数学杂志  2014, Vol. 34 Issue (1): 79-84   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Jian
ORLICZ PROJECTION BODIES OF ELLIPSOIDS
WANG Jian    
Department of Mathematics, School of Science, Shanghai University, Shanghai 200444, China
Abstract: In this paper, we study the problem of the Orlicz projection bodies recently introduced by Lutwak, Yang and Zhang. By using the linear invariant property of Orlicz projection bodies, we obtain the result that the Orlicz projection bodies of ellipsoids are still ellipsoids. As examples, we compute two concrete support functions of Orlicz projection bodies of the unit ball for two specific convex functions.
Key words: convex body     support function     projection bodies     Orlicz projection bodies    
椭球的Orlicz投影体
王健    
上海大学理学院数学系, 上海 200444
摘要:本文研究了文献[1]所引入的Orlicz投影体问题.利用Orlicz投影体在线性变换下的不变性, 获得了椭球的Orlicz投影体仍是椭球的结果.作为例子, 计算了当取两个特定的凸函数时单位球的Orlicz投影体的支持函数.
关键词凸体    支持函数    投影体    Orlicz投影体    
1 Introduction

In a series of ground-breaking work by Lutwak, Yang and Zhang [7, 8], the classical Brunn-Minkowski theory emerged at the turn of the 19th into the 20th century and then the $L_{p}$ Brunn-Minkowski theory originated from Lutwak's seminal work [4, 5], were remarkably generalized to the more broad framework, which is the so-called Orlicz-Brunn-Minkowski theory.

Within the Orlicz-Brunn-Minkowski theory, Orlicz projection body is spontaneously the important object. In retrospect, the two classical inequalities which connect the volume of a convex body with that of its polar projection body are the Petty and Zhang projection inequalities. The Petty projection inequality led to the affine Sobolev inequality [9] that is stronger than the classical Sobolev inequality and yet is independent of any underlying Euclidean structure. The $L_{p}$ analogue of projection bodies and the celebrated Petty projection inequality was established in [1] by Lutwak, Yang and Zhang, and independently derived by Campi and Gronchi [2] using an alternate approach. Recently, Lutwak, Yang and Zhang [7] established the corresponding Orlicz version.

We consider convex $\phi: \Bbb R \rightarrow [0,\infty)$ such that $\phi(0)=0$. This means that $\phi$ must be decreasing on $(-\infty,0]$ and increasing on $[0,\infty)$. We will assume throughout that one of these is happening strictly so; i.e., $\phi$ is either strictly decreasing on $(-\infty,0]$ or strictly increasing on $[0,\infty)$. The class of such $\phi$ will be denoted by $\mathcal{C}$.

Let $K$ be a convex body in ${\Bbb R}^{n}$ that contains the origin in its interior and has volume $|K|$. For $\phi\in\mathcal{C}$, the Orlicz projection body $\Pi_{\phi}K$ of $K$ is defined as the body whose support function is given by

$h_{\Pi_{\phi}K}(x)=\inf \Bigg\{\lambda >0: \int_{\partial K} \phi \Bigg(\frac{x \cdot v(y)}{\lambda y \cdot v(y)} \Bigg )y \cdot v(y) d \mathcal{H} ^{n-1} (y) \leq n |K| \Bigg\},$

where $v(y)$ is the outer unit normal of $\partial K$ at $y \in \partial K$, where $x \cdot v(y)$ denotes the inner product of $x$ and $v(y)$, and $\mathcal{H}^{n-1}$ is $(n-1)$-dimensional Hausdorff measure.

With $\phi_{1}(t)= | t |$, it turns out that for $u \in S^{n-1}$, $h_{\Pi_{\phi _{1}}K}(u)=\frac{c_{n}}{| K |} |K_{u}|,$ where $| K_{u} |$ denotes the $(n-1)$-dimensional volume of $K_{u}$, the image of the orthogonal projection of $K$ onto the subspace $u^{\perp}$. Thus $\Pi_{\phi_{1}}K=\frac{c_{n}}{| K |}\Pi K,$ where $\Pi K$ is the classical projection body of $K$ introduced by Minkowski.

With $\phi_{p}(t)=| t |^{p}$, and $p \geq 1$, $\Pi_{\phi_{p}}K=\frac{c_{n,p}}{| K |^{\frac{1}{p}}}\Pi_{p} K,$ where $\Pi _{p} K$ is the $L_{p}$ projection body of $K$, defined as the convex body whose support function is given by

$h_{\Pi_{p}K}(x)=\Bigg\{ \int_{\partial K} |x \cdot v(y) | ^{p} |y \cdot v(y)| ^{1-p} d\mathcal{H} ^{n-1} (y) \Bigg \}^{1/p}.$

In this paper, we demonstrate the fact that the Orlicz projection bodies of ellipsoids are still ellipsoids in $\mathbb{R}^{n}$. As examples, we compute two concrete support functions of Orlicz projection bodies of the unit ball for two specific convex functions.

