数学杂志  2014, Vol. 34 Issue (1): 65-71   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZUO Hong-liang
DUAN Guang-cai
BOUNDEDNESS OF OPERATOR CONVEXITY FOR CONVEX FUNCTIONS AND APPLICATIONS FOR OPERATOR MEANS
ZUO Hong-liang, DUAN Guang-cai    
College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
Abstract: In this paper, we estimate boundedness of operator convexity for convex functions. As an application, we obtain some relations between the power of operator means (arithmetic mean, geometric mean, chaotically geometric mean) and those means of operator powers. In particular, we obtain the order relation between arithmetic mean and chaotically geometric mean.
Key words: operator convex     arithmetic mean     geometric mean     chaotically geometric mean    
凸函数的算子凸性估计及其在算子平均中的应用
左红亮, 段光才    
河南师范大学数学与信息科学学院, 河南 新乡 453007
摘要:本文利用Mond-Pečarić方法对凸函数的n个算子凸性进行了比式估计.在此基础上, 得到了n个代数平均的幂与n个算子的幂的代数平均的比较, n个算子的几何平均的幂与n个算子的幂的几何平均的比较.特别地, 文中还给出了代数平均和混序几何平均.
关键词算子凸    代数平均    几何平均    混序几何平均    
1 Preliminary

Throughout this paper, a capital letter means a bounded linear operator on Hilbert space $H$. An operator $A$ is called positive, in symbol, $A\geq0$ if $(Ax, x)\geq 0$ for all $x\in H$. $T$ is called strictly positive (simply $T > 0$) if $T$ is positive and invertible, $\alpha_{i}$ are positive numbers with $\sum\limits_{i=1}\limits^{n}\alpha_{i}=1$.

A continuous function $f$ on interval $I$ is called operator convex on $I$, if $\sigma(A)$, $\sigma(B)\subset I$,

$f((1-\alpha)A+\alpha B)\leq(1-\alpha)f(A)+\alpha f(B)\quad\mbox{holds for}\quad\alpha\in[0, 1]. $ (1.1)

Convex functions and operator convex functions are different. Typical example of such function is $t^{r}$ on $(0, \infty)$, which is a convex function for $r>2$, but is not operator convex.

In [1], Ando, Li and Mathias proposed a definition of the geometric mean for an $n$-tuple of positive operators and showed that it has many required properties on the geometric mean.Following [3, 4], we recall the definition of the weighted geometric mean $G[n,t]$ with $t\in [0,1]$ for an $n$-tuple of positive invertible operators $A_{1},A_{2},\cdots, A_{n}$. Let $G[2, t](A_{1}, A_{2})=A_{1}\sharp_{t} A_{2}$. For $n\geq 3$, $G[n,t]$ is defined inductively as follows: put ${A_{i}^{(0)}}=A_{i}$ for all $i=1, 2, \cdots, n$, and

$A_{i}^{(r)}=G[n-1, t]((A_{j}^{(r-1)})_{j\neq i})=G[n-1, t](A_{1}^{(r-1)}, \cdots, A_{i-1}^{(r-1)}, A_{i+1}^{(r-1)}, \cdots, A_{n}^{(r-1)}) $

inductively for $r$. Then the sequence $\{A_{i}^{(r)}\}_{r=0}^{\infty}$ have the same limit for all $i=1, 2, \cdots, n$ in the Thompson metric. So we can define

$G[n, t](A_{1}, A_{2}, \cdots, A_{n})=\lim\limits_{r\rightarrow \infty} A_{i}^{(r)}. $

Similarly, we can define the weighted arithmetic mean as follows: Let $A[2, t](A_{1}, A_{2})=(1-t)A_{1}+tA_{2}.$ For $n\geq 3$, put $\tilde{A}_{i}^{(0)}=A_{i}$ for all $i=1, 2, \cdots, n$ and

