数学杂志  2014, Vol. 34 Issue (1): 145-150   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
陶林零
杨卫国
程小军
关于任意随机可积序列的一个强收敛定理
陶林零, 杨卫国, 程小军    
江苏大学理学院, 江苏 镇江 212013
摘要:本文研究了可积随机适应序列强收敛定理的问题.利用构造截尾停时以及鞅差序列的方法, 获得了一类任意积随机适应序列的强收敛定理, 推广了若干已知的结果.
关键词强收敛定理    鞅差序列    强大数定律    
A CLASS OF STRONG CONVERGENCE THEOREMS FOR THE INTEGRABLE SEQUENCE OF ARBITRARY RANDOM VARIABLES
TAO Lin-ling, YANG Wei-guo, CHENG Xiao-jun    
Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Abstract: In this paper, the strong convergence theorems for the integrable sequence of arbitrary random variables are studied. By using the methods of constructing censored stopping time and martingale difference sequences, we obtain a class of strong convergence theorems for the integrable sequence of arbitrary random variables. As corollaries, which generalize some known results.
Key words: strong convergence theorems     martingale difference sequence     strong law of large numbers    
1 主要结果

$(X_n, {\cal F}_n, n\geq0)$是定义在$(\Omega, {\cal F}, P)$上的一可积随机适应序列, 即${\cal F}_n$是一非降$\sigma$$({\cal F}_n\subset{\cal F}_{n+1})$, $X_n$可积的且是${\cal F}_n$可测的.

下面给出万成高在整个空间上的的收敛定理, 参见文献[1].

定理A  设$(X_n, {\cal F}_n, n\geq0)$是任意可积随机适应序列, $(a_n, n\geq0)$是非降的正常数列, 若下列条件成立:

$ \sum\limits_{n=1}^\infty {E[\frac{|X_n|^p}{{a_n}^p+a_n|X_n|^{p-1}}|{\cal F}_{n-1}]}<\infty, 1\leq{p}\leq2, $ (1)

则有

$ \sum\limits_{n=1}^\infty {\frac{X_n-E[X_n|{\cal F}_{n-1}]}{a_n}}\ \ \ \ \mbox{a.e. 收敛}. $

类似定理A我们给出一个集合上的强收敛定理.

定理B  设$(X_n, {\cal F}_n, n\geq0)$是任意可积随机适应序列, $(a_n, n\geq0)$是非降的正常数列.

$ A=\{\omega:\sum\limits_{n=1}^\infty {E[\frac{|X_n|^p}{{a_n}^p+a_n|X_n|^{p-1}}|{\cal F}_{n-1}]}<\infty\}, 1\leq{p}\leq2, $ (2)

则有

$ \sum\limits_{n=1}^\infty {\frac{X_n-E[X_n|{\cal F}_{n-1}]}{a_n}}\ \ \ \ \mbox{在$A$ 中a.e. 收敛.} $ (3)

定理A在条件(1) 下成立, 定理B在条件(2) 下成立.定理B更优, 因为它推广了Chow的鞅差序列的强大数定理.本文是利用文献[2]的方法给出定理B的证明.

2 结果证明

定理B的证明  设$n\geq0$, $X_n^*={X_nI_{(|X_n|\leq a_n)}}$.记$Z_n={\frac{|X_n|^p}{a_n^p+a_n|X_n|^{p-1}}}$, 设$k$为正整数,

$ A_k=\{\omega:\sum\limits_{n=1}^\infty {E[Z_n|{\cal F}_{n-1}]}\leq{k}\}, $ (4)
$ \tau_k=\inf\{n:n\geq1, \sum\limits_{i=1}^{n+1} {E[Z_i|{\cal F}_{i-1}]}>k\}, $ (5)

