数学杂志  2014, Vol. 34 Issue (1): 72-78   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
XIAO Qing-feng
LEAST-SQUARES SOLUTION OF INVERSE PROBLEM FOR HERMITIAN REFLEXIVE MATRICES
XIAO Qing-feng    
Department of Basic, Dongguan Polytechnic, Dongguan 523808, China
Abstract: The least-square solution of inverse problem for Hermitian reflexive matrices and their optimal approximation are considered. By using the singular value decomposition method, the general expression of the least-square solution is provided. Also, the representation of its unique optimal approximation in the least-square solutions set is presented.
Key words: Hermitian reflexive matrix     least-squares solution     optimal approximation    
Hermitian自反矩阵反问题的最小二乘解
肖庆丰    
东莞职业技术学院公共教学部, 广东 东莞 523808
摘要:本文研究了Hermitian自反矩阵反问题的最小二乘解及其最佳逼近.利用矩阵的奇异值分解理论, 获得了最小二乘解的表达式.同时对于最小二乘解的解集合, 得到了最佳逼近解.
关键词Hermitian自反矩阵    最小二乘解    最佳逼近    
1 Introduction

In electricity, control theory, and processing of digital signals, we often need to consider the following problem.

Problem I Given $X,B\in C^{n\times m}$, set $S \subseteq C^{n\times n}$, find $A\in S$ such that

$ \left\|AX-B\right\|=\min. $

At the same time, in the process of testing or correcting given data, we also present an optimal approximation problem with some constraints as follows.

Problem II Given $\tilde{A}\in C^{n\times n}$, find $\hat{A}\in S_{A}$ such that $ \left\|\tilde{A}-\hat{A}\right\|=\min\limits_{A\in S_{A}}\left\|\tilde{A}-A\right\|, $ where $S_{A}$ is the solution set of Problem I. $\|\cdot\|$ is the Frobenius norm.

For important results on Problems I and II for different sets of matrices $S$, we refer to [1-13].

In this paper, we discuss Problems I and II when $S$ in Problem I consists of Hermitian reflexive matrices defined by the following definition.

Definition 1.1 A matrix $J\in C^{n\times n}$ is called a generalized reflection matrix if $J^{H}=J$ and $J^{2}=I_{n}$.

Definition 1.2 Given a generalized reflection matrix $J$, a matrix $A\in C^{n\times n}$ is called a Hermitian reflexive matrix with respect to the generalized reflection matrix $J$ if $A^{H}=A$ and $JAJ=A$. We denoted by $HC^{n\times n}_{r}(J)$ the set of all $n\times n$ Hermitian reflexive matrices with respect to the generalized reflection matrix $J$.

Our first goal is to investigate the properties of the set of Hermitian reflexive matrices. We will deduce an expression for the general solutions of Problem I. For Problem II, we show the existence and uniqueness of the solution of the problem. In addition, we derive an expression of the solution of Problem II.

The paper is organized as follows. In Section 2, we first discuss the structure properties of the generalized reflection matrix $J$ and the Hermitian reflexive matrices, and then using these properties, together with the singular value decomposition (SVD) and Moore-Penrose generalized inverse of matrix, we will derive the existence theorems of and the general expressions for the solution to Problem I. In Section 3, we prove the existence and uniqueness of the solution of Problem II and derive the expression of this unique solution.

Some notation is introduced as follows. Denote by $R^{n\times m}$ the set of all $n\times m$ real matrices, by $C^{n\times m}$ the set of all $n\times m$ complex matrices. Let $HC^{n\times n}$ stand for the set of all $n\times n$ Hermitian matrices and $UC^{n\times n}$ stand for the set of all $n\times n$ unitary matrices. Denote the conjugate transpose, Moore-Penrose generalized inverse and the Frobenius norm of a matrix $A$ by $A^{H}$, $A^{+}$ and $\|A\|$, respectively. $I_{n}$ stands for the identity matrix of size $n$. We define inner product in space $C^{n\times m}$, $(A,B)=\rm{trace}(B^TA)$ for all $A,B \in C^{n\times m}$. Then $C^{n\times m}$ is a complete inner product space and the norm of a matrix generated by this inner product is Frobenius norm. For $A=(a_{ij}),B=(b_{ij})\in C^{n\times m}$, the notation $A\ast B= (a_{ij}b_{ij})\in C^{n\times m}$ represents the Hadamard product of the matrices $A$ and $B$.