$\tilde{A}_{i}^{(r)}=A[n-1, t]((\tilde{A}_{j}^{(r-1)})_ {j\neq i})=A[n-1, t](\tilde{A}_{1}^{(r-1)}, \cdots, \tilde{A}_{i-1}^{(r-1)}, \tilde{A}_{i+1}^{(r-1)}, \cdots, \tilde{A}_{n}^{(r-1)}). $

The sequence $\{\tilde{A}_{i}^{(r)}\}$ have the same limit for all $i=1, 2, \cdots, n$, so it's expressed by

$A[n, t](A_{1}, A_{2}, \cdots, A_{n})=\lim\limits_{r\rightarrow \infty} \tilde{A}_{i}^{(r)}. $

Here we introduce the following power means: for positive invertible operators $A_{1},A_{2},\cdots, A_{n}$, define

$\begin{eqnarray*} F(r)=\begin{cases}(\nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r}))^{\frac{1}{r}}, &r\neq 0; \cr \exp(\nabla_{\alpha}(\log A_{1}, \log A_{2}, \cdots, \log A_{n})), &r=0.\end{cases}\end{eqnarray*}$

It is clear that $F(r)$ is monotone increasing under the chaotic order, but is not monotone under the usual order. Besides, $F(0)$ is called chaotically geometric mean for $A_{1},A_{2},\cdots, A_{n}$.

Theorem A [6-8] Let $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$ and $ \sum\limits_{i=1}\limits^{n}\parallel x_{i}\parallel^{2}=1$. If $f(t)$ is a positive real valued continuous convex function on $[m, M]$, then

$f(\sum\limits_{i=1}\limits^{n}(A_{i}x_{i}, x_{i}))\leq \sum\limits_{i=1}\limits^{n}(f(A_{i})x_{i}, x_{i})\leq \lambda(m, M, f)f(\sum\limits_{i=1}\limits^{n}(A_{i}x_{i}, x_{i})), $ (1.2)

where

$\lambda(m, M, f)=\max\{\frac{1}{f(t)}[\frac{f(M)-f(m)}{M-m}(t-m)+f(m)];\ \ t\in[m, M]\}. $ (1.3)

Theorem B [4] Let $A$ and $B$ be positive operators satisfying $0<m\leq A\leq M$ for some scalars $m<M$. If $0\leq A\leq B$, then

$A^{p}\leq K_+(h, p)B^{p},\ \ p\geq1, $

where

$K_{+}(h, p)=\frac{(p-1)^{p-1}}{p^{p}}\frac{(h^{p}-1)^{p}}{(h-1)(h^{p}-1)^{p-1}}, \quad h=\frac{M}{m}. $ (1.4)

Theorem C [3] If $0<m\leq A_{i}\leq M $ with $m<M$, $i=2, \cdot\cdot\cdot, n$ ($n\geq 2$), then

$G[n, t](A_{1}, A_{2}, \cdots, A_{n})\leq A[n, t](A_{1}, A_{2}, \cdots, A_{n})\leq K(h, 2)G[n, t](A_{1}, A_{2}, \cdots, A_{n}), $

where

$K(h, 2)=\frac{(h+1)^{2}}{4h},\quad h=\frac{M}{m}. $
2 Boundedness of the Operator Convexity for Convex Functions

Based on the previous results coming from the method we obtain the ratio type inequalities as follows.

Theorem 2.1 Let $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$. If $f(t)$ is a positive real valued continuous convex function on $[m, M]$, then

$\begin{eqnarray*}\frac{1}{\lambda(m, M, f)}f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))&\leq& \nabla_{\alpha}(f(A_{1}), f(A_{2}), \cdots, f(A_{n}))\\ &\leq& \lambda(m, M, f)f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})). \end{eqnarray*}$

Proof For unit vector $x\in H$, put $x_{i}=\sqrt{\alpha_{i}}x, i=1, 2, \cdots, n$ in Theorem A, then