当(5) 式的右边集为空集时, 令$\tau_k=\infty $, 这样$\sum\limits_{m=1}^{{\tau_k}\Lambda{n}}{Z_m}=\sum\limits_{m=1}^{n}{I_{(\tau_k\geq m)}Z_m} $.由于$I_{(\tau_k\geq m)}$${\cal F}_{m-1}$可测的, 由$Z_n$的非负性, $\forall {n}$, 有

$ \begin{aligned} E(\sum\limits_{m=1}^{{\tau_k}\Lambda{n}}{Z_m})&=E(\sum\limits_{m=1}^{n}{I_{(\tau_k\geq m)}Z_m} )=E\{\sum\limits_{m=1}^{n}{E[I_{(\tau_k\geq m)}Z_m|{\cal F}_{m-1}]} \} \\ &=E\{\sum\limits_{m=1}^{n}{I_{(\tau_k\geq m)}E[Z_m|{\cal F}_{m-1}]} \} =E\{\sum\limits_{m=1}^{{\tau_k}\Lambda{n}}{E[Z_m|{\cal F}_{m-1}]}\}\leq{k}. \end{aligned} $ (6)

由于$A_k=\{\tau_k=\infty\}$, 于是由(6) 式, $\forall{n}$

$ \begin{aligned}&\sum\limits_{m=1}^{n}{\int_{A_k}Z_m{dP}}=\sum\limits_{m=1}^{n}{E[I_{A_k}Z_m]}=E\{I_{A_k}\sum\limits_{m=1}^{n}{Z_m}\}=E\{I_{(\tau_k=\infty)}\sum\limits_{m=1}^{n}{Z_m}\}\\ =&E\{I_{(\tau_k=\infty)}\sum\limits_{m=1}^{{\tau_k}\Lambda{n}}{Z_m}\}\leq{E(\sum\limits_{m=1}^{{\tau_k}\Lambda{n}}{Z_m})}\leq{k}, \end{aligned} $ (7)

因此可得

$ \sum\limits_{m=1}^{\infty}{\int_{A_k}Z_m{dP}}\leq{k}. $ (8)

由于当$|X_n|>a_n$时, $\frac{1}{Z_n}=(\frac{a_n}{|X_n|})^{p}+\frac{a_n}{|X_n|}\leq{2}\quad(1\leq{p}\leq{2}), $于是有

$ \begin{aligned}&\sum\limits_{n=1}^{\infty}{P(A_k(X_n\neq{X_n^*}))}=\sum\limits_{n=1}^{\infty}{\int_{A_k(X_n\neq{X_n^*})}{dP}}\leq{\sum\limits_{n=1}^{\infty}{\int_{A_k(X_n\neq{X_n^*})}2Z_n{dP}}} \\ \leq&{\sum\limits_{n=1}^{\infty}{\int_{A_k}2Z_n{dP}}}\leq{2k}.\end{aligned} $ (9)

于是由Borel-Cantelli引理知$P(A_k(X_n\neq{X_n^*})\, \, {\rm i.o.})=0$, 于是有

$ \sum\limits_{n=1}^{\infty}{(X_n-X_n^*)/a_n} \ \ \mbox{在$A_k$ 中a.e. 收敛}. $

由于$A=\bigcup\limits_{k}{A_k}$, 所以有

$ \sum\limits_{n=1}^{\infty}{(X_n-X_n^*)/a_n} \ \ \mbox{在$A$ 中a.e. 收敛}. $ (10)

$ Y_m=(X_m^*-E[X_m^*|{\cal F}_{m-1}])/a_m. $ (11)

$\lambda=1, -1$

$ t_n(\lambda)=\frac{\exp\{\lambda\sum\limits_{m=1}^{n}Y_m\}}{\prod\limits_{m=1}^n{E[\exp(\lambda Y_m)|{\cal F}_{m-1}]}} \, \, \, \ \ \, n\geq{1}, $ (12)

由于$E[t_n|{\cal F}_{n-1}]=t_{n-1}$$E|t_n(\lambda)|=Et_n(\lambda)=Et_1(\lambda)=1$, 故$\{t_n(\lambda), n\geq{1}\}$为非负鞅, 由Doob鞅收敛定理得