2 The Expression of the Solution to Problem I

We first discuss the structure of the $n\times n$ generalized reflection matrix $J$ and the set $HC^{n\times n}_{r}(J)$. Since $J^{2} = I_{n}$, the only possible eigenvalues of $J$ are $+1$ and $-1$. Say, $+1$ is an eigenvalue of multiplicity $r$. Since $J^{H} = J$, the eigenspace associated with $+1$ has also size $r$ and its orthogonal complement (obviously, of size $n-r$) is the eigenspace associated with $-1$. Thus we can easily show the following lemma.

Lemma 2.1  Let $J$ be the $n\times n$ generalized reflection matrix. Then there exists an $n\times n$ unitary matrix $U$ such that

$\begin{eqnarray} J=U\left[\begin{array}{cc}I_{r}&0\\0&-I_{n-r}\end{array}\right]U^{H}. \end{eqnarray}$ (2.1)

By Definition 1.2 in the previous section and the above lemma, we have the following result for the structure of the set $HC^{n\times n}_{r}(J)$.

Lemma 2.2 Let $A\in C^{n\times n}$ and the spectral decomposition of the $n\times n$ generalized reflection matrix $J$ be given as (2.1). Then $A \in HC^{n\times n}_{r}(J)$ if and only if

$\begin{eqnarray} A=U\left[\begin{array}{cc}A_{11}&0\\0&A_{22}\end{array}\right]U^{H}, \end{eqnarray}$ (2.2)

where $A_{11} \in HC^{r\times r}$, $A_{22} \in HC^{(n-r)\times (n-r)}$.

Proof If $A \in HC^{n\times n}_{r}(J)$, then by Definition 1.2 and (2.1), we obtain

$\begin{eqnarray} A=U\left[\begin{array}{cc}I_{r}&0\\0&-I_{n-r}\end{array}\right]U^{H}AU\left[\begin{array}{cc}I_{r}&0\\0&-I_{n-r}\end{array}\right]U^{H}. \end{eqnarray}$ (2.3)

Since $A^{H}=A$, then $U^{H}AU\in HC^{n\times n}$. Let $A=U\left[\begin{array}{cc}A_{11}&A_{12}\\A^{H}_{12}&A_{22}\end{array}\right]U^{H}$, where $A_{11} \in HC^{r\times r}$, $A_{22} \in HC^{(n-r)\times (n-r)}$. Substituting it in (2.3) yields (2.2).

On the other hand, if $A$ can be expressed as (2.2), then, obviously, $A^{H}=A$ and, by a direct computation, $A=J^{H}AJ$. By Definition 1.2, $A \in HC^{n\times n}_{r}(J)$.

Lemma 2.3 (see [14]) Given $C,D\in C^{n\times l}$, if the singular value decomposition of matrix $C$ is given by

$\begin{eqnarray} C=U\left[\begin{array}{cc}\Sigma&0\\0&0\end{array}\right]V^{H}=U_{1}\Sigma V^{H}_{1}, \end{eqnarray}$ (2.4)

where $U=(U_{1},U_{2})\in UC^{n\times n}$, $U_{1}\in C^{n\times r}$, $V=(V_{1},V_{2})\in UC^{l\times l}$, $V_{1}\in C^{l\times r}$, $r={\rm rank}(C)$, $\Sigma={\rm diag}(\sigma_{1},\sigma_{2},\ldots\sigma_{r})$, $\sigma_{i}>0$, $i=1,2,\cdots,r$.

