数学杂志  2014, Vol. 34 Issue (1): 179-185   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
陈玮
杨祺
田宏根
半平面上零级Dirichlet级数和随机Dirichlet级数的增长性
陈玮, 杨祺, 田宏根    
新疆师范大学数学科学学院, 新疆 乌鲁木齐 830054
摘要:本文研究了半平面上零级Dirichlet级数的增长性和正规增长性.利用型函数, 得到了其系数与增长性之间关系的两个充要条件, 并证明了当随机变量序列{Xn(ω)}满足一定条件时, 零级随机Dirichlet级数的增长性几乎必然与其在每条水平直线上的增长性相同.
关键词Dirichlet级数    随机Dirichlet级数    型函数    增长性    
THE GROWTH OF THE DIRICHLET SERIES AND RANDOM DIRICHLET SERIES OF ZERO ORDER IN THE HALF PLANE
CHEN Wei, YANG Qi, TIAN Hong-gen    
School of Mathematics Science, Xinjiang Normal University, Urumqi 830054, China
Abstract: In this paper, the growth and regular growth of Dirichlet series of zero order in the half plane are studied. By using type-function, two necessary and sufficient conditions about the relation between coefficients and growth of the Diriehlet series are obtained. We also prove that, when the random variable sequence {Xn(ω)} meets certain condition, the growth of random entire functions defined by random Dirichlet series of zero order in any horizontal straight line is almost surely equal to the growth of entire functions defined by their corresponding Dirichlet series.
Key words: Dirichlet series     random Dirichlet series     type function     growth    
1 引言

关于Dirichlet级数及随机Dirichlet级数的增长性, 国内已作过许多重要研究[3-8], 对于全平面上的零级Dirichlet级数的增长性和正规增长性, 文[3]作过专门研究并得到了很好的结果, 但对于半平面, 由于其特殊性至今尚未见很好的结果, 本文对半平面零级Dirichlet级数的增长性和正规增长性进行研究, 得到了两个充要条件.并且还证明了零级随机Dirichlet级数, 几乎必然与其在每条水平直线上的增长性相同.

2 零级Dirichlet级数

考虑Dirichlet级数

$ f(s)=\sum\limits_{n=0}^{+\infty}b_ne^{-\lambda_ns}, $ (2.1)

其中$s=\sigma+it, \{b_n\}$为复常数列, $0=\lambda_0 < \lambda_1 < \lambda_2\cdots < \lambda_n\uparrow+\infty$.若

$ \overline{\lim\limits_{n\rightarrow\infty}}\frac{\ln |b_n|}{\lambda_n}=0, ~~\overline{\lim\limits_{n\rightarrow\infty}} \frac{\ln n}{\lambda_n}=0. $ (2.2)

则级数$(2.1)$在半平面上是收敛与绝对收敛的, 它表示的函数$f(s)$为一半平面解析函数.令

$ M(\sigma, f)=\sup\{|f(\sigma+it)|;t\in R\}, ~~m(\sigma, f)=\max\{|b_n|e^{-\lambda_n\sigma};n\in N\}, $ (2.3)

由文[1]$m(\sigma, f)\leq M(\sigma, f)$.

定义2.1  $f(s)$在半平面上的增长级$\rho$定义为$\rho=\overline{\lim\limits_{\sigma\rightarrow0^{+}}} \frac{\ln^+\ln^+ M(\sigma, f)}{\frac{1}{\sigma}}$.若$\rho=0$则称级数(2.1) 为零级Dirichlet级数.

定义2.2[2]  对于零级Dirichlet级数(2.1), 由文献[2]引进型函数$U(r)=r^{\rho(r)}(r=\frac{1}{\sigma})$, 单调上升且满足:

1)$\rho(r)$单调趋于$0$, $\lim\limits_{r\rightarrow0^{+}}r\rho^{'}(r)\ln r=0;$

2)$U(kr)=(1+o(1))U(r); $

3)$U(r^k)=U^{k+o(1)}(r)$.

$U(r)$为零级型函数.