2 Basics Regarding Convex Bodies

The setting for this paper is the $n$-dimensional Euclidean space $\mathbb{R}^{n}$. We write $e_{1},\cdots ,e_{n}$ for the standard orthonormal basis of $\mathbb{R}^{n}$. Throughout this paper, $B^{n}=\{ x \in \mathbb{R}^{n}: |x| \leq 1\}$ denotes the unit ball centered at the origin, and $\omega_{n}=|B^{n}|$ denotes its $n$-dimensional volume.

A convex body is a compact convex subset of $\mathbb{R}^{n}$ with nonempty interior. All the convex bodies of $\mathbb{R}^{n}$ will be denoted by $\mathcal{K}_{0}^{n}$. Associated with a convex body $K$ is its support function $h_{K}$ defined on $\mathbb{R}^{n}$ by $h_{K}(x)=\max \{ x \cdot y: y \in K\}.$ Thus, if $y \in \partial K$, then $h_{K}(v_{K}(y))=v_{K}(y) \cdot y,$ where $v_{K}(y)$ denotes an outer unit normal to $\partial K$ at $y$.

For more detailed facts on convex bodies, you can refer the excellent books authored by Schneider [3] and Gardner [6].

3 Main Results

In [7], it is proved that the definition of $h_{\Pi_{\phi}K}(x)$ is equivalent to the following definition:

$h_{\Pi_{\phi}K}(x)=\inf \Bigg \{\lambda >0: \int_{S^{n-1}} \phi \Bigg (\frac{x \cdot u}{\lambda h_{K}(u)} \Bigg )h_{K}(u) d S_{K}(u) \leq n |K| \Bigg \},$

or equivalently,

$h_{\Pi_{\phi}K}(x)=\inf \Bigg \{\lambda >0: \int_{S^{n-1}} \phi \Bigg (\frac{1}{\lambda}(x \cdot u)\rho_{K^{\ast}}(u)\Bigg ) d V_{K}(u) \leq 1 \Bigg \}.$

The polar body of $\Pi_{\phi}K$ will be denoted by $\Pi_{\phi}^{\ast}K$.

Since the area measure $S_{K}$ cannot be concentrated on a closed hemisphere of $S^{n-1}$, and since we assume that $\phi$ is strictly increasing on $[0,\infty)$ or strictly decreasing on $(-\infty,0]$, it follows that the function

$\lambda \longmapsto \int_{S^{n-1}} \phi \Bigg (\frac{1}{\lambda}(x \cdot u)\rho_{K^{\ast}}(u) \Bigg )d V_{K}(u)$

is strictly decreasing in $(0,\infty)$. Thus we have

Lemma 1 Suppose $\phi\in\mathcal {C}$, and $K\in \mathcal {K}_{0}^{n}$. If $x_{0}\in \mathbb{R}^{n}\setminus\{0\}$, then

$\int_{S^{n-1}}\phi\Bigg(\frac{x_{0}\cdot v}{\lambda_{0}h_{K}(v)}\Bigg)dV_{K}(v) >1,$

$=1$, or $<1$, respectively, if and only if $h_{\Pi_{\phi}K}(x_{0})>\lambda_{0},$ $=\lambda_{0}$, or $<\lambda_{0}$, respectively.

From Lemma 1, we can show immediately the inclusion relation, which is a monotonicity of Orlicz projection body in some sense.

Theorem 1 If $K\in\mathcal {K}$ and $\phi_{1}, \phi_{2}\in\mathcal {C}$, $ \phi_{1}\leq\phi_{2}$, then $\Pi_{\phi_{1}}K\subseteq\Pi_{\phi_{2}}K$.