Denote $S_{1}\equiv \left\{X \in HC^{n\times n}|f_{1}(X)=\|XC-D\|=\min\right\}$, then the elements of $S_{1}$ can be expressed as

$\begin{eqnarray} X=U\left[\begin{array}{cc}\Phi\ast(U^{H}_{1}DV_{1}\Sigma+\Sigma V^{H}_{1}D^{H}U_{1})&\Sigma^{-1}V^{H}_{1}D^{H}U_{2}\\U^{H}_{2}DV_{1}\Sigma^{-1}&X_{22}\end{array}\right]U^{H}, \end{eqnarray}$ (2.5)

where $\forall X_{22}\in HC^{(n-r)\times (n-r)}$, $\Phi=(\phi_{ij})\in C^{r\times r}$, $\phi_{ij}=\frac{1}{\sigma^{2}_{i}+\sigma^{2}_{j}}, i,j=1,2, \ldots,r$.

Assume the given generalized reflection matrix $J$ in Problem I has the form of (2.1). Let

$\begin{eqnarray} U^{H}X=\left[\begin{array}{cc}X_{1}\\X_{2}\end{array}\right], U^{H}B=\left[\begin{array}{cc}B_{1}\\B_{2}\end{array}\right], \end{eqnarray}$ (2.6)

where $X_{1}, B_{1}\in C^{r\times m}$, $X_{2}, B_{2}\in C^{(n-r)\times m}$, and the SVDs of $X_{1}, X_{2}$ are, respectively,

$\begin{eqnarray} X_{1}=W\left[\begin{array}{cc}\Sigma_{1}&0\\0&0\end{array}\right]V^{H}=W_{1}\Sigma_{1} V^{H}_{1}, \end{eqnarray}$ (2.7)

where $W=(W_{1},W_{2})\in UC^{r\times r}$, $W_{1}\in C^{r\times r_{1}}$, $V=(V_{1},V_{2})\in UC^{m\times m}$, $V_{1}\in C^{m\times r_{1}}$, $r_{1}={\rm rank}(X_{1})$, $\Sigma_{1}={\rm diag}(\alpha_{1},\alpha_{2},\ldots \alpha_{r_{1}})$, $\sigma_{i}>0$, $i=1,2,\ldots,r_{1}$.

$\begin{eqnarray} X_{2}=P\left[\begin{array}{cc}\Sigma_{2}&0\\0&0\end{array}\right]Q^{H}=P_{1}\Sigma_{2} Q^{H}_{1}, \end{eqnarray}$ (2.8)

where $P=(P_{1},P_{2})\in UC^{(n-r)\times (n-r)}$, $P_{1}\in C^{(n-r)\times r_{2}}$, $Q=(Q_{1},Q_{2})\in UC^{m\times m}$, $Q_{1}\in C^{m\times r_{2}}$, $r_{2}={\rm rank}(X_{2})$, $\Sigma_{2}={\rm diag}(\beta_{1},\beta_{2},\ldots \beta_{r_{2}})$, $\sigma_{i}>0$, $i=1,2,\ldots,r_{2}$.

Let

$\begin{eqnarray*} && \Phi_{1}=(\phi^{(1)}_{ij})\in C^{r_{1}\times r_{1}}, \phi^{(1)}_{ij}=\frac{1}{\alpha_{i}^{2}+\alpha_{j}^{2}}, i,j=1,2, \ldots,r_{1}, \\ && \Phi_{2}=(\phi^{(2)}_{ij})\in C^{r_{2}\times r_{2}}, \phi^{(2)}_{ij}=\frac{1}{\beta_{i}^{2}+\beta_{j}^{2}}, i,j=1,2, \ldots,r_{2}. \end{eqnarray*}$

Then we can establish the existence theorems of Problem I as follows.

