引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 146次   下载 192 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Hadamard流形的子流形上的一些p-调和形式的消灭定理
李南,沈正晗
作者单位
李南 南京理工大学数学与统计学院, 江苏 南京 210094 
沈正晗 南京理工大学数学与统计学院, 江苏 南京 210094 
摘要:
本文研究了Hadamard流形N的完备浸入子流形M上的一些p-调和形式的消灭定理.首先, 假设M满足加权庞加莱不等式且具有平坦法丛,N具有纯曲率张量且(l,n-l)-曲率不小于-kρ (0≤k≤4/p2),2≤ln-2. 如果总曲率足够小, 我们得到了p-调和l-形式的消灭定理,推广了Wang-Chao-Wu-Lv在2018年的结果. 其次, 假设N是一个截面曲率满足-k2KN≤ 0的Hadamard流形,如果总曲率足够小且拉普拉斯的第一特征值满足某个下界,我们得到了p-调和1-形式的消灭定理, 推广了Dung-Seo在2015年的结果.
关键词:  p-调和形式  消灭定理  加权庞加莱不等式  Hadamard流形
DOI:
分类号:O186.15
基金项目:
SOME VANISHING THEOREMS FOR p-HARMONIC FORMS ON SUBMANIFOLDS IN HADAMARD MANIFOLDS
LI Nan,SHEN Zheng-han
Abstract:
In this paper, we give some vanishing theorems for p-harmonic forms on a commplete submanifold M immersed in Hadamard manifold N. Firstly, assume that M satisfies the weighted Poincaré inequality and has flat normal bundle. And assume further that N has pure curvature tensor and the (l,n-l)-curvature of N is not less than kρ (0≤k≤4/p2) for 2≤l≤n-2. If the total curvature is small enough, we prove a vanishing theorem for p-harmonic $l$-forms, which generalizes Wang-Chao-Wu-Lv's results in [1]. Secondly, suppose that N is a Hadamard manifold with sectional curvature -k2KN≤ 0 for some constant k. If the total curvature is small enough and the first eigenvalue of Laplace satisfies a certain lower bound, we obtain a vanishing theorem for p-harmonic 1-forms, which generalizes Dung-Seo's results in [2].
Key words:  p-harmonic forms  vanishing theorems  weighted Poincaré inequality  Hadamard manifolds