$\sum\limits_{i=1}\limits^{n}\alpha_{i}(f(A_{i})x, x)\leq \lambda(m, M, f)f(\sum\limits_{i=1}\limits^{n}\alpha_{i}(A_{i}x, x)).$

Since $f(t)$ is a positive real valued continuous convex function on $[m, M]$, (1.2) leads to

$\begin{eqnarray*} ((\sum\limits_{i=1}\limits^{n}\alpha_{i}f(A_{i}))x, x) &\leq& \lambda(m, M, f)f((\sum\limits_{i=1}\limits^{n}\alpha_{i}A_{i}x, x))\leq \lambda(m, M, f)(f(\sum\limits_{i=1}\limits^{n}\alpha_{i}A_{i})x, x).\end{eqnarray*}$

Thus we have

$\nabla_{\alpha}(f(A_{1}), f(A_{2}), \cdots, f(A_{n}))\leq \lambda(m, M, f)f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})).$

Next, since $0<m\leq\sum\limits_{i=1}\limits^{n}\alpha_{i}A_{i}\leq M$ and $f(t)$ be a positive real valued continuous convex function on $[m, M]$, it follows from (1.2) that

$\begin{eqnarray*}(\nabla_{\alpha}(f(A_{1}), f(A_{2}), \cdots, f(A_{n}))x, x)&=&\sum\limits_{i=1}\limits^{n}\alpha_{i}(f(A_{i})x, x) \geq f(\sum\limits_{i=1}\limits^{n}\alpha_{i}(A_{i}x, x)) \\&=&f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})x, x)\\ &\geq&\frac{1}{\lambda(m, M, f)}(f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))x, x).\end{eqnarray*}$

Therefore we have

$\lambda(m, M, f)\nabla_{\alpha}(f(A_{1}), f(A_{2}), \cdots, f(A_{n}))\geq f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})).$

By the same way we can get the counterpart of Theorem 2.1.

Theorem 2.2 Let $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$. If $f(t)$ is a positive real valued continuous concave function on $[m, M]$, then

$\begin{eqnarray*}\frac{1}{\mu(m, M, f)}f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))&\geq& \nabla_{\alpha}(f(A_{1}), f(A_{2}), \cdots, f(A_{n})) \\ &\geq& \mu(m, M, f)f(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})), \end{eqnarray*}$

where $\mu(m, M, f)=\min\{\frac{1}{f(t)}(\frac{f(M)-f(m)}{M-m}(t-m)+f(m)), \ \ t\in[m, M]\}. $

3 The Main Applications

Theorem 3.1  Let $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$.

(ⅰ) If $0<r\leq1$, then

$(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))^{r}\geq \nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r})\geq K_{+}(h^{r}, \frac{1}{r})^{-r}(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))^{r};$

(ⅱ) If $1\leq r\leq2$, then

$(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))^{r}\leq \nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r})\leq K_{+}(h, r)(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))^{r};$

(ⅲ) If $r>2$, then

$\frac{1}{K_{+}(h, r)}(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))^{r}\leq \nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r})\leq K_{+}(h, r)(\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}))^{r}. $

Proof Put $f(t)=t^{r}$, we distinguish three cases.

In the case of $0<r\leq1$, $f(t)=t^{r}$ is operator concave, $\mu(m, M, f)=K_{+}(h^{r}, \frac{1}{r})^{-r}$, Theorem 2.2 and the definition of operator concavity of $t^{r}$ lead to (ⅰ).

In the case of $1\leq r\leq2$, $f(t)=t^{r}$ is operator convex, $\lambda(m, M, f)=K_{+}(h, r)$, following from Theorem 2.1 and the definition of operator convex, we have (ⅱ).

In the case of $r>2$, $f(t)=t^{r}$ is not operator convex, but is convex, so Theorem 2.1 yields (ⅲ).

Theorem 3.2 Let $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$, and $0<r\leq s$.

