引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 38次   下载 74 本文二维码信息
码上扫一扫!
分享到: 微信 更多
新算子等式下谱的共同性质
孔瑶兵,严锴
作者单位
孔瑶兵 福州大学数学与统计学院, 福建 福州 350108 
严锴 福州大学数学与统计学院, 福建 福州 350108 
摘要:
本文研究了无限维Banach空间上满足算子等式组的有界线性算子ABCk的谱性质,其中k为某个非负整数. 具体而言,设A,B,C是定义在无限维Banach空间X上的有界线性算子满足CkBCk=ACkCkBAk=Ak+1.本文从正则集的角度证明了算子ABCk的19类谱是一致的. 特别地,我们利用ABCk的Fredholm谱相等,获得了ABCk的广义Drazin-Riesz可逆性是等价的. 这些结果是对Yan[7]中结论的推广.
关键词:  算子等式  正则集  广义Drazin-Riesz逆
DOI:
分类号:O177.2
基金项目:福建省自然科学基金资助(2022J01104).
THE COMMON PROPERTIES OF SPECTRA UNDER THE NEW OPERATOR EQUATIONS
KONG Yao-bing,YAN Kai
Abstract:
The spectral properties of bounded linear operators A and BCk on inflnitedimensional Banach spaces that satisfy a system of operator equations are studied in this article, where k is some non-negative integer. Speciflcally, let A,B,C be bounded linear operators deflned on the inflnite-dimensional Banach space X satisfying CkBCk=ACk and CkBAk=Ak+1. This paper proves that the 19 types of spectra of operators A and BCk are consistent from the perspective of the regular set. In particular, we use the fact that the Fredholm spectra of A and BCk are equal to obtain that the generalized Drazin-Riesz invertibility of A and BCk is equivalent. These results are a generalization of the conclusions in Yan [7].
Key words:  operator equation  regularity  generalized Drazin-Riesz inverse