ on $[-\tau,T]$ and

$\begin{equation}\label{3.1} \parallel u(t)\parallel_E\:\leq\frac{2AD\parallel \Psi\parallel+A\mid M\mid}{D(1-C)}. \end{equation}$

Proof We define the iteration

$\begin{equation} u^{(k)}(t)=\left\{ \begin{array}{lll} \int^{T}_{0}g_\alpha (t,s)f(s,u^{(k-1)}(s-\tau),Pu^{(k-1)}(s))ds+Mg_{\alpha}(t,0)\\ \hspace{5em}+\sum\limits^{m}_{j=1}g_{\alpha}(t,t_j)I_j(u^{(k-1)}(t_j)),\hspace{2.42em}t\in J, \\\parallel \Psi\parallel,\hspace{16.55em}t\in [-\tau,0] \end{array} \right. \end{equation}$

and

$\begin{equation} u^{(0)}(t)=\left\{ \begin{array}{ll} \int^{T}_{0}g_\alpha(t,s)f(s,u(0),Pu(0))ds+Mg_{\alpha}(t,0),\:\:&t\in J, \\\parallel \Psi\parallel,&t\in [-\tau,0]. \end{array} \right. \end{equation}$

Applying inductive method, we obtain that the following inequality holds

$\begin{align*} \parallel u^{(1)}-u^{(0)}\parallel_{E}&= \sup\limits_{t\in[-\tau,T]}\mid u^{(1)}(t)-u^{(0)}(t)\mid \\&\leq\frac{1}{1-e^{-a(T)}}\int^{T-\tau}_{-\tau}L(s+\tau)(\parallel u^{(0)}\parallel_{E}(1+K^{*})+\parallel \Psi\parallel ) ds \\&\:\:\:\:+\frac{B}{1-e^{-a(T)}}\parallel u^{(0)}\parallel_{E} \\&\leq A(1+C)\parallel \Psi\parallel+\frac{A\mid M\mid}{D}C, \\ \parallel u^{(2)}-u^{(1)}\parallel_{E}&\leq \frac{1}{1-e^{-a(T)}}\int^{T-\tau}_{-\tau}L(s+\tau)\parallel u^{(1)}-u^{(0)}\parallel_{E}(1+K^{*})ds \\&\:\:\:\:+\frac{B}{1-e^{-a(T)}}\parallel u^{(1)}-u^{(0)}\parallel_{E} \\ &\leq A(1+C)C\parallel \Psi\parallel+\frac{A\mid M\mid}{D}C^2. \end{align*}$

Again, using induction, we can derive

$\begin{equation} \parallel u^{(j+1)}-u^{(j)}\parallel_{E}\leq A(1+C)C^{j}\parallel \Psi\parallel+\frac{A\mid M\mid}{D}C^{j+1},\:\:\:\:\:\:\:\:\:j=0,1,\cdots. \end{equation}$

Furthermore,

$\begin{align*} \mid u^{(n+1)}(t)\mid\:&\leq\sum\limits^n_{j=0}\mid u^{(j+1)}(t)-u^{(j)}(t)\mid+\mid u^{(0)}(t)\mid \end{align*}$

and

$\begin{align*} \parallel u^{(n+1)}\parallel_{E}&= \sup\limits_{t\in[-\tau,T]}\mid u^{(n+1)}(t) \mid \\&\leq\sum\limits^n_{j=0}A(1+C)C^{j}\parallel \Psi\parallel+\frac{A\mid M\mid}{D}C^{j+1}+A\parallel \Psi\parallel+\frac{A\mid M\mid}{D} \\&\leq\frac{2AD\parallel \Psi\parallel+A\mid M\mid}{D(1-C)}. \end{align*}$

For $\forall p\in N,$ $ m+p\geq m,$ we have

$\begin{align*} \mid u^{(m+p)}(t)-u^{(m)}(t)\mid&\leq\sum\limits^{m+p}_{j=m+1}\mid u^{(j)}(t)-u^{(j-1)}(t)\mid\\ &\leq A(1+C)\cdot\frac{C^{m}}{1-C}\cdot\parallel \Psi\parallel+\frac{A\mid M\mid}{D}\cdot\frac{C^{1+m}}{1-C}. \end{align*}$

Therefore, the sequence $\{u^{(k)}(t)\}$ is uniformly convergent on $[-\tau,T]$, let $\lim\limits_{k\rightarrow\infty}u^{(k)}(t)=u(t).$ Obviously, $u(t)$ is a solution of boundary value problem $(1.1)$-$(1.4)$, which satisfies inequality (3.1).

