引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 33次   下载 13 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Cahn-Hilliard方程的稳定化半隐格式切比雪夫谱方法
唐庶娟, 罗贤兵
贵州大学数学与统计学院, 贵州 贵阳 550025
摘要:
本文研究了Cahn-Hilliard方程的三种不同的数值格式:半隐式格式,一阶稳定化半隐格式, 二阶稳定化半隐格式的问题.利用切比雪夫谱方法进行空间离散, 有限差分法对时间离散的方法,得到Cahn-Hilliard方程的数值离散格式. 在数值实验中, 验证了当数值解达到稳定时, 对于不同的稳定化常数S, 稳定格式所需时间步长相较于非稳定格式的1000倍. 该方法验证了切比雪夫谱方法求解三种数值格式的有效性.
关键词:  Cahn-Hilliard方程  一阶稳定化半隐格式  二阶稳定化半隐格式  半隐格式  切比雪夫谱方法
DOI:
分类号:O241.82
基金项目:国家自然科学基金资助(12461076).
THE STABILIZED SEMI-IMPLICIT CHEBYSHEV SPECTRAL METHOD FOR THE CAHN-HILLIARD EQUATION
TANG Shu-juan, LUO Xian-bing
School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
Abstract:
This study investigates three distinct numerical schemes for the Cahn-Hilliard equation: the semi-implicit scheme, the first-order stabilized semi-implicit scheme, and the second-order stabilized semi-implicit scheme. A hybrid approach combining the Chebyshev spectral method (for space) and finite differences (for time) is proposed to discretize the Cahn-Hilliard equation. Numerical experiments demonstrate that when the numerical solution reaches a steady state, the stabilized schemes allow time steps up to 1000 times larger than those of the non-stabilized scheme for different stabilization constants S. This study validates the effectiveness of the Chebyshev spectral method for solving all three numerical schemes.
Key words:  Cahn-Hilliard equation  first-order stabilized semi-implicit scheme  second-order stabilized semi-implicit scheme  semi-implicit scheme  Chebyshev spectral method