| 摘要: |
| 本文研究了导数哈代空间中的代数结构问题, 利用[6,12,15]中方法,得到了Duhamel乘积在导数哈代空间中构成巴拿赫代数以及可逆的充要条件,并且刻画了积分算子V的 拓展特征值.推广了[1,2,6,11,16]中的结果. |
| 关键词: Duhamel乘积 巴拿赫代数 拓展特征值 |
| DOI: |
| 分类号:O177.5 |
| 基金项目: |
|
| BANACH ALGEBRA STRUCTURE IN DERIVATIVE HARDY SPACES |
|
ZHANG Zhao-de, LIU Jun-ming
|
|
School of Mathematics and Statistics, Guangdong University of Technology, Guangdong 510006, China
|
| Abstract: |
| In this paper, we consider the algebraic structure of derivative Hardy Spaces. By using the method of [6,12,15], we get the Duhamel product forming Banach algebra in derivative Hardy Spaces, and invertibility criterion, and describe the extended eigenvalue of the integral operator V. We generalize the results in [1,2,6,11,16]. |
| Key words: Duhamel product banach algebra extended eigenvalue |