| 摘要: |
| 本文研究了光滑映射芽关于RG-的无限决定性问题,其中G是一线性Lie群和RG是光滑映射芽中右等价群的某类子群.利用乘积积分理论中的方法,获得了光滑映射芽关于RG-的无限决定性的充要条件.推广了文献[1-4]中的有关结果. |
| 关键词: 光滑映射芽 RG子群 无限决定性 RG等价 切空间 |
| DOI: |
| 分类号:O192 |
| 基金项目:国家自然科学基金项目基金资助 (12071353). |
|
| THE RG-INFINITE DETERMINACY FOR SMOOTH FUNCTION-GERMS |
|
LIU Su-hui1, LIU Heng-xing2
|
|
1.Department of Mathematics and Big Date, School of Artiflcial Intelligence, Jianghan University Wuhan 430056, China;2.School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
|
| Abstract: |
| In this paper, the RG-inflnite determinacy of smooth function-germs is being discussed, where G represents linear Lie groups and the RG represents some subgroups of right equivalent group R for smooth function-germs. By techniques of the product integral theory, the necessary and su–cient condition for the RG- inflnite determinacy of smooth function-germs is obtained. Some results of [1-4] are generalized. |
| Key words: smooth function-germs subgroups RG RG equivalence inflnite determinacy tangent space |