数学杂志  2014, Vol. 34 Issue (2): 198-204   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
CHEN Guo-hui
LIU Bao-li
SOME IDENTITIES RELATED TO THE DEDEKIND SUMS
CHEN Guo-hui1, LIU Bao-li2    
1. School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
2. Department of Basic, Xi’an Aeronautical Polytechnic Institute, Yangliang 710089, China
Abstract: In this paper, we study a new mean value problem related to the Dedekind sums. By using the properties of character sum and the analytic method, we get two interesting mean value formulae for it.
Key words: the Dedekind sum     mean value formula     identity    
关于Dedekind和的一些恒等式
陈国慧1, 刘宝利2    
1. 海南师范大学数学与统计学院, 海南 海口 571158;
2. 西安航空职业技术学院基础部, 陕西 阎良 710089
摘要:本文研究了关于Dedekind和的一个新的均值问题.利用特征和的性质以及解析的方法, 获得了两个有趣的均值公式.
关键词Dedekind和    均值公式    恒等式    
1 Introduction

For a positive integer $k$ and an arbitrary integer $h$, the classical Dedekind sums $S(h, k)$ is defined by

$S(h,k)=\sum\limits_{a=1}^{k}{((}\frac{a}{k}))((\frac{ah}{k})),$

where

$((x))=\left\{ \begin{array}{*{35}{l}} x-[x]-\frac{1}{2},\text{if}\ x\ \text{is}\ \text{not}\ \text{an}\ \text{integer}; \\ 0,\quad \quad \quad \quad \ \text{if}\ x\ \text{is}\ \text{an}\ \text{integer}. \\ \end{array} \right.$

The various properties of $S(h, k)$ were investigated by many authors, see [2-4, 7-9]. For example, Carlitz [3] obtained a reciprocity theorem of $S(h, k)$. Conrey et al. [4] studied the mean value distribution of $S(h, k)$, and proved the following important and interesting asymptotic formula

$\sum\limits_{h = 1}^k {^\prime |S(h,k){|^{2m}}} = {f_m}(k){(\frac{k}{{12}})^{2m}} + O(({k^{\frac{9}{5}}} + {k^{2m - 1 + \frac{1}{{m + 1}}}}){\log ^3}k),$ (1.1)

where $\displaystyle\mathop{{\sum}'}_h$ denotes the summation over all $h$ such that $(k, h) = 1$, and

$\sum\limits_{n = 1}^\infty {\frac{{{f_m}(n)}}{{{n^s}}}} = 2\frac{{{\zeta ^2}(2m)}}{{\zeta (4m)}} \cdot \frac{{\zeta (s + 4m - 1)}}{{{\zeta ^2}(s + 2m)}}\zeta (s),$

$\zeta(s)$ is the Riemann zeta-function.

Jia [7] improved the error term in (1.1) as $O(k^{2m-1})$, provide $m\geq 2$. Zhang [9] improved the error term of (1.1) for $m = 1$. That is, he proved the following asymptotic formula

$$ \mathop{{\sum}'}^k_{h=1}|S(h, k)|^2 =\frac{5}{144}k\phi(k)\cdot \frac{\displaystyle \prod_{p^{\alpha} \|k }((1+\frac{1}{p})^2-\frac{1}{p^{3\alpha+1}})}{\displaystyle\prod_{p|k}(1+\frac{1}{p} + \frac{1}{p^2})} + O(k \exp(\frac{4\ln k}{\ln\ln k})), $$

where $p^{\alpha}\| k$ denotes that $p^{\alpha}| k$ and $p^{\alpha +1} \dagger k$ and $\exp(y)=e^y$.