$ \lim\limits_{n\rightarrow{\infty}}t_n(\lambda)=t_\infty(\lambda) \ \ {\rm a.e.}, $ (13)

由不等式

$ 0\leq{\exp(x)-1-x} \leq {x^2\exp(|x|)}\, \, \, \, \, \, \, \, \forall{x}\in{R}, $ (14)

注意到$|Y_n|\leq{2}$, 且$E[Y_n|{\cal F}_{n-1}]=0$ a.e.及

$ \begin{aligned} E[Y_n^2|{\cal}{F_{n-1}}]&=E[((X_n^*-E[X_n^*|{\cal F}_{n-1}])/a_n)^2|{\cal F}_{n-1}] \\ &=(E[(X_n^*)^2|{\cal F}_{n-1}]-(E[X_n^*|{\cal F}_{n-1}])^2)/a_n^2\\ &\leq E[(X_n^*)^2|{\cal F}_{n-1}]/a_n^2\, \, \, \, \, \, \, \, \, {\rm a.e.}, \end{aligned} $ (15)

$ \begin{aligned}0&\leq{E[\exp(\lambda{Y_n})|{\cal F}_{n-1}]-1}=E[\exp(\lambda{Y_n})-\lambda{Y_n}-1|{\cal F}_{n-1}]\\ &\leq{E[|\lambda{Y_n}|^2e^{|\lambda{Y_n}|}|{\cal F}_{n-1}]}\leq{e^2E[Y_n^2|{\cal F}_{n-1}]}\leq{e^2E[(X_n^*)^2|{\cal F}_{n-1}]/a_n^2}\, \, \, \, \, \, \, \, \, {\rm a.e.}, \end{aligned} $ (16)

由于$|X_n|\leq{a_n}$时, $|X_n^*|\leq{a_n}$, 并且$f(x)=\frac{|x|^p}{a^p+a|x|^{p-1}}\, \, \, \, \, (a>0)$$[0, +\infty)$是单调递增的, 有

$ (\frac{X_n^*}{a_n})^2\leq{(\frac{|X_n^*|}{a_n})^p}=\frac{|X_n^*|^p}{a_n^p+a_n|X_n^*|^{p-1}}\cdot\frac{a_n^p+a_n|X_n^*|^{p-1}}{|a_n^*|^p}\leq{2Z_n}\, \, \, \, \, \, \, \, \, (1\leq{p}\leq{2}), $ (17)

由(16) 与(17) 式有

$ 0\leq{E[\exp(\lambda{Y_n})|{\cal F}_{n-1}]-1}\leq{2e^2E[Z_n|{\cal F}_{n-1}]}\, \, \, \, \, \, \, \, \, {\rm a.e.}, $ (18)

由(18) 与(2) 式是有$\sum\limits_{n=1}^{\infty}{(E[\exp(\lambda{Y_n})|{\cal F}_{n-1}]-1])} $$A$ 中a.e. 收敛, 或等价地

$ \prod\limits_{n=1}^{\infty}{E[\exp(\lambda{Y_n})|{\cal F}_{n-1}]} \ \ \mbox{在$A$ 中a.e. 收敛}. $ (19)

由(12), (13) 和(19) 式有

$ \lim\limits_{n\rightarrow{\infty}}\, \exp\{\lambda\sum\limits_{m=1}^{n}Y_m\} \ \ \mbox{在$A$ 中a.e. 收敛}. $ (20)

因为上式对$\lambda=1, -1$成立, 所以有

$ \sum\limits_{n=1}^{\infty}{Y_n}=\sum\limits_{n=1}^{\infty}{(X_n^*-E[X_n^*|{\cal F}_{n-1}])/a_n} \ \ \mbox{在$A$ 中a.e. 收敛}. $ (21)