(ⅰ) If $0<r\leq1$, then

$K_{+}(h^{r}, \frac{1}{r})^{-1}K_{+}(h^{r}, \frac{s}{r})^{-\frac{1}{s}}F(s)\leq F(r)\leq K_{+}(h^{r}, \frac{1}{r})F(s);$

(ⅱ) If $r\geq1$, then

$K_{+}(h^{r}, \frac{s}{r})^{-\frac{1}{s}}F(s)\leq F(r)\leq F(s). $

Proof Since $0<\frac{r}{s}\leq1$, $m^{s}\leq A^{s}_{i}\leq M^{s}$, it follows from Theorem 3.1 that

$\begin{eqnarray}(\nabla_{\alpha}(A_{1}^{s}, A_{2}^{s}, \cdots, A_{n}^{s}))^{\frac{r}{s}}&\geq& (\nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r})) \nonumber\\ &\geq& K_{+}(h^{r}, \frac{s}{r})^{-\frac{r}{s}}(\nabla_{\alpha}(A_{1}^{s}, A_{2}^{s}, \cdots, A_{n}^{s}))^{\frac{r}{s}}. \end{eqnarray}$ (3.1)

If $r\geq1$, then $0<\frac{1}{r}\leq1$, by raising all terms of (3.1) to $\frac{1}{r}$ it follows from operator monotonity of $x^{\frac{1}{r}}$ that

$(\nabla_{\alpha}(A_{1}^{s}, A_{2}^{s}, \cdots, A_{n}^{s}))^{\frac{1}{s}}\geq (\nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r}))^{\frac{1}{r}}\geq K_{+}(h^{r}, \frac{s}{r})^{-\frac{1}{s}}(\nabla_{\alpha}(A_{1}^{s}, A_{2}^{s}, \cdots, A_{n}^{s}))^{\frac{1}{s}}.$

If $0<r\leq1$, then $\frac{1}{r}\geq1$, Theorem B and (3.1) lead to

$\begin{eqnarray*}K_{+}(h^{r}, \frac{1}{r})(\nabla_{\alpha}(A_{1}^{s}, A_{2}^{s}, \cdots, A_{n}^{s}))^{\frac{1}{s}} &\geq& \nabla_{\alpha}(A_{1}^{r}, A_{2}^{r}, \cdots, A_{n}^{r})^{\frac{1}{r}}\\ &\geq& K_{+}(h^{r}, \frac{1}{r})^{-1}K_{+}(h^{r}, \frac{s}{r})^{-\frac{1}{s}}(\nabla_{\alpha}(A_{1}^{s}, A_{2}^{s}, \cdots, A_{n}^{s}))^{\frac{1}{s}}. \end{eqnarray*}$

Theorem 3.3 If $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$, then

$\frac{1}{M_{h}(1)}e^{\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})}\leq \nabla_{\alpha}(e^{A_{1}}, e^{A_{2}}, \cdots, e^{A_{n}})\leq M_{h}(1)e^{\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})},$

where $M_{h}(1)=\frac{h^{\frac{1}{h-1}}}{e\log h^{\frac{1}{h-1}}}$, $h=e^{M-m}.$

Proof Put $f(t)=e^{t}$ in Theorem 2.1, then the required inequalities hold since

$\begin{eqnarray*} \lambda(m, M, e^{t})&=&\frac{1}{e^{t_{0}}}(\frac{e^{M}-e^{m}}{M-m}(t_{0}-m)+e^{m}), \quad \mbox{where}\quad t_{0}=\frac{(m+1)e^{M}-(M+1)e^{m}}{e^{M}-e^{m}}\\ &=&\frac{e^{M}-e^{m}}{M-m}e^{-\frac{(m+1)e^{M}-(M+1)e^{m}}{e^{M}-e^{m}}} =\frac{h-1}{\log h}e^{-1+\frac{M-m}{h-1}} =\frac{h^{\frac{1}{h-1}}}{e\log h^{\frac{1}{h-1}}} = M_{h}(1). \end{eqnarray*}$

Theorem 3.4 If $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$, then

$\frac{1}{M_{h}(1)}\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})\leq \diamondsuit_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})\leq M_{h}(1)\nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}),$

where $h=\frac{M}{m}$.