Liu and Zhang [11] studied the hybrid mean value involving Dedekind sums and Kloosterman sums $K(m, n; q)$, which defined as follows (see [5] and [6]):

$$K(m,n; q)=\mathop{{\sum}'}^{q}_{b=1}e (\frac{mb+n\bar{b}}{q}),$$

where $e(y)=e^{2\pi iy}$, $\overline{b}$ denotes the solution of the equation $x\cdot b\equiv 1\bmod q$. They proved the following conclusion:

Let $q$ be a square-full number (i.e., $p\mid q$ if and only if $p^{2}\mid q$), then we have

$\begin{eqnarray*} \mathop{{\sum}'}^q_{a=1}\mathop{{\sum}'}^q_{b=1} K(m, a;q)\overline{K(m, b;q)} S(a\overline{b}, q)=\frac{1}{12}\cdot q\cdot \phi^2(q)\prod_{p\mid q}(1+\frac{1}{p}) , \end{eqnarray*}$

where $\displaystyle\mathop{{\sum}'}^q_{a=1}$ denotes the summation over all $1\leq a\leq q$ such that $(a, q)=1$, $\displaystyle \prod_{p|q}$ denotes the product over all distinct prime divisors $p$ of $q$, $\phi(q)$ is the Euler function, and $\overline{f(n)}$ denotes the complex conjugation of $f(n)$.

In this paper, we use the analytic methods and mean value theorem of Dirichlet $L$-functions to study the hybrid mean value properties involving Dedekind sums and Legendre’s symbol, and prove some new identities and asymptotic formulae. That is, we shall prove the following several conclusions:

Theorem 1.1 Let $p$ be an odd prime with $p\equiv 3\bmod 4$, then we have the identity

$\sum\limits_{a = 1}^{p - 1} {\sum\limits_{b = 1}^{p - 1} {(\frac{{a + 1}}{p})} } (\frac{{b + 1}}{p})S(a\bar b,p) = \frac{{(p - 1)(p - 2)}}{{12}} - h_p^2,$

where $h_p$ denotes the class number of the quadratic field $\mathbf{Q}$$(\sqrt{-p})$.

Theorem 1.2 Let $p$ be an odd prime with $p\equiv 1\bmod 4$, then for any positive integer $k$, we have the identity

$\sum\limits_{a = 1}^{p - 1} {\sum\limits_{b = 1}^{p - 1} {(\frac{{a + 1}}{p})} } (\frac{{b + 1}}{p}){S^{2k - 1}}(a\bar b,p) = \frac{{p \cdot {{(p - 1)}^{2k - 1}} \cdot {{(p - 2)}^{2k - 1}}}}{{{{(12p)}^{2k - 1}}}}.$

Theorem 1.3 Let $p$ be an odd prime, then we have the asymptotic formulae:

(A) $\sum^{p-1}\limits_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S^2(a\overline{b}, p)=\frac{p^2\cdot (p-11)}{144}+ O(p\cdot \exp(\frac{4\ln p }{\ln\ln p })), $ if $p\equiv 3\bmod 4$.

(B) $\sum^{p-1}\limits_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S^2(a\overline{b}, p)=\frac{p^2\cdot (p-11-C_1)}{144}+ O(p\cdot \exp(\frac{4\ln p }{\ln\ln p })), $ if $p\equiv 1\bmod 4$, where $C_1= \frac{4\pi^4}{5}\displaystyle \mathop{{\prod}^*}_q \frac{(q^2+1)^2}{(q^2-1)^2}$ is a constant, $\displaystyle \mathop{{\prod}^*}_q$ denotes the product over all primes $q$ such that $(\frac{q}{p})=1$, and $\exp(y)=e^{y}$.

As an application of Theorem 1.1 (of course, one can also give a proof directly), we can give an interesting computational formula for $h_p$, which we described as following:

Corollary 1.4 Let $p$ be an odd prime with $p\equiv 3\bmod 4$, then we have the computational formula

${h_p} = {\left\{ {\sum\limits_{a = 1}^{p - 1} S ({a^2}, p)} \right\}^{\frac{1}{2}}} = 2\mathop \sum \limits_{a = 1}^{\frac{{p - 1}}{2}} [\frac{{{a^2}}}{p}] - \frac{{(p - 1)(p - 5)}}{{12}} = \frac{{p - 1}}{2} - \frac{2}{p}\sum\limits_{i = 1}^{\frac{{p - 1}}{2}} {{r_i}}, $

where $[x]$ denotes the greatest integer $\leq x$, $r_i$ ($i=1, \ 2, \ \cdots, \ \frac{p-1}{2})$ denotes all quadratic residues $\bmod\ p$ in the interval $[1, \ p-1]$.