定理2.1  设Dirichlet级数$(2.1)$满足条件$(2.2)$

$ \overline{\lim\limits_{n\to\infty}}\frac{\ln\ln n}{\ln\lambda_n}=d<1. $ (2.4)

则有

$ \overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}= \overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln m(\sigma, f)}{\ln U(\frac{1}{\sigma})}. $ (2.5)

  设$\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln m(\sigma, f)}{\ln U(\frac{1}{\sigma})}=A$, 则$\forall\varepsilon>0, $$\sigma$充分接近$0$

$ \label{1.5}\ln m(\sigma, f)\leq U^{A+\varepsilon}(\frac{1}{\sigma}). $ (2.6)

$(2.4)$式, 对任意$\varepsilon_1\in (0, 1-d)$, 存在自然数$N>3$$n\geq N$时,

$ -\lambda_n\leq -{(\ln n)}^{\frac {1}{1-\varepsilon_1}}=-\ln n{(\ln n)}^{\frac {\varepsilon_1}{1-\varepsilon_1}}. $

所以

$ M(\sigma, f)\leq\sum\limits_{n=0}^{+\infty}|b_n|e^{-\lambda_n\sigma}=\sum\limits_{n=0}^{+\infty}( |b_n|e^{-\lambda_n \Delta}e^{-\lambda_n\delta})\leq m(\Delta, f)(k+\sum\limits_{n=k}^{+\infty}e^{-\lambda_n\delta} )\\ \leq m(\Delta, f)(k+\sum\limits_{n=k}^{+\infty}\exp{[-\delta\ln n{(\ln n)}^{\frac {\varepsilon_1}{1-\varepsilon_1}}]}), $

其中$\Delta=\frac{\sigma\ln U(\frac{1}{\sigma})}{1+\ln U(\frac{1}{\sigma})}, \delta=\frac{\sigma}{1+\ln U(\frac{1}{\sigma})} $.令$T=\exp\{({\frac{2}{\delta}})^{\frac{1-\varepsilon_1}{\varepsilon_1}}\}.$

$n>T$时, $\delta({\ln n})^{\frac{\varepsilon_1}{1-\varepsilon_1}}>2$, 从而

$ M(\sigma, f)\leq m(\Delta, f)(k+\sum\limits_{n=k}^{T}n^{-\delta}+\sum\limits_{n=T+1}^{\infty}n^{-2})\\ \leq m(\Delta, f)(k+\int_1^{T}t^{-\delta }dt+c_1)\leq m(\Delta, f)(k_1+\frac{1}{1-\delta}T^{1-\delta}). $

故有

$ \ln M(\sigma, f)\leq\ln m(\Delta, f)+\ln c+(1-\delta)\ln T\\ \leq U^{A+\varepsilon}(\frac{1}{\Delta})+\ln c+(1-\delta)(\frac{2}{\delta})^{\frac{\varepsilon_1}{1-\varepsilon_1}} \leq U^{A+2\varepsilon}(\frac{1}{\sigma}), $

从而易得$\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}\leq A.$

另一方面, 由$ m(\sigma, f)\leq M(\sigma, f)$可得

$ A=\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln m(\sigma, f)}{\ln U(\frac{1}{\sigma})} \leq\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}. $

因此$\overline{\lim\limits_{\sigma\rightarrow 0^{+}}} \frac{\ln\ln m(\sigma, f)}{\ln U(\frac{1}{\sigma})} =\overline{\lim\limits_{n\to\infty}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}.$>

定理2.2  设Dirichlet级数$(2.1)$满足条件(2.2), (2.3), (2.4), 则

(a)$\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}=1 \Leftrightarrow \overline{\lim\limits_{n\to\infty}}\frac{\ln\ln |b_n|}{\ln U(\frac{\lambda_n}{\ln |b_n|})}=1;$

(b)$\lim\limits_{\sigma\rightarrow 0^{+}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}=1\Leftrightarrow \overline{\lim\limits_{n\to\infty}}\frac{\ln\ln |b_n|}{\ln U(\frac{\lambda_n}{\ln |b_n|})}=1, $并且存在$\{\lambda_n\}$的子列$\{\lambda_{n(p)}\}$使