Proof Replace $A_{i}$ by $\log A_{i}$ in Theorem 3.3, then $h=\exp({\log M-\log m})=\frac{M}{m}$, and

$\begin{eqnarray*}&& \frac{1}{M_{h}(1)}\exp({\sum\limits_{i=1}\limits^{n}\alpha_{i}\log A_{i}})\leq \sum\limits_{i=1}^{n}\alpha_{i}A_{i}\leq M_{h}(1)\exp({\sum\limits_{i=1}\limits^{n}\alpha_{i}\log A_{i})},\\ && \frac{1}{M_{h}(1)}\diamondsuit_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})\leq \nabla_{\alpha}(A_{1}, A_{2}, \cdots, A_{n})\leq M_{h}(1)\diamondsuit_{\alpha}(A_{1}, A_{2}, \cdots, A_{n}).\end{eqnarray*}$

Theorem 3.5 Let $0<m\leq A_{i}\leq M$ with $m<M$ for $i=1, 2, \cdots, n$, and $0\leq t\leq 1$.

(ⅰ) If $0<r\leq 1$, then

$\begin{eqnarray*}K_{+}(h^{r}, \frac{1}{r})^{-r}K(h^{r}, 2)^{-1}(G_{[n, t]}(A_{1}, \cdot\cdot\cdot, A_{n}))^{r} &\leq& G_{[n, t]}(A_{1}^{r}, \cdot\cdot\cdot, A_{n}^{r})\\ &\leq& K(h, 2)^{r} (G_{[n, t]}(A_{1}, \cdot\cdot\cdot, A_{n}))^{r}.\end{eqnarray*}$

(ⅱ) If $1\leq r\leq2$, then

$\begin{eqnarray*}K_{+}(h, r)^{-1}K(h^{r}, 2)^{-1}(G_{[n, t]}(A_{1}, \cdot\cdot\cdot, A_{n}))^{r} &\leq& G_{[n, t]}(A_{1}^{r}, \cdot\cdot\cdot, A_{n}^{r}) \\ &\leq& K_{+}(h, r)^{2}K(h, 2)^{r} (G_{[n, t]}(A_{1}, \cdot\cdot\cdot, A_{n}))^{r}.\end{eqnarray*}$

(ⅲ) If $r>2$, then

$\begin{eqnarray*}K_{+}(h, r)^{-2}K(h^{r}, 2)^{-1}(G_{[n, t]}(A_{1}, \cdots, A_{n}))^{r} &\leq& G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}) \\&\leq& K_{+}(h, r)^{2}K(h, 2)^{r} (G_{[n, t]}(A_{1}, \cdots, A_{n}))^{r}.\end{eqnarray*}$

Proof  If $0<r\leq 1$, then Theorem $C$ implies that

$\begin{equation} K(h, 2)G_{[n, t]}(A_{1}, \cdots, A_{n}) \geq A_{[n, t]}(A_{1}, \cdots, A_{n}) \geq G_{[n, t]}(A_{1}, \cdots, A_{n}). \end{equation}$ (3.2)

By raising all terms of (3.2) to the power $r$, and notice that $t^{r}$ is operator concave for $0<r\leq1$, then we have

$\begin{eqnarray*}K(h, 2)^{r}(G_{[n, t]}(A_{1}, \cdots, A_{n}))^{r} &\geq& (A_{[n, t]}(A_{1}, \cdots, A_{n}))^{r} \\&\geq& A_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}) \\&\geq& G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}). \end{eqnarray*}$

Next, replace $A_{i}$ by $A_{i}^{r}$ in (3.2) for all $i=0, 1, \cdots, n$, it follows from Theorem 3.1 that