Theorem 2.1 Given $X,B\in C^{n\times m}$, and a generalized reflection matrix $J$ of size $n$, suppose the spectral decomposition of $J$ is given by (2.1), $U^{H}X$ and $U^{H}B$ have the partition forms of (2.6), and the SVDs of $X_{1}$ and $X_{2}$ are (2.7), (2.8). Then Problem I has a solution $A \in HC^{n\times n}_{r}(J)$, and its general solution can be expressed as

$\begin{eqnarray} A=A_{0}+U\left[\begin{array}{cc}W_{2}G_{1}W^{H}_{2}&0\\0&P_{2}G_{2}P^{H}_{2}\end{array}\right]U^{H}, \end{eqnarray}$ (2.9)

where $\forall G_{1}\in HC^{(r-r_{1})\times (r-r_{1})}$, $\forall G_{2}\in HC^{(n-r-r_{2})\times (n-r-r_{2})}$,

$\begin{eqnarray} && A_{0}=U\left[\begin{array}{cc}A^{(0)}_{11}&0\\0&A^{(0)}_{22}\end{array}\right]U^{H},\\ && A^{(0)}_{11}=W\left[\begin{array}{cc}\Phi_{1}\ast(W^{H}_{1}B_{1}V_{1}\Sigma_{1}+\Sigma_{1} V^{H}_{1}B_{1}^{H}W_{1})&\Sigma_{1}^{-1}V^{H}_{1}B_{1}^{H}W_{2}\\W^{H}_{2}B_{1}V_{1}\Sigma_{1}^{-1}&0\end{array}\right]W^{H}, \nonumber\\ && A^{(0)}_{22}=P\left[\begin{array}{cc}\Phi_{2}\ast(P^{H}_{1}B_{2}Q_{1}\Sigma_{2}+\Sigma_{2} Q^{H}_{1}B_{2}^{H}P_{1})&\Sigma_{2}^{-1}Q^{H}_{1}B_{2}^{H}P_{2}\\P^{H}_{2}B_{2}Q_{1}\Sigma_{2}^{-1}&0\end{array}\right]P^{H}. \nonumber \end{eqnarray}$ (2.10)

Proof Using the invariance of the Frobenius norm under unitary transformations, we have from Lemma 2.2 that

$\begin{eqnarray} A=U\left[\begin{array}{cc}A_{11}&0\\0&A_{22}\end{array}\right]U^{H}, \end{eqnarray}$ (2.11)

where $A_{11} \in HC^{r\times r}$, $A_{22} \in HC^{(n-r)\times (n-r)}$, then

$ \left\|AX-B\right\|^{2}=\left\|\left[\begin{array}{cc}A_{11}&0\\0&A_{22}\end{array}\right]U^{H}X-U^{H}B\right\|^{2}= \left\|A_{11}X_{1}-B_{1}\right\|^{2}+\left\|A_{22}X_{2}-B_{2}\right\|^{2}. $

Thus, there exists $A \in HC^{n\times n}_{r}(J)$ such that $\left\|AX-B\right\|=\min$ is equivalent to the existence of $X_{11}, X_{22}$ such that $\left\|A_{11}X_{1}-B_{1}\right\|=\min$ and $\left\|A_{22}X_{2}-B_{2}\right\|=\min$. It follows Lemma 2.3 that

$\begin{eqnarray} A_{11}=W\left[\begin{array}{cc}\Phi_{1}\ast(W^{H}_{1}B_{1}V_{1}\Sigma_{1}+\Sigma_{1} V^{H}_{1}B_{1}^{H}W_{1})&\Sigma_{1}^{-1}V^{H}_{1}B_{1}^{H}W_{2}\\W^{H}_{2}B_{1}V_{1}\Sigma_{1}^{-1}&G_{1}\end{array}\right]W^{H}, \end{eqnarray}$ (2.12)

where $\forall G_{1}\in HC^{(r-r_{1})\times (r-r_{1})}$,

$\begin{eqnarray} A_{22}=P\left[\begin{array}{cc}\Phi_{2}\ast(P^{H}_{1}B_{2}Q_{1}\Sigma_{2}+\Sigma_{2} Q^{H}_{1}B_{2}^{H}P_{1})&\Sigma_{2}^{-1}Q^{H}_{1}B_{2}^{H}P_{2}\\P^{H}_{2}B_{2}Q_{1}\Sigma_{2}^{-1}&G_{2}\end{array}\right]P^{H}, \end{eqnarray}$ (2.13)

where $\forall G_{2}\in HC^{(n-r-r_{2})\times (n-r-r_{2})}$.

