| 摘要: |
| 本文研究了单位圆盘上调和 Zygmund型空间 ZHα (α >1)到调和Bloch型空间BHβ(0 < β < 1)的复合算子差分的性质.利用调和函数空间的性质、Stirling公式和检验函数等工具,获得了复合算子Cφ: ZHα→BHβ的有界性与紧性的充分必要条件,进而建立了复合算子差分Cφ—CΨ:ZHα→BHβ的有界性与紧性的等价刻画. |
| 关键词: 差分 复合算子 调和Zygmund型空间 调和Bloch型空间 |
| DOI: |
| 分类号:O177.2 |
| 基金项目: |
|
| DIFFERENCES OF COMPOSITION OPERATORS FROM HARMONIC ZYGMUND-TYPE SPACES TO HARMONIC BLOCH-TYPE SPACES |
|
LIU Xin-yu, LIANG Yu-xia
|
|
School of Mathematical Science, Tianjin Normal University, Tianjin 300387, China
|
| Abstract: |
| This paper investigates the properties of the difierence of composition operators from harmonic Zygmund-type spaces ZHα (α >1) into harmonic Bloch-type spaces BHβ(0 < β < 1) on the unit disk. Using the properties of harmonic function spaces, Stirling formula and the test functions to obtain a necessary and su–cient condition for the bounded and compact composition operator Cφ: ZHα→BHβ. And equivalent conditions for the boundedness and compactness of the difierence of composition operators Cφ—CΨ:ZHα→BHβ are presented. |
| Key words: difierence composition operator harmonic Zygmund-type space harmonic Bloch-type space |