$\begin{eqnarray*}K(h^{r}, 2)G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}) &\geq& A_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}) \\&\geq& K_{+}(h^{r}, \frac{1}{r})^{-r}A_{[n, t]}(A_{1}, \cdots, A_{n})^{r} \\&\geq& K_{+}(h^{r}, \frac{1}{r})^{-r}(G_{[n, t]}(A_{1}, \cdots, A_{n}))^{r}.\end{eqnarray*}$

Therefore, we have

$K_{+}(h^{r}, \frac{1}{r})^{-r}K(h^{r}, 2)^{-1}(G_{[n, t]}(A_{1}, \cdots, A_{n}))^{r} \leq G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}).$

If $r\geq1$, then, it follows from (3.2) and Theorem B that

$\begin{equation}K_{+}(h, r)K(h, 2)^{r}(G_{[n, t]}(A_{1}, \cdots, A_{n}))^{r} \geq (A_{[n, t]}(A_{1}, \cdots, A_{n}))^{r}, \end{equation}$ (3.3)

which leads to the following inequalities by (ⅱ) of Theorem 3.1 that

$\begin{equation}(A_{[n, t]}(A_{1}, \cdots, A_{n}))^{r} \geq \frac{1}{K_{+}(h, r)}(A_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r})) \geq \frac{1}{K_{+}(h, r)}(G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r})).\end{equation}$ (3.4)

(ⅱ) Replace $A_{i}^{r}$ by $A_{i}$ in (3.3), since $t^{r}$ is operator convex for $1<r\leq2$, we have

$\begin{eqnarray*}K(h^{r}, 2)G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}) &\geq& A_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r})\\&\geq& A_{[n, t]}(A_{1}, \cdots, A_{n})^{r} \\&\geq& \frac{1}{K_{+}(h, r)}G_{[n, t]}(A_{1}, \cdots, A_{n})^{r}.\end{eqnarray*}$

On the other hand, we can get the second inequality from (3.4) and (3.5) immediately.

(ⅲ) If $r>2$, it follows from (3.3), (3.4) and (3.5) that

$\begin{eqnarray*}K(h^{r}, 2)G_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r}) &\geq& A_{[n, t]}(A_{1}^{r}, \cdots, A_{n}^{r})\\&\geq& \frac{1}{K_{+}(h, r)}A_{[n, t]}(A_{1}, \cdots, A_{n})^{r} \\&\geq& \frac{1}{K_{+}(h, r)^{2}}G_{[n, t]}(A_{1}, \cdots, A_{n})^{r}.\end{eqnarray*}$

The second inequality follows from (3.4) and (3.5) immediately.

References
[1] Ando T, Li C K, Mathias R. Geometric means[J]. Linear Alg. Appl., 2004, 385: 305–334. DOI:10.1016/j.laa.2003.11.019
[2] Fujii M, Lee S H, Seo Y, Jung D. Reverse inequalities on chaotically geometric mean via Specht ratio[J]. Math. Inequal. Appl., 2003(6): 509–519.
[3] Fujii J I, Nakamura M, Pečarić J E, Seo Y. A reverse of the weigheted geometric mean due to Lawson-Lim[J]. linear Algebra Appl., 2007(427): 272–284.
[4] Furuta T. Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities[J]. J. Inequal. Appl., 1998(2): 137–148.
[5] Lawson J D, Lim Y. A general framework for extending means to higher orders[J]. Collog. Math., 2008(113): 191–221.
[6] Mićić J, Seo Y, Takahasi S E, Tominaga M. Inequalities of Furata and Mond-Pečarić[J]. Math. Inequa. Appl., 1999(2): 83–111.
[7] Mond B, Pečarić J E. Convex inequalities in Hilbert spaces[J]. Houston J. Math., 1993(19): 405–420.
[8] Mond B, Pečarić J E. Convex inequalities for several positive operator in Hilbert space[J]. Indian J. Math., 1993(35): 121–135.
[9] Seo Y. Generalized Polya-Szego type inequalities for some non-commutative geometroc means[J]. Linear Algebra Appl., 2013(438): 1711–1726.