$|X_n|>a_n$时有

$ (\frac{|X_n|}{a_n})=\frac{|X_n|^p}{a_n^p+a_n|X_n|^{p-1}}\cdot\frac{a_n^{p-1}+a_n|X_n|^{p-1}}{|X_n|^{p-1}}\leq{2Z_n}\, \, \, \, \, \, \, \, \, (1\leq{p}\leq{2}), $ (22)

所以有

$ \begin{aligned} &|E[X_n|{\cal F}_{n-1}]-E[X_n^*|{\cal F}_{n-1}])/a_n| \leq E[|X_n-X_n^*|/a_n|{\cal F}_{n-1}]\\ =& E[|X_n|/a_nI_{(|X_n|>a_n)}|{\cal F}_{n-1}] \leq E[2Z_nI_{(|X_n|>a_n)}|{\cal F}_{n-1}] \leq 2E[2Z_n|{\cal F}_{n-1}]\, \, \, \, \, \, \, \, \, {\rm a.e.}. \end{aligned} $ (23)

由(23) 和(2) 式有

$ \sum\limits_{n=1}^{\infty}{(E[X_n|{\cal F}_{n-1}-E[X_n^*|{\cal F}_{n-1}])/a_n} \ \ \mbox{在$A$ 中~a.e. 收敛}. $ (24)

由(10), (21) 及(24) 知(3) 式成立.

  在定理B中令$P(A)=1$, 可得定理A.

推论1  设$(X_n, {\cal F}_n, n\geq0)$是鞅差序列, $\{a_n, n\geq{0}\}$是非降的正数列.设$A$由(2) 定义, 则有

$ \sum\limits_{n=1}^{\infty}{\frac{X_n}{a_n}} \ \ \mbox{在$A$ 中a.e. 收敛}. $ (25)

  注意到$E[X_n|{\cal F}_{n-1}]=0$, 于是从定理B可得本推论.

推论2(Chow, 参见文献[3, 第249页练习8]  设$(X_n, {\cal F}_n, n\geq0)$是鞅差序列, $\{a_n, n\geq{0}\}$是非降的正数列.设

$ B=\{\omega:\sum\limits_{n=1}^\infty {a_n^{-p}E[|X_n|^p|{\cal F}_{n-1}]}<\infty\}, 1\leq{p}\leq2, $ (26)

则有

$ \sum\limits_{n=1}^{\infty}{\frac{X_n}{a_n}} \ \ \mbox{在$B$ 中~a.e. 收敛}. $ (27)

  令$A$如定理B定义, 因为$\frac{|X_n|^p}{a_n^p+a_n|X_n|^{p-1}}\leq\frac{|X_n|^p}{a_n^p}$, 则有$B\subseteq{A}$, 由推论1可得本推论.

推论3  $\{X_n, n\geq{1}\}$为独立的随机变量序列, $\{a_n, n\geq{1}\}$如前定义.如果

$ \sum\limits_{n = 1}^\infty {E\left[{\frac{{\left| {X_n } \right|^p }}{{a_n ^p + a_n \left| {X_n } \right|^{p-1} }}} \right]} < \infty \quad 1 \le p \le 2. $ (28)

$ \sum\limits_{n = 1}^\infty {\frac{{X_n -EX_n }}{{a_n }}} \quad \, {\rm a.e.}\mbox{收敛}. $

  在定理B中取${\cal F}_n = \sigma \left({X_1, X_2, \cdots, X_n }\right)$, 由于$\{X_n, n\geq{1}\}$为独立的随机变量序列, 故有

$ E\left[{\frac{{|X_n| ^p }}{{a_n ^p + a_n \left| {X_n } \right|^{p-1}}}\left| {{\cal F}_{n-1} } \right.} \right] = E\left[{\frac{{|X_n| ^p }}{{a_n ^p + a_n \left| {X_n } \right|^{p-1}}}} \right]\quad {\rm a.e.} $

$ E\left[{X_n \left| {{\cal F}_{n-1} } \right.} \right] = EX_n \quad {\rm a.e.}. $由定理A可得本推论.