Proof $\forall u\in S^{n-1}$, let $h_{\Pi_{\phi_{1}}K}(u)=\lambda.$ In terms of Lemma 1, it has

$\frac{1}{n|K|}\int_{S^{n-1}}\phi_{1}\bigg(\frac{u\cdot \upsilon}{\lambda h_{K}(\upsilon)}\bigg)h_{K}(\upsilon)dS_{K}(\upsilon)=1.$

Since $\phi_{1}\leq\phi_{2}$, we have

$\frac{1}{n|K|}\int_{S^{n-1}}\phi_{2}\bigg(\frac{u\cdot \upsilon}{\lambda h_{K}(\upsilon)}\bigg)h_{K}(\upsilon)dS_{K}(\upsilon)\geq 1$

from Lemma 1 again, we have $h_{\Pi_{\phi_{2}}K}(u)\geq\lambda.$ Therefore $h_{\Pi_{\phi_{1}}K}(u)\leq h_{\Pi_{\phi_{2}}K}(u),$ that is $\Pi_{\phi_{1}}K\subseteq\Pi_{\phi_{2}}K.$ This completes the proof.

Theorem 2 The Orlicz projection body $\Pi_{\phi}E$ of the ellipsoid $E$ is still an ellipsoid.

Proof First, we prove that the Orlicz projection body of the unit ball is still a ball centered at the origin. Suppose $A \in SO(n)$ and $u \in S^{n-1}$, let $z=A^{t}v$. Then

$ $\begin{aligned} &\frac{1}{\omega_{n}}\int_{B^{n}}\phi(\frac{1}{\lambda}Au\cdot\upsilon)d\upsilon =\frac{1}{\omega_{n}}\int_{B^{n}}\phi(\frac{1}{\lambda}u\cdot A^{t}\upsilon)dA^{t}\upsilon =\frac{1}{\omega_{n}}\int_{A^{t}B^{n}}\phi(\frac{1}{\lambda}u\cdot z)dz\\ =&\frac{1}{\omega_{n}}\int_{B^{n}}\phi(\frac{1}{\lambda}u\cdot z)dz. \end{aligned}$ $

It yields $h_{\Pi_{\phi}B^{n}}(Au)=h_{\Pi_{\phi}B^{n}}(u),$ which implies that the Orlicz projection body of the unit ball is still a ball.

Second, suppose the ellipsoid $E=AB^{n}$, $A\in GL(n)$. According to Lemma 2.6 in [7], we have

$\Pi_{\phi}(E)= \Pi_{\phi}(AB^{n})=A^{-t} \Pi_{\phi}(B^{n}).$

In view of the just verified fact, it can conclude that $\Pi_{\phi} E$ is still an ellipsoid.

This completes the proof.

In the following, we compute the support functions of Orlicz projection bodies of the unit ball, when $\phi_{1}(x)=e^{|x|}-1$ and $\phi_{2}(x)=e^{x^{2}}-1$, respectively. Obviously, $\phi_{1}$ and $\phi_{2}$ are both belong to the class $\mathcal{C}$.

(1) $\phi_{1}(x)=e^{|x|}-1$. We know that

$\begin{align*} h_{\Pi_{\phi_{1}}B^{n}}(e_{1})&=\inf\{\lambda>0: \int_{S^{n-1}}\phi_{1}(\frac{1}{\lambda}e_{1}\cdot u)dS(u)\leq n\omega_{n}\}\\ &=\inf \{\lambda>0: \int_{S^{n-1}}(e^{\frac{|u_{1}|}{\lambda}}-1)dS(u)\leq n\omega_{n}\}. \end{align*}$

From Lemma 1, we have

$\begin{align*} &\int_{S^{n-1}}(e^{\frac{|u_{1}|}{\lambda_{0}}}-1)dS(u)= n\omega_{n}\Longleftrightarrow h_{\Pi_{\phi_{1}}B^{n}}(e_{1})=\lambda_{0}.\end{align*}$

So, it has

$\begin{align*} &\int_{S^{n-1}}e^{\frac{|u_{1}|}{\lambda_{0}}}dS(u)=2n\omega_{n}\\ \Longrightarrow&\omega_{n-1}\int_{-1}^{1}e^{\frac{|u_{1}|}{\lambda_{0}}}(1-u_{1}^{2})^{\frac{n-3}{2}}du_{1}=2n\omega_{n}\\ \Longrightarrow&\int_{0}^{1}e^{\frac{u_{1}}{\lambda_{0}}}(1-u_{1}^{2})^{\frac{n-3}{2}}du_{1}=\frac{n\omega_{n}}{\omega_{n-1}}\\ \Longrightarrow&\sum\limits_{k=0}^{\infty}\frac{1}{k!\lambda_{0}^{k}}\int_{0}^{1}u_{1}^{k}(1-u_{1}^{2})^{\frac{n-3}{2}}du_{1}=\frac{n\omega_{n}}{\omega_{n-1}}. \end{align*}$

