引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 31次   下载 78 本文二维码信息
码上扫一扫!
分享到: 微信 更多
平面上一类非局部曲线流及其应用
刘志帅,杨紫秋,郭顺滋
作者单位E-mail
刘志帅 云南师范大学数学学院, 云南 昆明 650500  
杨紫秋 云南师范大学数学学院, 云南 昆明 650500  
郭顺滋 云南师范大学数学学院, 云南 昆明 650500 guoshunzi@yeah.net 
摘要:
本文研究欧式平面上一族非局部曲线流,若当初始曲线是闭凸曲线,则在演化过程中它会保持凸性以及∫0 kα-2不变,利用压缩映射原理,得到解的唯一性,本文将证明这个流的整体存在性,且演化曲线周长和面积非增,得到了演化曲线在极限状态下会收敛到一个圆.作为流的应用,将证明一个新的不等式.
关键词:  闭凸曲线流|存在性|收敛性|曲率
DOI:
分类号:O186.1
基金项目:国家自然科学基金资助项目(12261105);云南省教育厅科学研究基金项目(2024Y154);云南师范大学2024年年度研究生科研创新基金(YJSJJ23-B68).
A CLASS OF PLANAR NONLOCAL CURVE FLOWS AND ITS APPLICATION
LIU Zhi-shuai,YANG Zi-qiu,GUO Shun-zi
Abstract:
In this paper, we study a family of non-local curve flows in the Euclidean plane, which remain convex and ∫0 kα-2 invariant during evolution if and when the initial curve is a closed convex curve.Using the principle of compressed mapping, we obtain the uniqueness of the solution. In this paper, we will prove the global existence of this flow and that the length and area of the evolution curve are non-increasing. We will also show that the evolution curve converges to a flnite circle in the limit state. As an application of the flow, we prove an inequality for convex plane curves.
Key words:  closed convex curve flow|existence|convengence|curvature