引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 332次   下载 787 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Riemann-Liouville分数阶半线性发展型H-半变分不等式的可解性和最优控制
施翠云
作者单位
施翠云 桂林理工大学南宁分校基础学科部, 广西 南宁 530001 
摘要:
本文研究了Hilbert空间中半线性Riemann-Liouville分数阶发展型H-半变分不等式的可解性和最优控制.首先,利用不动点理论和Clarke广义次微分性质得到半线性Riemann-Liouville分数阶发展型H-半变分不等式解的存在性.其次,在一般假设条件下证明系统的最优控制存在性.最后,给出一个例子来验证本文的主要结果.
关键词:  发展型H-半变分不等式  最优控制  Clarke广义次微分  Riemann-Liouville分数阶导数
DOI:
分类号:O231.4
基金项目:广西自然科学基金基金资助(2021GXNSFAA220130,2022GXNSFAA035617).
SOLVABILITY AND OPTIMAL CONTROL FOR RIEMANN-LIOUVILLE FRACTIONAL SEMILINEAR EVOLUTION HEMIVARIATIONAL INEQUALITIES
SHI Cui-yun
Abstract:
This paper studies the solvability and optimal control for fractional semilinear evolution hemivariational inequalities with Riemann-Liouville fractional derivative in Hilbert space. First, we prove the existence of mild solutions for this problem by using a fixed point theorem and some properties of generalized Clarke subdifferential. Next, under some generally suitable hypotheses, the existence result of the optimal control to the fractional evolution hemivariational inequalities with Riemann-Liouville fractional derivative is also presented and obtained. Finally, we give an example to illustrate our main results.
Key words:  evolution hemivariational inequalities  optimal control  generalized clarke subdifferential  Riemann-Liouville fractional derivative