$ \lim\limits_{p\to\infty}\frac{\lambda_{n(p)}}{\lambda_{n(p+1)}}=1, \lim\limits_{p\to\infty}\frac{\ln\ln |b_{n(p)}|}{\ln U(\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|})}=1. $

  (a)设$\overline{\lim\limits_{n\to\infty}}\frac{\ln\ln |b_n|}{\ln U(\frac{\lambda_n}{\ln |b_n|})}=1, $则对任意$\varepsilon >0$和充分大的$n$, 有$\lambda_n < \frac{\lambda_n}{\ln |b_n|}U^{1+\varepsilon}(\frac{\lambda_n}{\ln |b_n|}).$$v=uU^{1+\varepsilon}(u), u=h(v)$互为反函数, 则有$h(\lambda_n) < \frac{\lambda_n}{\ln |b_n|}, \ln |b_n|e^{-\lambda_n\sigma} < \frac{\lambda_n}{h(\lambda_n)}-\lambda_n\sigma, $$\sigma>0$充分小时, 令$H=\frac{1}{\sigma}U^{1+\varepsilon}(\frac{1}{\sigma})$.

下面我们将分两种情形讨论

情形(ⅰ)当$\lambda_n>H$时, 有$\ln |b_n|e^{-\lambda_n\sigma}\leq\lambda_n(\frac{1}{h(H)}-\sigma)=0.$

情形(ⅱ)当$\lambda_n\leq H$时, 存在$k\in N$使

$ \frac{1}{k\sigma}U^{1+\varepsilon}(\frac{1}{k\sigma})\geq\lambda_n\geq \frac{1}{(k+1)\sigma}U^{1+\varepsilon}(\frac{1}{(k+1)\sigma}), $

从而$\frac{1}{k\sigma}\geq h(\lambda_n)\geq\frac{1}{(k+1)\sigma}, $

$ \ln |b_n|e^{-\lambda_n\sigma}<\lambda_n(\frac{1}{h(\lambda_n)}-\sigma)\leq U^{1+\varepsilon}(\frac{1}{k\sigma}) \leq U^{1+\varepsilon}({\frac{1}{\sigma}}). $

由情形(ⅰ)和(ⅱ)及定理$1$, 有$\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}\leq1.$

$\overline{\lim\limits_{\sigma\rightarrow 0^{+}}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}=L < 1, $$0 < \varepsilon < 1$使$L+3\varepsilon < 1$, 存在$\sigma_0$, 当$\sigma>\sigma_0$

$ \ln M(\sigma, f)<U^{L+\varepsilon(\frac{1}{\sigma})}. $

从而有对任意充分小的$\sigma$, 对任意的$n$$\ln |b_n|e^{-\lambda_n\sigma}\leq U^{L+\varepsilon}(\frac{1}{\sigma}).$

由假设前提知, 存在子序列$\{\lambda_{n(p)}\}$使$\ln |b_{n(p)}|>U^{L+2\varepsilon}(\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|}), $对任意充分大的$p$$\{\sigma_p\}$使

$ U^{L+\varepsilon}(\frac{1}{\sigma_p})=\frac{1}{2}\ln |b_{n(p)}|\rightarrow\infty~~ (p\rightarrow\infty), $
$ \ln |b_{n(p)}|e^{-\lambda_{n(p)}\sigma_p}\leq U^{L+\varepsilon}(\frac{1}{\sigma_p})=\frac{1}{2}\ln |b_{n(p)}|, $

从而$\frac{1}{2}\ln |b_{n(p)}|\leq\lambda_{n(p)}\sigma_p, $

$ \ln |b_{n(p)}|=2U^{L+\varepsilon}(\frac{1}{\sigma_p})\leq 2U^{L+\varepsilon}(\frac{2\lambda_{n(p)}}{\ln |b_{n(p)}|}) \leq U^{L+2\varepsilon}(\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|}), $

这与$\ln |b_{n(p)}|\geq U^{1+\varepsilon}(\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|})$矛盾.

于是充分性得证, 必要性可由充分性的证明过程看出.