Substituting (2.12) and (2.13) in (2.11), we know that the general solution in $HC^{n\times n}_{r}(J)$ of Problem I can be expressed as (2.9).

3 The Expression of the Solution to Problem II

Lemma 3.1 (see [15]) Let $E\in C^{n\times n}$, then $\forall G\in HC^{n\times n}$ we have

$ \left\|E-\frac{E+E^{H}}{2}\right\|\leq \left\|E-G\right\|. $

It is easy to show that the solution set $S_{A}$ of Problem I is a closed convex set. Since $C^{n\times n}$ is a Hilbert space, then Problem II has a unique solution.

Theorem3.1  Let $\tilde{A}\in C^{n\times n}$, and the conditions and symbols be the same as that in Theorem 2.1. Let

$\begin{eqnarray} U^{H}\tilde{A}U=\left[\begin{array}{cc}\tilde{A}_{11}&\tilde{A}_{12}\\\tilde{A}_{21}&\tilde{A}_{22}\end{array}\right], \tilde{A}_{11}\in C^{r\times r}. \end{eqnarray}$ (3.1)

Then there is a unique solution $\hat{A}$ for Problem II and $\hat{A}$ can be represented as

$\begin{eqnarray} \hat{A}=A_{0}+U\left[\begin{array}{cc}\hat{A}_{11}&0\\0&\hat{A}_{22}\end{array}\right]U^{H}, \end{eqnarray}$ (3.2)

where $\hat{A}_{11}=\frac{1}{2}(I-X_{1}X^{+}_{1})(\tilde{A}_{11}+\tilde{A}^{H}_{11})(I-X_{1}X^{+}_{1})$, $\hat{A}_{22}=\frac{1}{2}(I-X_{2}X^{+}_{2})(\tilde{A}_{22}+\tilde{A}^{H}_{22})(I-X_{2}X^{+}_{2})$.

Proof When $S_{A}$ is nonempty, it is easy to verify from (2.9) that $S_{A}$ is a closed convex set. Since $C^{n\times n}$ is a uniformly convex banach space under Frobenius norm, there exists a unique solution for Problem II. Let

$\begin{eqnarray} && W^{H}(\tilde{A}_{11}-A^{(0)}_{11})W=\left[\begin{array}{cc}\tilde{A}^{(1)}_{11}&\tilde{A}^{(1)}_{12}\\\tilde{A}^{(1)}_{21}&\tilde{A}^{(1)}_{22}\end{array}\right], \end{eqnarray}$ (3.3)
$\begin{eqnarray} && P^{H}(\tilde{A}_{22}-A^{(0)}_{22})P=\left[\begin{array}{cc}\tilde{A}^{(2)}_{11}&\tilde{A}^{(2)}_{12}\\\tilde{A}^{(2)}_{21}&\tilde{A}^{(2)}_{22}\end{array}\right], \end{eqnarray}$ (3.4)

where $\tilde{A}^{(1)}_{11}\in C^{r_{1}\times r_{1}}$, $\tilde{A}^{(2)}_{11}\in C^{r_{2}\times r_{2}}$. For $A\in S_{A}$, we have

$\begin{eqnarray} A&=&A_{0}+U\left[\begin{array}{cc}W_{2}G_{1}W^{H}_{2}&0\\0&P_{2}G_{2}P^{H}_{2}\end{array}\right]U^{H} \nonumber \\ &=& A_{0}+U\left[\begin{array}{cc}W\left[\begin{array}{cc}0&0\\0&G_{1}\end{array}\right]W^{H}&0 \\0&P\left[\begin{array}{cc}0&0\\0&G_{2}\end{array}\right]P^{H}\end{array}\right]U^{H}. \end{eqnarray}$ (3.5)

Then using the invariance of the Frobenius norm under unitary transformations, we have from (3.3), (3.4) and (3.5) that