Next, we prove the uniqueness. Suppose that $v(t)$ is another solution of boundary value problem $(1.1)$-$(1.4)$, it has

$\begin{align*} \parallel u-v\parallel_{E}&=\sup\limits_{t\in[-\tau,T]}\mid u(t)-v(t)\mid \\&\leq\frac{1}{1-e^{-a(T)}}\int^{T-\tau}_{-\tau}L(s+\tau)\cdot\parallel u-v\parallel_{E} (1+K^{*}) ds+\frac{B}{1-e^{-a(T)}}\cdot\parallel u-v\parallel_{E} \\&\leq C\parallel u-v\parallel_{E}. \end{align*}$

From (H$_3),$ $0<C<1,$ it has $\parallel u-v\parallel_{E}=0.$ Certainly, the uniqueness of solution holds.

The proof of Theorem $3.1$ is completed.

Remark 2 (i) If $M=0$ and the hypotheses (H$_1)$-(H$_3)$ hold, the periodic boundary value problem $(1.1)$-$(1.4)$ has a unique solution $u(t)$ on $[-\tau,T],$ and

$\begin{equation}\label{3.2} \parallel u(t)\parallel_E\:\leq\frac{2A\parallel \Psi\parallel}{1-C}. \end{equation}$

(ii) If $M\neq 0$ and the hypotheses (H$_1)$-(H$_3)$ hold, the two points boundary value problem $(1.1)$-$(1.4)$ has a unique solution $u(t)$ on $[-\tau,T],$ and

$\begin{equation}\label{3.3} \parallel u(t)\parallel_E\:\leq\frac{2AD\parallel \Psi\parallel+A\mid M\mid}{D(1-C)}. \end{equation}$

Definition 3.2 The trivial solution of $(1.1)$-$(1.4)$ is said to be stable if for any $t_0>0$ and $\varepsilon>0$ there is a $\delta=\delta(\varepsilon,t_0)>0$ such that $ \parallel \Psi\parallel<\delta$ implies that $\mid u(t,t_0,\varphi(t_0))\mid<\varepsilon$ for $t\geq t_0$. The trivial solution of $(1.1)$-$(1.4)$ is said to be uniformly stable if $\delta$ is independent of $t_0$.

Theorem 3.3 If $ M=0$ and hypotheses (H$_1)$-(H$_3)$ hold, the trivial solution of the system $(1.1)$-$(1.4)$ is uniformly stable.

Proof Suppose that the trivial solution of the system $(1.1)$-$(1.4)$ is not stable, we have that $\exists$ $\varepsilon_1>0$, $\forall$ $\delta(\varepsilon_1,t_0)>0$, $\exists$ $t_1\geq t_0$,

$\begin{equation}\label{3.4} \mid u(t_1,t_0,\varphi(t_0))\mid\geq\varepsilon_1\:\:\:\:\:{\rm as}\:\:\:\:\:\parallel \Psi\parallel<\delta(\varepsilon_1,t_0). \end{equation}$

From Theorem $3.1$, we have $ \parallel u(t)\parallel_{E}\leq\frac{2A\parallel \Psi\parallel}{1-C}. $

Letting $\delta(\varepsilon_1,t_0)=\frac{1-C}{2A}\varepsilon_1,$ by simple calculation, we have

$\begin{equation} \parallel u(t)\parallel_{E}<\varepsilon_1\:\:\:\:\:{\rm as}\:\:\:\:\:\parallel \Psi\parallel<\delta(\varepsilon_1,t_0), \end{equation}$

which is contradicted with (3.4), the trivial solution of the system $(1.1)$-$(1.4)$ is stable. In addition, $\delta(\varepsilon_1,t_0)=\frac{1-C}{2A}\varepsilon_1$ is independent of $t_0,$ thus the trivial solution is uniformly stable.