2 Some Lemmas

In this section, we shall give some lemmas which are necessary in the proof of our theorems. First we have the following:

Lemma 2.1 Let $q>2 $ be an integer, then for any integer $a$ with $(a, \ q)=1$, we have the identity

$S(a, q){\rm{ = }}\frac{1}{{{\pi ^2}q}}\sum\limits_{d|q} {\frac{{{d^2}}}{{\phi (d)}}\sum\limits_{\begin{array}{*{20}{c}} {\chi \;{\rm{mod}}\;d}\\ {\chi ( - 1) = - 1} \end{array}} {\chi (a)} } |L(1, \chi ){|^2}, $

where $\phi(n)$ is the Euler function, $\displaystyle \mathop{\sum_{\chi \ \mathrm{mod} \ d}}_{\chi(-1)=-1}$ denotes the summation over all odd character modulo $ d$, $L(s, \chi)$ denotes the Dirichlet $L$-function corresponding to $\chi$ modulo $d$.

Lemma 2.2 Let $p $ be an odd prime, then we have the asymptotic formulae

(I) $\displaystyle \mathop{\sum\limits_{\chi \ \mathrm{mod} \ p}}_{\chi(-1)=-1}|L(1, \chi)|^4= \frac{5\pi^4}{144} \cdot p + O(\exp(\frac{4\ln p}{\ln\ln p}));$

(II) $\displaystyle \mathop{\sum\limits_{\chi \ \mathrm{mod} \ p}}_{\chi(-1)=-1}|L(1, \chi)|^2\cdot |L(1, \chi\chi_2)|^2= C_1 \cdot p + O(\exp(\frac{4\ln p}{\ln\ln p})), $

where $C_1= \frac{\pi^4}{180}\displaystyle \mathop{{\prod}^*}_q \frac{(q^2+1)^2}{(q^2-1)^2}$ is a constant, $\displaystyle \mathop{{\prod}^*}_q$ denotes the product over all primes $q$ such that $(\frac{q}{p})=1$.

Proof In fact Lemma 2.1 and Lemma 2.2 are two early results of the second author, their proof can be find in references [8] and [10].

Lemma 2.3 Let $p$ be an odd prime, then for any non-real character $\chi \bmod p$, we have the identity $ |\sum\limits_{a=1}^{p-1}(\frac{a+1}{p})\chi(a)|=\sqrt{p}, $ where $(\frac{*}{p})$ is the Legendre’s symbol.

Proof Since $\chi_2$ is a primitive character $\bmod\ p$, so from the properties of Gauss sums $\tau(\chi)$ we have

$\begin{array}{l} \sum\limits_{a = 1}^{p - 1} {(\frac{{a + 1}}{p})} \chi (a) = \frac{1}{{\tau ({\chi _2})}}\sum\limits_{a = 1}^{p - 1} \chi (a)\sum\limits_{b = 1}^{p - 1} {{\chi _2}} (b)\;e(\frac{{b(a + 1)}}{p})\\ = \frac{1}{{\tau ({\chi _2})}}\sum\limits_{b = 1}^{p - 1} {{\chi _2}} (b)\bar \chi (b)\;e(\frac{b}{p})\sum\limits_{a = 1}^{p - 1} \chi (ab)\;e(\frac{{ab}}{p})\\ = \frac{1}{{\tau ({\chi _2})}}\sum\limits_{b = 1}^{p - 1} {{\chi _2}} (b)\bar \chi (b)\;e(\frac{b}{p})\sum\limits_{a = 1}^{p - 1} \chi (a)\;e(\frac{a}{p}) = \frac{{\tau (\chi ) \cdot \tau (\bar \chi {\chi _2})}}{{\tau ({\chi _2})}}, \end{array}$ (2.1)

where $\chi_2=(\frac{*}{p}) $ is the Legendre’s symbol.