(b)$\Leftarrow$设对任意充分小的$\varepsilon\in(0, 1)$, 存在子序列$\{\lambda_{n(p)}\}$满足

$ \ln |b_{n(p)}|\geq U^{1-\varepsilon}(\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|}). $

$\lambda_{n(p)}>\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|}U^{1-\varepsilon}(\frac{\lambda_n{(p)}}{\ln |b_{n(p)}|}), $并且$\lambda_{n(p+1)}^{1-\varepsilon} < \lambda_{n(p)} < \lambda_{n(p+1)}, $则有

$ h(\lambda_{n(p)})>\frac{\lambda_{n(p)}}{\ln |b_{n(p)}|}, \ln |b_{n(p)}|>\frac{\lambda_{n(p)}}{h(\lambda_{n(p)})}, $

其中$u=h(v), v=uU^{1-\varepsilon}(u)$互为反函数, 取单调上升的序列$\{\lambda_{n(p)}\}$, 使$\lambda_{n(p)}=\frac{1}{2\sigma_p}U^{1-\varepsilon} (\frac{1}{2\sigma_p})$, 则有$h(\lambda_{n(p)})=\frac{1}{2\sigma_p}$, 任取$\sigma>0$, 则存在正整数$p$使$\sigma_{p+1} < \sigma < \sigma_p$, 对所有的$p$, 有

$ \ln M(\sigma, f)\geq\ln m(\sigma, f)\geq\ln |b_{n(p)}|e^{-\lambda_{n(p)}\sigma_p}\geq\frac{\lambda_{n(p)}}{h(\lambda_{n(p)})}-\lambda_{n(p)}\sigma_p\\ >\lambda_{n(p+1)}^{1-\varepsilon}\sigma_p>\sigma_p(\frac{1}{2\sigma_{p+1}})^{1-\varepsilon}U^{1-2\varepsilon}(\frac{1}{2\sigma_{p+1}}) >U^{1-3\varepsilon}(\frac{1}{\sigma_{p+1}})\geq{U^{1-3\varepsilon}}({\frac{1}{\sigma}}). $

结合(a)的结论即得$\lim\limits_{\sigma\rightarrow 0^{+}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})}= 1.$

$\Rightarrow$第一条件的必要性从(a)部分得出.假设第二条件不成立, 即存在$\varepsilon, \delta>0$及自然数列$\{n_j\}, \{m_j\}$使

$ m_j<n_{j+1}, \lambda_{m_{j}}>\lambda_{n_{j+1}}^{1+\varepsilon}, $ (2.7)

且对任意充分大的$n(n_j\leq n < m_j)$

$ \lambda_n<\frac{\lambda_n}{\ln |b_n|}U^{1-\delta}(\frac{\lambda_n}{\ln |b_n|}), $ (2.8)
$ h(\lambda_n)<\lambda_n<\frac{\lambda_n}{\ln |b_n|}, $ (2.9)

其中$h$$v=uU^{1-\delta}(u)$的反函数, 取序列$\{\sigma_p\}$使

$ h(\lambda_{m_j})=\frac{1}{\sigma_p}. $ (2.10)

$(1)$$n_j\leq n < m_j$对任意的$\sigma_p$

$ \ln |b_n|e^{-\lambda_n\sigma_p}\leq\frac{\lambda_n}{h(\lambda_n)}-\lambda_n\sigma_p. $ (2.11)

$H=\frac{1}{\sigma_p}U^{1-\delta}(\frac{1}{\sigma_p}), h(H)=\frac{1}{\sigma_p}.$

i)若$\lambda_n\geq H$, 则$\ln |b_n|e^{-\lambda_n\sigma_p}\leq\lambda_n(\frac{1}{h(H)}-\sigma_p)=0.$

ii)若$\lambda_n < H$, 则存在$m\in N$使

$ \frac{1}{(m+1)\sigma_p}U^{1-\delta}(\frac{1}{(m+1)\sigma_p})\leq\lambda_n\leq\frac{1}{m \sigma_p}U^{1-\delta}(\frac{1}{m\sigma_p}), \frac{1}{(m+1)\sigma_p}\leq h(\lambda_n)\leq \frac{1}{m \sigma_p}, $