It completes the proof.

Acknowledgements

This paper is completed by the author as a visiting scholar at Wuhan university. The author is grateful to professor Liu Weian for his valuable suggestions and comments and also thank Wuhan university for providing knowledge resources and platform.

References
[1] Nieto J J. Basic theory for nonresonance impulsive periodic problems of first order equations[J]. J. Math. Anal. Appl., 1997, 205(2): 423–433. DOI:10.1006/jmaa.1997.5207
[2] Nieto J J. Periodic boundary value problems for first-order impulsive ordinary differential equations[J]. Nonlinear Anal., 2002, 51(7): 1223–1232. DOI:10.1016/S0362-546X(01)00889-6
[3] Nieto J J. Impulsive resonance periodic of first order[J]. Appl. Math. Lett., 2002, 15(4): 489–493. DOI:10.1016/S0893-9659(01)00163-X
[4] Li Yongkun, Lu Linghong. Global exponential stability and existence of periodic solution of Hopfiled-type neural networks with impulses[J]. Physics Letters A, 2004, 333(1-2): 62–71. DOI:10.1016/j.physleta.2004.09.083
[5] Liu Maxing, Jin Zhen, Haque M. An impulsive predator-prey model with communicable disease in the prey species only[J]. Nonlinear Anal.: RWA, 2009, 10(5): 3098–3111. DOI:10.1016/j.nonrwa.2008.10.010
[6] Liu Yuji. Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations[J]. J. Math. Anal. Appl., 2007, 327: 435–452. DOI:10.1016/j.jmaa.2006.01.027
[7] Chen Lijing, Sun Jitao. Nonlinear boundary value problem of first order impulsive functional differential equations[J]. J. Math. Anal. Appl., 2006, 318(2): 726–741. DOI:10.1016/j.jmaa.2005.08.012
[8] Li Jianli, Nieto J J, Shen Jianhua. Impulsive periodic boundary value problems of first-order differential equations[J]. J. Math. Anal. Appl., 2007, 325: 226–236. DOI:10.1016/j.jmaa.2005.04.005
[9] He Mengxing. Global Existence and stability of solutions for reaction diffusion functional differential[J]. J. Math. Anal. Appl., 1996, 199(3): 842–858. DOI:10.1006/jmaa.1996.0179
[10] He Mengxing, Liu Anping, Ou Zhuoling. Stability for large systems of partial functional differential equations: iterative analysis[J]. Appl. Math. Computation, 2002, 132(2-3): 489–503. DOI:10.1016/S0096-3003(01)00207-7
[11] Liu Anping, Cui Chenpei, Zhang Linli. Stability and existence of impulsive differential system[J]. J. of Biomathematics, 2007, 22: 872–878.
[12] Liu Jing, Liu Anping, Ma Qingxia, Zou Min. Existence and stability for antiperiodic boundary value problem of first-order impulsive equations[J]. J. of Biomathematics, 2007, 22: 833–839.
[13] Li Yanling, Liu Anping, Ma Qingxia, Wang Xiaomei. Existence and stability for periodic boundary value problem of first order differential equations[J]. Dynamics of Continuous Discrete and Impulsive Sysyems Series A Mathematical Analysis, 2007, 14: 573–576.
[14] He Lianhua, Liu Anping. Periodic solution of first-order impulsive differential equation[J]. J. of Math., 2012, 32(5): 825–831.
[15] Zhang Linli, Liu Anping, Chang Tao, He Lianhua. Existence for periodic boundary value problem of first-order integro-differential equations[J]. Ann. of Diff. Eqs., 2007, 23(4): 581–585.