Now Lemma 2.3 follows from (2.1) and the identity $\mid\tau(\chi)\mid= \sqrt{p}$, if $\chi$ is not a principal character $\bmod\ p$.

3 Proof of Theorems

In this section, we shall complete the proof of our theorems. First we prove Theorem 1.1. For odd prime $p$, from Lemma 2.1 and the definition of $S(a, p)$ we have

$S(a, p) = \frac{p}{{{\pi ^2}(p - 1)}}\sum\limits_{\begin{array}{*{20}{c}} {\chi {\kern 1pt} \, \bmod \, {\kern 1pt} p}\\ {\chi ( - 1) = - 1} \end{array}} {\chi (a)|L(1, \chi ){|^2}} $ (3.1)

and

$\sum\limits_{\begin{array}{*{20}{c}} {\chi {\kern 1pt} \, \bmod \, {\kern 1pt} p}\\ {\chi ( - 1) = - 1} \end{array}} {|L(1, \chi ){|^2}} = \frac{{{\pi ^2}{{(p - 1)}^2}(p - 2)}}{{12{p^2}}}$ (3.2)

Then from (3.1) and Lemma 2.3 we have

$\begin{array}{*{20}{l}} {\sum\limits_{a = 1}^{p - 1} {\sum\limits_{b = 1}^{p - 1} {(\frac{{a + 1}}{p})} } (\frac{{b + 1}}{p})S(a\bar b,p)}\\ { = \frac{p}{{{\pi ^2}(p - 1)}}\sum\limits_{\begin{array}{*{20}{c}} {\chi {\kern 1pt} \,\bmod \,{\kern 1pt} p}\\ {\chi ( - 1) = - 1} \end{array}} {} |\sum\limits_{a = 1}^{p - 1} {(\frac{{a + 1}}{p})} \chi (a){|^2} \cdot |L(1,\chi ){|^2}}\\ { = \frac{p}{{{\pi ^2}(p - 1)}}\sum\limits_{\begin{array}{*{20}{c}} {\chi {\kern 1pt} \,\bmod \,{\kern 1pt} p}\\ {\chi ( - 1) = - 1} \end{array}} {} |\sum\limits_{a = 1}^{p - 1} {(\frac{{\tau (\chi ) \cdot \tau (\bar \chi {\chi _2})}}{{\tau ({\chi _2})}})} {|^2} \cdot |L(1,\chi ){|^2}} \end{array}$ (3.3)

If $p\equiv 3\bmod 4$, then $\chi_2(-1)=-1$, so for $\overline{\chi}=\chi_2$, $\overline{\chi}\chi_2$ is the principal character $\bmod\ p$ and $|\tau(\overline{\chi}\chi_2)|=1$. Note that $L(1, \chi_2)= \pi h_p/\sqrt{p}$, from (3.2), (3.3) and Lemma 2.3 we have

$\begin{eqnarray*} \sum^{p-1}_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S(a\overline{b}, p) =\frac{p}{\pi^2(p-1)}[\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1}p|L(1, \chi)|^2-(p-1)|L(1, \chi_2)|^2]\nonumber\\ =\frac{(p-1)(p-2)}{12}-\frac{p}{\pi^2}|L(1, \chi_2)|^2=\frac{(p-1)(p-2)}{12}- h^2_p. \end{eqnarray*}$

This proves Theorem 1.1.

Now we prove Theorem 1.2. If $p\equiv 1 \bmod 4$, then $\chi_2(-1)=1$, so for any odd character $\chi$, $\chi\chi_2$ is not the principal character $\bmod\ p$. This time, from the properties of Gauss sums, (3.1), (3.2) and Lemma 2.3 we have

$\begin{eqnarray*} \sum^{p-1}_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S^{2k-1}(a\overline{b}, p) =(\frac{p}{\pi^2(p-1)})^{2k-1} \cdot p\cdot( \mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1}|L(1, \chi)|^2)^{2k-1}\\ =(\frac{p}{\pi^2(p-1)})^{2k-1} \cdot p\cdot(\frac{\pi^2 (p-1)^2\cdot (p-2)}{12p^2} )^{2k-1} = \frac{p\cdot (p-1)^{2k-1}\cdot (p-2)^{2k-1}}{(12p)^{2k-1}}. \end{eqnarray*}$

This proves Theorem 1.2.