$\begin{eqnarray*} ||A-\tilde{A}||^2 &=& \left\| \left[\begin{array}{cc}W_{2}G_{1}W^{H}_{2}&0\\0&P_{2}G_{2}P^{H}_{2}\end{array}\right]-U^{H}(\tilde{A}-A_{0})U\right\|^2\\ &=& \left\| \left[\begin{array}{cc}W_{2}G_{1}W^{H}_{2}&0\\0&P_{2}G_{2}P^{H}_{2}\end{array}\right]- \left[\begin{array}{cc}\tilde{A}_{11}-A^{(0)}_{11}&\tilde{A}_{12}\\\tilde{A}_{21}&\tilde{A}_{22}-A^{(0)}_{22}\end{array}\right]\right\|^2\\ &=& \left\| W\left[\begin{array}{cc}0&0\\0&G_{1}\end{array}\right]W^{H}-(\tilde{A}_{11}-A^{(0)}_{11})\right\|^2+\left\|\tilde{A}_{12}\right\|^2\\ &&+ \left\| P\left[\begin{array}{cc}0&0\\0&G_{2}\end{array}\right]P^{H}-(\tilde{A}_{22}-A^{(0)}_{22})\right\|^2+\left\|\tilde{A}_{21}\right\|^2\\ &=& \left\| \left[\begin{array}{cc}0&0\\0&G_{1}\end{array}\right]-W^{H}(\tilde{A}_{11}-A^{(0)}_{11})W\right\|^2+\left\|\tilde{A}_{12}\right\|^2\\ &&+ \left\| \left[\begin{array}{cc}0&0\\0&G_{2}\end{array}\right]-P^{H}(\tilde{A}_{22}-A^{(0)}_{22})P\right\|^2+\left\|\tilde{A}_{21}\right\|^2\\ &=& \left\|G_{1}-\tilde{A}^{(1)}_{22}\right\|^{2}+\left\|G_{2}-\tilde{A}^{(2)}_{22}\right\|^{2} +\left\|\tilde{A}^{(1)}_{11}\right\|^{2}+\left\|\tilde{A}^{(1)}_{12}\right\|^{2}+\left\|\tilde{A}^{(1)}_{21}\right\|^{2}\\ &&+ \left\|\tilde{A}^{(2)}_{11}\right\|^{2}+\left\|\tilde{A}^{(2)}_{12}\right\|^{2}+\left\|\tilde{A}^{(2)}_{21}\right\|^{2}+ \left\|\tilde{A}_{12}\right\|^{2}+\left\|\tilde{A}_{21}\right\|^{2}. \end{eqnarray*}$

We can see that Problem II is equivalent to

$ \left\{ \begin{array}{cc} \left\|G_{1}-\tilde{A}^{(1)}_{22}\right\|^{2}=\min\limits_{G_{1}\in HC^{(r-r_{1})\times (r-r_{1})}},\\ \left\|G_{2}-\tilde{A}^{(2)}_{22}\right\|^{2}=\min\limits_{G_{2}\in HC^{(n-r-r_{2})\times (n-r-r_{2})}}. \end{array}\right. $

We get from Lemma 3.1 that

$G_{1}=\frac{\tilde{A}^{(1)}_{22}+(\tilde{A}^{(1)}_{22})^{H}}{2}, G_{2}=\frac{\tilde{A}^{(2)}_{22}+(\tilde{A}^{(2)}_{22})^{H}}{2}.$

By (2.10), (3.3) and (3.4) we have

$\begin{eqnarray} && G_{1}=\frac{1}{2}W^{H}_{2}(\tilde{A}_{11}+\tilde{A}^{H}_{11}-2A^{(0)}_{11})W_{2}=\frac{1}{2}W^{H}_{2}(\tilde{A}_{11}+\tilde{A}^{H}_{11})W_{2}, \end{eqnarray}$ (3.6)
$\begin{eqnarray} && G_{2}=\frac{1}{2}P^{H}_{2}(\tilde{A}_{22}+\tilde{A}^{H}_{22}-2A^{(0)}_{22})P_{2}=\frac{1}{2}P^{H}_{2}(\tilde{A}_{22}+\tilde{A}^{H}_{22})P_{2}. \end{eqnarray}$ (3.7)