从而

$ \ln |b_n|e^{-\lambda_n\sigma_p}\leq\frac{\lambda_n}{h(\lambda_n)}-\lambda_n\sigma_p \leq U^{1-\delta}(\frac{1}{m\sigma_p})\leq U^{1-\delta}(\frac{1}{\sigma_p}). $

$(2)$$n>m_j$, 结合$(2.10)$, $(2.11)$式, 有

$ \ln |b_n|e^{-\lambda_n\sigma_p}\leq\frac{\lambda_n}{h(\lambda_n)}-\lambda_n\sigma_p<0. $

(3) 当$n < n_j$, 结合$(2.8), (2.10), $ $(2.11)$式对充分大的$p$$\ln |b_n|\geq1$

$ \ln |b_n|e^{-\lambda_n\sigma_p}\leq \ln |b_n|U^{1-\delta}(\frac{\lambda_n}{\ln |b_n|})\leq U^{1-\delta}(\lambda_n)U^{1-\delta}(\lambda_{n_j})\\ U^{1-\delta}(\lambda_{m_j}^{\frac{1}{1+\varepsilon}})\leq U^{1-\delta}[(\frac{1}{\sigma_p})^{\frac{ 1+o(1)}{1+\varepsilon}}]\leq U^{(1-\delta)(\frac{1+o(1)}{1+\varepsilon})+o(1)}(\frac{1}{\sigma_p}). $

$\ln |b_n| < 1$上面不等式显然成立, 从而有$\overline{\lim\limits_{p\rightarrow \infty}}\frac{\ln\ln m(\sigma_p, f)}{\ln U(\frac{1}{\sigma_p})} < 1.$

结合定理$2.1$$\lim\limits_{\sigma\rightarrow 0^{+}}\frac{\ln\ln M(\sigma, f)}{\ln U(\frac{1}{\sigma})} < 1$矛盾.

3 随机Dirichlet级数

引理3.1[5]  设$X_n(\omega)$是概率空间$(\Omega, A, P)$上的独立随机变量序列, 它们的数学期望为零$(E(X_n)=0)$, 且方差为$E(|X_n|^2)=\sigma_n^2$.如果$E(\frac{|X_n|}{\sigma_n})=d_n$一致有下界$d>0$, 即对任意$n\in N$, 有$d_n\geq d>0$, 则对任意$H\in A$, 存在$B=B(d, H), K=K(H, X_n)\in N, $使得对任何复数列$b_n\in C$及任何$p>q\geq K$, 恒有

$ \int_H|\sum\limits_{n=q}^pb_nX_n(\omega)|^2P(d\omega)\geq B\sum\limits_{n=q}^p|b_n|^2\sigma_n^2. $

引理3.2[7]  设$\{X_n(\omega)\}$是概率空间$(\Omega, A, P)$上有有限方差$\int_\Omega|X_n(\omega)|^2d\omega=\delta_n^2 < \infty$的随机变量序列, 则对几乎必然a.s.的$\omega\in\Omega$,

1) 存在$N=N(\omega)$, 当$n\geq N$时, 有$|X_n(\omega)| < n\delta_n$;

2)$\overline{\lim\limits_{n\rightarrow \infty}}\frac{ |X_n(w)|}{\delta_n}\geq \overline{\lim\limits_{n\rightarrow \infty}}\frac{ E(|X_n|)}{\delta_n}$.

考虑与级数$(2.1)$相对应的随机Dirichlet级数$f_\omega(s)=\sum\limits_{n=0}^{\infty}b_nX_n(\omega)e^{-\lambda_ns}, $其中$s=\sigma+it, \{X_n(\omega)\}$是随机变量序列, 它们不一定是同分布的, 且上式满足

$ \overline{\lim\limits_{n\rightarrow \infty}}\frac{\ln |b_n\delta_n|}{\lambda_n}=0, $ (3.1)

$f_\omega(s)$是一个半平面上的随机函数, 令

$ M(\sigma, f_\omega)=\sup\{|f_\omega(\sigma+it)|;t\in R\}, m(\sigma, f_\omega)=\max\{|b_nX_n(\omega)|e^{-\lambda_n\sigma} ;n\in N\}. $

定理$3.1$  设随机变量序列$\{X_n(\omega)\}$满足引理$3.1$的条件, 若随机Dirichlet级数$(3.1)$满足(3.2), (2.4) 式, 则