To prove Theorem 1.3. First from (3.1) and Lemma 2.3 we have

$\begin{eqnarray} \sum^{p-1}_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S^2(a\overline{b}, p)\nonumber\\ =\frac{p^2}{\pi^4(p-1)^2}\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1}\mathop{\sum\limits_{\lambda \bmod p}}_{\lambda(-1)=-1}|\sum\limits_{a=1}^{p-1}(\frac{a+1}{p})\chi(a)\lambda(a)|^2\cdot |L(1, \chi)|^2|L(1, \lambda)|^2\nonumber\\ =\frac{p^2}{\pi^4(p-1)^2}\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1}\mathop{\sum\limits_{\lambda \bmod p}}_{\lambda(-1)=-1}|\frac{\tau(\chi\lambda)\cdot \tau(\overline{\chi\lambda}\chi_2 )}{\tau(\chi_2)}|^2\cdot |L(1, \chi)|^2\cdot |L(1, \lambda)|^2. \end{eqnarray}$ (3.4)

If $p\equiv 3\bmod 4$, then $\chi_2$ is an odd character $\bmod\ p$, and $\chi\lambda$ is an even character $\bmod\ p$. So $\overline{\chi\lambda}\chi_2$ is not a principal character $\bmod\ p$. From (3.4), Lemma 2.2 and the properties of Gauss sums we have

$\begin{eqnarray} \sum^{p-1}_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S^2(a\overline{b}, p)\nonumber\\ =\frac{p^2}{\pi^4(p-1)^2}[p\cdot(\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1} \mid L(1, \chi) \mid^2)^2-\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1}(p-1) |L(1, \chi)|^4]\nonumber\\ =\frac{(p-1)^2(p-2)^2}{144p}-\frac{p^2}{\pi^4(p-1)}\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1} |L(1, \chi)|^4 =\frac{p^2\cdot (p-11)}{144}+ O(p\cdot \exp(\frac{4\ln p }{\ln\ln p })).\nonumber\\ \end{eqnarray}$ (3.5)

If $p\equiv 1\bmod 4$, then $\chi_2$ is an even character $\bmod\ p$, this time we have

$\begin{eqnarray} \sum^{p-1}_{a=1}\sum\limits_{b=1}^{p-1}(\frac{a+1}{p})(\frac{b+1}{p}) S^2(a\overline{b}, p)\nonumber\\ =\frac{p^2}{\pi^4(p-1)^2}[p\cdot(\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1} \mid L(1, \chi) \mid^2)^2-(p-1) \mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1} |L(1, \chi)|^4]\nonumber\\ \qquad-\frac{p^2}{\pi^4(p-1)}\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1} |L(1, \chi)|^2\cdot |L(1, \chi\chi_2)|^2\nonumber\\ =\frac{p^2\cdot (p-11)}{144}- C\cdot p^2+ O(p\cdot \exp(\frac{4\ln p }{\ln\ln p })), \end{eqnarray}$ (3.6)

where $C= \frac{\pi^4}{180}\displaystyle \mathop{{\prod}^*}_q \frac{(q^2+1)^2}{(q^2-1)^2}$ is a constant, $\displaystyle \mathop{{\prod}^*}_q$ denotes the product over all primes $q$ such that $(\frac{q}{p})=1$.

Now Theorem 1.3 follows from asymptotic formulae (3.5) and (3.6).

