引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 41次   下载 19 本文二维码信息
码上扫一扫!
分享到: 微信 更多
从调和Zygmund型空间到调和Bloch型空间的复合算子差分
刘欣宇, 梁玉霞
天津师范大学数学科学学院, 天津 300387
摘要:
本文研究了单位圆盘上调和 Zygmund型空间 ZHα (α >1)到调和Bloch型空间BHβ(0 < β < 1)的复合算子差分的性质.利用调和函数空间的性质、Stirling公式和检验函数等工具,获得了复合算子Cφ: ZHαBHβ的有界性与紧性的充分必要条件,进而建立了复合算子差分CφCΨ:ZHαBHβ的有界性与紧性的等价刻画.
关键词:  差分  复合算子  调和Zygmund型空间  调和Bloch型空间
DOI:
分类号:O177.2
基金项目:
DIFFERENCES OF COMPOSITION OPERATORS FROM HARMONIC ZYGMUND-TYPE SPACES TO HARMONIC BLOCH-TYPE SPACES
LIU Xin-yu, LIANG Yu-xia
School of Mathematical Science, Tianjin Normal University, Tianjin 300387, China
Abstract:
This paper investigates the properties of the difierence of composition operators from harmonic Zygmund-type spaces ZHα (α >1) into harmonic Bloch-type spaces BHβ(0 < β < 1) on the unit disk. Using the properties of harmonic function spaces, Stirling formula and the test functions to obtain a necessary and su–cient condition for the bounded and compact composition operator Cφ: ZHαBHβ. And equivalent conditions for the boundedness and compactness of the difierence of composition operators CφCΨ:ZHαBHβ are presented.
Key words:  difierence  composition operator  harmonic Zygmund-type space  harmonic Bloch-type space