$ \overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\sigma, f_\omega)}{\ln U(\frac{1}{\sigma})}=1~~{\hbox{a.s.}} \Leftrightarrow\overline{\lim\limits_{n\rightarrow \infty}}\frac{\ln\ln |b_n\delta_n|}{\ln U(\frac{\lambda_n}{\ln |b_n\delta_n|})}=1. $ (3.2)

  令$Z_n(\omega)=\frac{X_n(\omega)}{\delta_n}$, 则$E(|Z_n|^2=1), E(|Z_n|)\geq d, X_n=\delta_nZ_n.$不妨记

$ t_n= \overline{\lim\limits_{n\rightarrow \infty}}\frac{\ln\ln |b_n\delta_n|}{\ln U(\frac{\lambda_n}{\ln |b_n\delta_n|})}. $

我们首先证明$\overline{\lim\limits_{n\rightarrow \infty}}t_n\geq 1\Rightarrow\overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\sigma, f_\omega)}{\ln U(\frac{1}{\sigma})}\geq $1 a.s..设$\overline{\lim\limits_{n\rightarrow \infty}}t_n=\overline{\lim\limits_{n\rightarrow \infty}}t_{n_k}\geq 1$, 其中$t_{n_k}>0$, 则由引理3.2可得

$ \overline{\lim\limits_{k\rightarrow \infty}}|Z_{n_k}(\omega)|\geq\overline{\lim\limits_{k\rightarrow \infty}} E(|Z_{n_k}|)\geq d~~{\hbox{a.s.}}. $

对几乎必然的$\omega\in\Omega, \{Z_{n_k}(\omega)\}$有子序列$\{Z_{n_{k_l}}(\omega)\}, |Z_{n_{k_l}}|\geq\frac{d}{2}, \{n_{k_l}\}$$\{n_k\}$的子序列.

$t_n(\omega)=\frac{\ln\ln |b_nX_n(\omega)|}{\ln U(\frac{\lambda_n}{\ln |b_nX_n(\omega)|})}, $对于

$ \frac{2}{d}f_\omega(s)=\sum\limits_{n=0}^{+\infty}\frac{2}{d}b_nX_n(\omega)e^{-\lambda_ns}, t_n^*(\omega) =\frac{\ln\ln |\frac{2}{d}b_nX_n(\omega)|}{\ln U(\frac{\lambda_n}{\ln |\frac{2}{d}b_nX_n(\omega)|})}. $

故有

$ \overline{\lim\limits_{n\rightarrow \infty}}t_n^*(\omega)=\overline{\lim\limits_{l\rightarrow \infty}}t_{n_{k_l}}^* (\omega)=\overline{\lim\limits_{l\rightarrow \infty}}\frac{\ln\ln |\frac{2}{d}b_{n_{k_l}}Z_{n_{k_l}}(\omega)\delta_{n_{k_l}}|}{\ln U(\frac {\lambda_{n_{k_l}}}{\ln |\frac{2}{d}b_{n_{k_l}}Z_{n_{k_l}}(\omega)\delta_{n_{k_l}}|})}\geq\overline{\lim\limits_{l\rightarrow \infty}} \frac{\ln\ln |b_{n_{k_l}}\delta_{n_{k_l}}|}{\ln U(\frac{\lambda_{n_{k_l}}}{\ln |b_{n_{k_l}}\delta_{n_{k_l}}|})}\\ =\overline{\lim\limits_{l\rightarrow \infty}}t_{n_{k_l}}=\lim\limits_{k\rightarrow\infty}t_{n_k}= \overline{\lim\limits_{n\rightarrow \infty}}t_n\geq 1, $

结合定理$2.2$可知

$ \overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\sigma, f_\omega)}{\ln U(\frac{1}{\sigma})} =\overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\sigma, \frac{2}{d}f_\omega)}{\ln U(\frac{1}{\sigma})}= \overline{\lim\limits_{n\rightarrow \infty}}t_n^*(\omega)\geq 1~~{\hbox{a.s.}}. $