由推论3易证以下两推论.

推论4   (参见文献[4, p.387])设$\{X_n, n\geq{1}\}$为独立的随机变量序列, 且$EX_n=0$, 如果

$ \sum\limits_{n = 1}^\infty {E\frac{{X_n ^2 }}{{1 + \left| {X_n } \right|}} < \infty }, $

$ \sum\limits_{n = 1}^\infty {X_n } \, {\rm a.e.} \mbox{收敛}. $

推论5   (Kolmogorov, 参见文献[4, p.389])设$\{X_n, n\geq{1}\}$为独立的随机变量序列, $\{a_n, n\geq{1}\}$如前定义.如果

$ \sum\limits_{n = 1}^\infty {\frac{{EX_n ^2 }}{{a_n ^2 }} < \infty }, $ (29)

$ \sum\limits_{n = 1}^\infty {\frac{{X_n -EX_n }}{{a_n }}} \, {\rm a.e.} \mbox{收敛}. $

显然推论3是推论5的推广, 这是因为当$p=2$时条件(28) 比条件(29) 弱.下面的例子证明了当$p=2$时(28) 比(29)“真弱”.

例1  设$\{X_n, n\geq{1}\}$为独立的随机变量序列,$X_n$的分布密度为

$ f_n (x) = \left\{ \begin{array}{l} \frac{2}{{n^2 x^3 }}\quad x \ge 1/n, \\ \quad 0\quad \;x < 1/n. \\ \end{array} \right. $

要证明

$ \sum\limits_{n = 1}^\infty {\frac{{EX_n ^2 }}{{n^2 }}} = + \infty, \sum\limits_{n = 1}^\infty {E\left[{\frac{{X_n ^2 }}{{n^2 + n\left| X _n\right| }}} \right] < \infty }. $

事实上, 由于$\displaystyle EX_n ^2 = \int_{1/n}^\infty {\frac{2}{{n^2 x}}} dx = + \infty, $所以$\displaystyle \sum\limits_{n = 1}^\infty {\frac{{EX_n ^2 }}{{n^2 }}} = + \infty, $又因为

$ E\left[{\frac{{X_n ^2 }}{{n^2 + n\left| {X_n } \right|}}} \right] = \int_{1/n}^\infty {\frac{2}{{n^2 x^3 }}} \frac{{x^2 }}{{n^2 + nx}}dx = \int_{1/n}^\infty {\frac{{2n}}{{n^3 }}} \left( {\frac{1}{{n^2 x}} - \frac{1}{{n^2 x + n^3 }}} \right)dx = \frac{2}{{n^{\rm 4} }}\ln \left( {{\rm 1 + }n^{\rm 2} } \right), $

由于

$ \sum\limits_{n = 1}^\infty {\frac{2}{{n^{\rm 4} }}\ln \left( {{\rm 1 + }n^{\rm 2} } \right) < \infty }. $

$ \sum\limits_{n = 1}^\infty {E\left[{\frac{{X_n ^2 }}{{n^2 + n \left| {X_n } \right|}}} \right] < \infty } . $

所以当$a_n=n, p=2$时, $\{X_n, n\geq{1}\}$满足(28) 式, 但不满足(29) 式.

参考文献
[1] 万成高. 马氏过程函数的强大数定律[J]. 数学研究, 2007, 40(1): 72–79.
[2] 刘文, 杨卫国, 张丽娜. 关于任意随机变量序列的一类强极限定理[J]. 数学学报, 1997, 40(4): 537–544.
[3] Chow Y S, Teicher H. Probability theory (2nd ed) [M]. New York: pringer-Verlag, 1974.
[4] Shiryaev A N. Probability (2nd ed) [M]. New York: Springer-Verlag, 2004.