Using Lemma 2.1 we can also give a direct proof of Corollary 1.4. In fact if $p\equiv 3\bmod 4$, then $(\frac{-1}{p})=-1$, so from Lemma 2.1 and note that the orthogonality of characters $\bmod\ p$, we have

$\begin{eqnarray} \sum\limits_{a=1}^{p-1}S(a^2, p)=\frac{p}{\pi^2(p-1)}\mathop{\sum\limits_{\chi \bmod p}}_{\chi(-1)=-1} \sum\limits_{a=1}^{p-1}\chi^2(a)|L(1, \chi)|^2\nonumber\\ =\frac{p}{\pi^2(p-1)}\cdot (p-1)\cdot |L(1, \chi_2)|^2=h_p^2\ . \end{eqnarray}$ (3.7)

On the other hand, note that $((-x))= -((x))$ and the set $\{1^2, \ 2^2, \ \cdots, \ \frac{(p-1)^2}{4}$, $ -1^2, \ -2^2, \ \cdots, \ -\frac{(p-1)^2}{4}\}$ is a reduced residue system $\bmod\ p$, so from the definition of $S(a, p)$ we have

$\begin{eqnarray} \sum\limits_{a=1}^{p-1}S(a^2, p)= \sum\limits_{a=1}^{p-1} \{\sum\limits_{b=1}^{\frac{p-1}{2}} ((\frac{b^2}{p})) (\frac{b^2a^2}{p})) + \sum\limits_{b=1}^{\frac{p-1}{2}} ((\frac{-b^2}{p})) ((\frac{-b^2a^2}{p})) \}\nonumber\\ =2\sum\limits_{b=1}^{\frac{p-1}{2}} ((\frac{b^2}{p}))\sum\limits_{a=1}^{p-1} ((\frac{b^2a^2}{p}))=4(\sum\limits_{b=1}^{\frac{p-1}{2}} ((\frac{b^2}{p})))^2\nonumber\\ =4(\sum\limits_{b=1}^{\frac{p-1}{2}}\frac{b^2}{p}-\frac{1}{2}\sum\limits_{b=1}^{\frac{p-1}{2}}1- \sum\limits_{b=1}^{\frac{p-1}{2}}[\frac{b^2}{p}])^2=4(\frac{(p-1)(p-5)}{24}- \sum\limits_{b=1}^{\frac{p-1}{2}}[\frac{b^2}{p}])^2. \end{eqnarray}$ (3.8)

Combining (3.7) and (3.8) we may immediately deduce the identity

$ h_p=\{\sum\limits_{a=1}^{p-1}S(a^2, p)\}^{\frac{1}{2}}= 2\sum\limits_{a=1}^{\frac{p-1}{2}}[\frac{a^2}{p}]- \frac{(p-1)(p-5)}{12}. $

This completes the proof of our conclusions.

References
[1] Apostol T M. Introduction to analytic number theory[M]. New York: Springer-Verlag, 1976.
[2] Apostol T M. Modular functions and Dirichlet series in number theory[M]. New York: Springer-Verlag, 1976.
[3] Carlitz L. The reciprocity theorem of Dedekind sums[J]. Pacific J. of Math., 1953, 3(3): 523–527. DOI:10.2140/pjm
[4] Conrey J B, Fransen E, Klein R, Scott Clayton. Mean values of Dedekind sums[J]. Journal of Number Theory, 1996, 56(2): 214–226. DOI:10.1006/jnth.1996.0014
[5] Estermann T. On Kloostermann's sums[J]. Mathematica, 1961, 8: 83–86.
[6] Ireland K, Rosen M. A classical introduction to modern number theory[M]. New York: Springer-Verlag, 1982.
[7] Jia Chaohua. On the mean value of Dedekind sums[J]. Journal of Number Theory, 2001, 87(2): 173–188. DOI:10.1006/jnth.2000.2580
[8] Zhang Wenpeng. On the mean values of Dedekind sums[J]. Journal de Theorie des Nombres, 1996, 8(2): 429–442.
[9] Zhang Wenpeng. A note on the mean square value of the Dedekind sums[J]. Acta Mathematica Hungarica, 2000, 86(4): 275–289. DOI:10.1023/A:1006724724840
[10] Zhang Wenpeng. Lecture notes in contemporary mathematics[M]. Beijing: Science Press, 1989.
[11] Liu Yanni, Zhang Wenpeng. A hybrid mean value related to the Dedekind sums and Kloosterman sums[J]. Acta Math. Sinica, 2011, 27(3): 435–440. DOI:10.1007/s10114-010-9192-2