Substituting (3.6) and (3.7) into (3.5), we have

$ \hat{A}=A_{0}+U\left[\begin{array}{cc}\frac{1}{2}W_{2}W^{H}_{2}(\tilde{A}_{11}+\tilde{A}^{H}_{11})W_{2}W^{H}_{2}&0 \\0&\frac{1}{2}P_{2}P^{H}_{2}(\tilde{A}_{22}+\tilde{A}^{H}_{22})P_{2}P^{H}_{2}\end{array}\right]U^{H}. $

Since $W_{2}W^{H}_{2}=I-X_{1}X^{+}_{1}$, $P_{2}P^{H}_{2}=I-X_{2}X^{+}_{2}$, we obtain that the solution to Problem II has the form as (3.2).

References
[1] Woodgate K G. Least-squares solution of $F=PG$ over positive semidefinite symmetric[J]. Linear Algebra Appl., 1996, 245: 171–190. DOI:10.1016/0024-3795(94)00238-X
[2] Xie Dongxiu, Zhang Lei, Hu Xiyan. The least-square solutions of inverse problem of a class of bisymmetric matrices[J]. Math. Numer. Sin., 2000, 1: 29–40.
[3] Liao Anping, Xie Dongxiu. Least-squares solution of a class of inverse eigenvalue problems for bisymmetric nonnegative definite matrices[J]. Math. Numer. Sin., 2001, 2: 209–218.
[4] Dai Hai, Lancaster P. Linear matrix equation from an inverse problem of vibration theory[J]. Linear Algebra Appl., 1996, 246: 31–47. DOI:10.1016/0024-3795(94)00311-4
[5] Trench W F. Characterization and properties of matrices with generalized symmetry or skew symmetry[J]. Linear Algebra Appl., 2004, 377: 207–218. DOI:10.1016/j.laa.2003.07.013
[6] Trench W F. Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry[J]. Linear Algebra Appl., 2004, 380: 199–211. DOI:10.1016/j.laa.2003.10.007
[7] Zhang Zhongzhi, Hu Xiyan, Zhang Lei. Least-squares solutions of inverse problems for Hermite-generalized anti-Hamiltonian matrices on the linear manifold[J]. Math. Numer. Sin., 2003, 25(2): 209–218.
[8] Zhang Zhongzhi, Hu Xiyan, Zhang Lei. Least-Squares solutions of inverse problem for Hermitian generalized Hamiltonian matrices[J]. Appl. Math. Lett., 2004, 17: 303–308. DOI:10.1016/S0893-9659(04)90067-5
[9] Peng Zhengyun, Hu Xiyan. The reflexive and anti-reflexive solutions of the matrix equation $AX=B$[J]. Linear Algebra Appl., 2003, 375: 147–155. DOI:10.1016/S0024-3795(03)00607-4
[10] Peng Zhengyun. The inverse eigenvalue problem for Hermitian anti-reflexive matrices and its approximation[J]. Appl. Math. Comput., 2005, 162(3): 1377–1389.
[11] Peng Zhengyun, Deng yuanbei, Liu Jinwang. Least-squares solution of inverse problem for Hermitian anti-reflexive matrices and its approximation[J]. Acta Math. Sinica, 2006, 22B(2): 477–484.
[12] Zhao Lijuan, Hu Xiyan, Zhang Lei. Least squares solutions to $AX=B$ for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation[J]. Linear Algebra Appl., 2008, 428(4): 871–880. DOI:10.1016/j.laa.2007.08.019
[13] Zhao Lijuan, Hu Xiyan, Zhang Lei. Linear restriction problem of Hermitian reflexive matrices and itsapproximation[J]. Appl. Math. Comput., 2008, 200(1): 341–351.
[14] Sun Jiguang. Two kinds of inverse eigenvalue problems for real symmetric matrices[J]. Math. Numer. Sin., 1988, 3: 282–290.
[15] Golub G H, VanLoan C F. Matrix computations[M]. Baltimore, MD: Johns Hopkins University Press, 1989.