Let $u_{1}^{2}=t$, it gives

$\begin{aligned} &\sum\limits_{k=0}^{\infty}\frac{1}{2k!\lambda_{0}^{k}}\beta(\frac{k+1}{2},\frac{n-1}{2})=\frac{n\omega_{n}}{\omega_{n-1}} \\ \Longrightarrow&\sum\limits_{k=0}^{\infty}\frac{1}{2k!\lambda_{0}^{k}}\frac{\Gamma(\frac{k+1}{2})\Gamma(\frac{n-1}{2})}{\Gamma(\frac{k+n}{2})}=\frac{n\omega_{n}}{\omega_{n-1}}\\ \Longrightarrow&\sum\limits_{k=0}^{\infty}\frac{1}{k!\lambda_{0}^{k}}\frac{\Gamma(\frac{k}{2}+\frac{1}{2})}{\Gamma(\frac{k}{2}+\frac{n}{2})}=\frac{n(n-1)\pi^{\frac{1}{2}}}{\Gamma(1+\frac{n}{2})}, \end{aligned}$ (1)

which gives the required formula which $h_{\Pi_{\phi_{1}}B^{n}}$ is satisfied.

(2) $\phi_{2}(x)=e^{x^{2}}-1$. We know that

$\begin{align*} h_{\Pi_{\phi_{2}}B^{n}}(e_{1})&=\inf\{\lambda>0: \int_{S^{n-1}}\phi_{2}(\frac{1}{\lambda}e_{1}\cdot u)dS(u)\leq n\omega_{n}\}\\ &=\inf\{\lambda>0: \int_{S^{n-1}}(e^{\frac{u_{1}^{2}}{\lambda^{2}}}-1)dS(u)\leq n\omega_{n}\}. \end{align*}$

From Lemma 1, we have

$\begin{align*} &\int_{S^{n-1}}(e^{\frac{u_{1}^{2}}{\lambda_{1}^{2}}}-1)d S(u)= n\omega_{n} \Longleftrightarrow h_{\Pi_{\phi_{2}}B^{n}}(e_{1})=\lambda_{1}.\end{align*}$

So, it has

$\begin{align*} &\int_{S^{n-1}}e^{\frac{u_{1}^{2}}{\lambda_{1}^{2}}}d S(u)= 2n\omega_{n}\\ \Longrightarrow&\omega_{n-1}\int_{-1}^{1}e^{\frac{u_{1}^{2}}{\lambda_{1}^{2}}}(1-u_{1}^{2})^{\frac{n-3}{2}}du_{1}=2n\omega_{n}\\ \Longrightarrow&\int_{0}^{1}e^{\frac{u_{1}^{2}}{\lambda_{1}^{2}}}(1-u_{1}^{2})^{\frac{n-3}{2}}du_{1}=\frac{n\omega_{n}}{\omega_{n-1}}\\ \Longrightarrow&\sum\limits_{k=0}^{\infty}\frac{1}{k!\lambda_{1}^{2k}}\int_{0}^{1}u_{1}^{2k}(1-u_{1}^{2})^{\frac{n-3}{2}}du_{1}=\frac{n\omega_{n}}{\omega_{n-1}}. \end{align*}$

Let $u_{1}^{2}=t$, it gives

$\begin{aligned} &\sum\limits_{k=0}^{\infty}\frac{1}{2k!\lambda_{1}^{2k}}\beta(k+\frac{1}{2},\frac{n-1}{2})=\frac{n\omega_{n}}{\omega_{n-1}}\\ \Longrightarrow&\sum\limits_{k=0}^{\infty}\frac{1}{2k!\lambda_{1}^{2k}}\frac{\Gamma(k+\frac{1}{2})\Gamma(\frac{n-1}{2})}{\Gamma(k+\frac{n}{2})}=\frac{n\omega_{n}}{\omega_{n-1}}\\ \Longrightarrow&\sum\limits_{k=0}^{\infty}\frac{1}{k!\lambda_{1}^{2k}}\frac{\Gamma(k+\frac{1}{2})}{\Gamma(k+\frac{n}{2})}=\frac{n(n-1)\pi^{\frac{1}{2}}}{\Gamma(1+\frac{n}{2})}, \end{aligned}$ (2)

which gives the required formula which $h_{\Pi_{\phi_{2}}B^{n}}$ is satisfied.

In view of the very similarity between formulas (1) and (2), we set out to compare which number is more larger between $\lambda_{0}$ and $\lambda_{1}$. For this aim, we consider the monotonicity of the following function $f(x)$.