下面将证

$ \overline{\lim\limits_{n\rightarrow \infty}}t_n\leq 1\Rightarrow\overline{\lim\limits_{\sigma\rightarrow 0^+}} \frac{\ln\ln M(\sigma, f_\omega)}{\ln U(\frac{1}{\sigma})}\leq 1~~{\hbox{a.s.}}. $

$g(s)=\sum\limits_{n=0}^{+\infty}b_n\delta_ne^{-\lambda_ns}, \Delta=\frac{\sigma\ln U(\frac{1}{\sigma})}{1+\ln U(\frac{1}{\sigma})}, \delta=\frac{\sigma}{1+\ln U(\frac{1}{\sigma})}$, 由引理$3.2$可得

$ M(\sigma, f_\omega)=\sum\limits_{n=0}^{+\infty}|b_nX_n(\omega)|e^{-\lambda_n\sigma}= \sum\limits_{n=0}^{+\infty}|b_n\delta_nZ_n(\omega)|e^{-\lambda_n\sigma}={\sum\limits_{n=0}^{+\infty}|b_n\delta_n Z_n(\omega)|e^{-\lambda_n\Delta}}e^{{-\lambda_n}{\delta}}\\ \leq m(\Delta, g)\sum\limits_{n=0}^{+\infty}(|Z_n(\omega)|e^{-{\lambda_n}{\delta}})\leq m(\Delta, g)(C+ \sum\limits_{n=1}^{+\infty}C(\omega)ne^{-{\lambda_n}{\delta}}), $

其中$C, C(\omega)$是与$\omega$有关的常数.类似定理$1$证明过程, 结合定理$2.2$可得当$\overline{\lim\limits_{n\rightarrow \infty}}t_n\leq 1$时,

$ \overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\sigma, f_\omega)}{\ln U(\frac{1}{\sigma})}\leq \overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln m(\Delta, g)}{\ln U(\frac{1}{\sigma})} =\overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\Delta, g)}{\ln U(\frac{1}{\sigma})} =\overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln M(\sigma, g)}{\ln U(\frac{1}{\sigma})}\leq 1. $

定理证毕.

仿照文[7]的证明, 有

定理$3.2$  设随机Dirichlet级数$(3.1)$满足$(2.4)$, $(3.2)$以及$(3.3)$式, $\{X_n(\omega)\}$是引理$3.1$中的随机变量序列, 则级数$(3.1)$几乎(a.s.)对任意的$t_0\in R$

$ \overline{\lim\limits_{\sigma\rightarrow 0^+}}\frac{\ln\ln |f_\omega(\sigma+it_0)|}{\ln U(\frac{1}{\sigma})}=1, $

其中$U(r)$是定义$2.2$中满足$1), 2)$的型函数.

参考文献
[1] 余家荣, 丁晓庆, 田范基. Dirichlet级数和随机Dirichlet级数的值分布[M]. 武汉: 武汉大学出版社, 2004.
[2] Liu Xuekun, Liang Shupeng, Sun Daochun. The distribution of values of zero order functions[J]. J. of Math. (PRC), 1997, 17(1): 47–54.
[3] 高宗升. 零级随机狄里克莱级数的增长性[J]. 武汉大学学报, 1994(2): 1–8.
[4] 田宏根, 孙道椿, 郑承民. 平面上的零级Dirichlet级数[J]. 系统科学与数学, 2006, 26(3): 270–276.
[5] 孙道椿. 半平面上的随机Dirichlet级数[J]. 数学物理学报, 1999, 19(1): 107–112.
[6] 孙道椿, 陈特为. 无限级Dirichlet级数[J]. 数学学报, 2001, 44(2): 259–268.
[7] 陈聚峰, 刘名生. 有限级Dirichlet级数及随机Dirichlet级数[J]. 数学物理学报, 2005, 25A(7): 965–973.
[8] 曹月波, 杨祺, 田宏根. 半平面上Dirichlet级数和随机Dirichlet级数的上下级[J]. 数学杂志, 2011, 31(5): 945–951.
[9] 岳超, 孙道椿. Dirichlet级数与随机Dirichlet级数在半平面内的增长性[J]. 华南师范大学学报, 2011, 2: 23–27.