| 摘要: |
| 本文考虑了下列混合色散非线性薛定谔方程解的存在性△2u-β△u-λ/2△(u2)u=g(u),x∈RN,(1)其中g:R → R是一个连续函数,λ≥ 0,β≥0.利用变分法证明了方程(1)有无穷多非径向解.为带有拟线性项的混合色散非线性薛定谔方程的研究提供了一个证明紧性的方法. |
| 关键词: 多重性|非径向解|拟线性问题|四阶算子 |
| DOI: |
| 分类号:O175.29 |
| 基金项目: |
|
| MULTIPLE NON-RADIAL SOLUTIONS TO A MIXED DISPERSION NONLINEAR SCHRÖDINGER EQUATION |
|
HE Ju-hua
|
|
School of Mathematics, Yunnan Normal University, Kunming 650500, China
|
| Abstract: |
| In this thesis, we consider the existence of solutions for the following mixed dispersion nonlinear Schrödinger equation △2u-β△u-λ/2△(u2)u=g(u),in RN, (1) where g : R → R is a continuous function, λ≥0, β≥0. We shall prove that (1) has multiple non-radial solutions by variational method. This paper provides a method to prove compactness for the study of the mixed dispersion nonlinear Schrödinger equation with quasilinear terms. |
| Key words: multiplicity|non-radial solutions|Quasilinar problem|fourth-order operator |