Lemma 2 The function $f(x)=\frac{\Gamma(x+\frac{1}{2})}{\Gamma(x+\frac{n}{2}+1)}$ is strictly decreasing on $[0, \infty)$ with respect to $x$.

Proof Constructing a function $F(x)=\ln\frac{\Gamma(x+\frac{1}{2})}{\Gamma(x+\frac{n}{2}+1)}=\ln\Gamma(x+\frac{1}{2})-\ln\Gamma(x+\frac{n}{2}+1).$ Since function $\Gamma(x)$is infinitely differentiable, we have

$\Gamma(x)=\lim\limits_{m\rightarrow\infty}\frac{m!m^{x}}{(m+x)(m-1+x)\cdot\cdot\cdot(1+x)x},\forall x\in(0, \infty),$

then

$\Gamma(x+\frac{1}{2})=\lim\limits_{m\rightarrow\infty}\frac{m!m^{x+\frac{1}{2}}}{(m+x+\frac{1}{2})(m-1+x+\frac{1}{2})\cdot\cdot\cdot(1+x+\frac{1}{2})(x+\frac{1}{2})}.$

By the above expansion and the continuity of the natural logarithmic function, $\ln\Gamma(x+\frac{1}{2})$ can be written as

$\ln\Gamma(x+\frac{1}{2})=\lim\limits_{m\rightarrow\infty}\Big(\ln m!+(x+\frac{1}{2})\ln m-\sum\limits_{j=0}^{m}\ln(x+\frac{1}{2}+j)\Big).$

Since this sequence is absolutely convergent, we may interchange differentiation and limits

$\frac{d}{dx}\Big(\ln\Gamma(x+\frac{1}{2})\Big)=\lim\limits_{m\rightarrow\infty}\Big(\ln m-\sum\limits_{j=0}^{m}\frac{1}{x+\frac{1}{2}+j}\Big).$

It gives

$F'(x)=\lim\limits_{m\rightarrow\infty}\sum\limits_{j=0}^{m}(\frac{1}{x+\frac{n}{2}+1+j}-\frac{1}{x+\frac{1}{2}+j})<0(n\geq1, n\in Z).$

We obtain that $f(x)=\frac{\Gamma(x+\frac{1}{2})}{\Gamma(x+\frac{n}{2}+1)}$ is strictly decreasing on $[0,\infty)$ in terms with $x$. This completes the proof.

Hence, according to Lemma 2, we obtain the following results $\lambda_{0} > \lambda_{1}^{2},$ or equivalently,

$h_{\Pi_{\phi_{1}}B^{n}}(e_{1})>h_{\Pi_{\phi_{2}}B^{n}}^{2}(e_{1}),$

where $\phi_{1}(x)=e^{|x|}-1, \phi_{2}(x)=e^{x^{2}}-1,$ that is

$\frac{V(\Pi_{\phi_{1}}B^{n})}{V(B^{n})}>\bigg(\frac{V(\Pi_{\phi_{2}}B^{n})}{V(B^{n})}\bigg)^{2}. $
References
[1] Lutwak E, Yang D, Zhang G. $L_{p}$ affine isoperimetric inequalities[J]. J. Differential Geom., 2000, 56: 111–132. DOI:10.4310/jdg/1090347527
[2] Campi S, Gronchi P. The $L_{p}$-Busemann-Petty centroid inequality[J]. Adv. Math., 2002, 167: 128–141. DOI:10.1006/aima.2001.2036
[3] Schneider R. Convex bodies: the Brunn-Minkowski theory[M]. Cambridge: Cambridge University Press, 1993.
[4] Lutwak E. The Brunn-Minkowski-Firey theory, I, mixed volumes and the Minkowski problem[J]. J. Differential Geom., 1993, 38: 131–150. DOI:10.4310/jdg/1214454097
[5] Lutwak E. The Brunn-Minkowski-Firey theory, II, affine and geominimal surface areas[J]. Adv. Math., 1996, 118: 244–294. DOI:10.1006/aima.1996.0022
[6] Gardner R J. Geometric tomography (2nd ed.)[M]. New York: Cambridge University Press, 2006.
[7] Lutwak E, Yang D, Zhang G. Orlicz projection bodies[J]. Adv. Math., 2010, 223: 220–242. DOI:10.1016/j.aim.2009.08.002
[8] Lutwak E, Yang D, Zhang G. Orlicz centroid bodies[J]. J. Differential Geom., 2010, 84: 365–387. DOI:10.4310/jdg/1274707317
[9] Zhang G. The affine Sobolev inequality[J]. J. Differential Geom., 1999, 53: 183–202. DOI:10.4310/jdg/1214425451